Как установить ветрогенератор – Ветрогенератор для дома — минусы и минусы. Расклад по ценам и киловаттам. Цена за 1квт от ветряка.

Содержание

Ветряки для дома своими руками. Выбираем генератор.

В связи с постоянно растущими ценами на электричество, все большее количество владельцев частных домов и дачных участков задумываются об установке источников альтернативного электропитания. Ветряки для дома своими руками являются отличным решением, как для выработки дополнительного электричества, что сможет снизить счета за коммунальные услуги, так и для обеспечения бесперебойным питанием загородные дома, к которым не подключили энергосети

Территория Россия, благодаря преимущественно равнинной местности и обширной площади, круглый год омывается большим количеством ветров, другое дело, что потенциал силы ветра оставляет желать лучшего, так как ветер чаще всего медленный и слабый. Другое дело – это необжитые территории России, где ветры гораздо большей силы. В любом случае, установка ветрогенератора даже при слабых ветрах, сможет обеспечить дом своего хозяина бесперебойной, и главное – бесплатной энергией.

Какой мощности выбрать ветрогенератор?

Первое, что стоит запомнить – ветряки для дома, как и любые другие источники альтернативного электричества, не смогут производить колоссальное количество электроэнергии. Многие начинающие конструкторы стремятся создать максимально мощный ветрогенератор, который сможет обеспечить электричеством не только освещение на дачном участке или зарядить аккумуляторные батареи, но также будет поддерживать абсолютно все электропитания дома, включая нагрев бойлера и отопительных систем. В принципе, это вполне возможно, если построить ветровой генератор мощностью более 2 киловатт модели W-HR2. Для строительства такого промышленного ветряка необходимы огромное количество денег, сил и расчетов. Соорудить его в одиночку непрофессионалу практически невозможно.

Оптимальным решением будет установка ветрогенератора мощностью до 500 ватт, этого вполне достаточно для обеспечения электроэнергией маленького загородного участка, а при необходимости большей мощности, всегда можно соорудить еще несколько ветряков и создать из них единую электростанцию.

Ниже представляем таблицу мощности ветряков в зависимости от кол-ва лопастей и диаметра всего ветроколеса при скорости ветра 4 м/с

Со стороны может показаться, что показатели несколько завышены, но не стоит забывать, что 4 м/с – это обычная скорость ветра на равнинной территории и чаще всего он достигает порывов выше, чем данная отметка. А чем больше скорость ветра, тем больше дает энергии самодельный ветряк.

Выбираем тип ветроколеса

Именно ветряное колесо является самым важным элементом всей конструкции, так как за счет его движения энергия ветра преобразовывается в механическую.

Самые популярные типы ветроколеса:

  1. Парусные
  2. Крыльчатые

Преимущества парусного ветроколеса заключается в их дешевизне и простоте установке: достаточно на лопасти прикрепить парусный материал и разместить под небольшим углом к ветру, такая конструкция будет в точности повторять старинные ветряные мельницы. К ее недостаткам относится большое аэродинамическое сопротивление воздушному потоку, который будет возрастать при ветре, идущем диагонально относительно лопастей.

Намного более эффективными являются лопасти крыльчатого типа, они немного дороже и сложнее в изготовлении, но устойчивы к силам трения или аэродинамическим потерям. Именно поэтому крылья самолетов имеют похожую форму. К дополнительным преимуществам крыльчатых лопастей относят небольшую затрату материалов для их изготовления, для сравнения можно привести вертикально осевой тип лопастей, чья эффективность будет сравнима с крыльчатыми, но при этом будет гораздо больший расход материалов.

Оптимальное количество лопастей на ветроколесе

При создании ветряков для дома своими руками можно сэкономить на материалах и обойтись всего 2-3 лопастями, но данное решение будет чревато несколькими неприятными моментами:

  • Чем меньше лопастей, тем они быстрее вращаются и создают лишнюю центробежную нагрузку на ветрогенератор, что может привести к поломке мачты и узлов крепления ветряка
  • При высокой частоте оборотов ветроколесу приходиться противодействовать большой силе трения воздуха, которые могут привести к разрушению лопастей. Поэтому лопасти приходиться изготавливать из крепких и дорогостоящих материалов
  • Высокий шум при работе

Исходя из всего вышеперечисленного, наиболее оптимальным числом лопастей будет 5 или 6. Когда определились с количеством лопастей, нужно определиться с диаметром ветроколеса исходя из данных таблицы выше. Следует учитывать, что чем больше длина лопастей, тем массивней конструкция, следовательно придется дополнительно укреплять ветряк и проводить работы по уравновешиванию винта. Наиболее оптимальный диаметр ветроколеса – это 2 метра.

Конечно, чем больше лопастей, тем большая эффективность ветрогенератора, но вместе с тем усложняется и общая конструкция ветряка и будет необходима установка дополнительного редуктора.

Выбираем генератор

При выборе генератора необходимо отталкиваться от скорости вращения ветроколеса. Ниже в таблице приведено количество оборотов зависимости от скорости ветра для ветроколеса с 6 лопастями.

Исходя из данных выше, наилучшим выбором будет веломотор или электродвигатель от ленточного накопителя данных. Преимущество таких двигателей в том, что они имеют низкие рабочие обороты и смогут раскрутить ветряк без установки редуктора.

Создаем ветровые генераторы для дома своими руками

При изготовлении ветрогенератора будем придерживаться данной таблицы. Конечно, способы крепления и расположение узлов может быть несколько изменено, но в целом, для создания эффективного ветряка лучше не отступать от представленной конструкции.

Примечание: Расстояние между мачтой и лопастями должно быть не менее 25 см, если меньше, то есть вероятность того, что лопасти прогнувшись под ветром разобьются о мачту.

Изготовление лопастей

Лучше всего крылья для ветряка вырезать из толстостенной ПВХ трубы. Конечно, можно изготовить лопасти из древесины, но это гораздо более трудозатратно, а также древесина может прийти в негодность под воздействием влаги.

Для лопастей следует использовать трубы с толщиной не менее 4 мм, иначе они будут без проблем прогибаться под ветром и быстро придут в негодность.

Высчитывание оптимальной формы лопастей чаще всего проводится эмпирическим путем при вырезании нескольких образцов разного размера. Но такой способ требует затрат времени и приводит к излишнему переводу материала. Поэтому мы предоставляем Вам ниже шаблон лопасти для трубы диаметром 16 см и длинной в 1 метр.

После того, как вы вырежете 6 лопастей по шаблону, необходимо максимально отполировать их поверхность и сточить края, чтобы они меньше сопротивлялись воздушному потоку.

Теперь изготавливаем головку электродвигателя, к которой будут крепиться лопасти. Для этого берем диск из стали толщиной не более 10 мм и привариваем к нему несколько полос длинной до 30 см, на которых высверливаем отверстия для крепления лопастей.

Чтобы повысить эксплуатационные характеристики ветряка, головку электродвигателя обязательно нужно сбалансировать. Для этого головка крепится вертикально в безветренном помещении. Необходимо следить за тем, чтобы ни одна из сторон головки самопроизвольно не двигалась и находилась в неподвижном состоянии. Если заметно движение, то полосы головки стачиваются до того состояния, пока движение не прекратиться при любом положении головки в пространстве.

Закрепляем генератор на раме

Генератор принимает вращательный момент от лопастей и постоянно находится под давлением больших центробежных и гироскопических нагрузок. Чтобы ветряк раньше времени не вышел из строя, генератор следует плотно закрепить на раме. Сама рама представляет собой пластину из метала, на которой располагаются главные узлы ветряка, а также станину из дюралалюминия с резьбовым отверстием. На станину накручивается вал генератора, а для его лучшего крепления следует использовать на конце соединения гайку с контршайбой.

Укрепление ветрогенератора от штормовых ветров

Рассматриваемый нами в этой статье ветряк не обладает высоким числом оборотов и вряд ли будет достигать таких частот вращения, что составляющие ветряка начнут приходить в негодность. Но при частых переменах направления ветра, хвост ветряка будет резко поворачиваться, что может привести к расшатыванию элементов крепления конструкции. Помимо этого, лопасти ветряка при сильном ветре будут сопротивляются поворотам, что вместе с подвижным хвостом ветрогенератора будет создавать высокую нагрузку в месте соединения рамы и генератора.

Чтобы значительно повысить срок службы ветровой электростанции, необходимо устанавливать специальную защиту от сильного ветра. Такой защитой выступает боковая лопатка – простенькое устройство, собираемое из минимума материалов, но удачно зарекомендовавшая себя во множестве ветровых установках.

С помощью боковой лопатки регулируется наклон ветряка по вертикали и при сильном ветре устанавливает лопасти параллельно ветру. То есть при умеренной силе ветра ветряк находится в стандартном положении перпендикулярно относительно земли, но при штормовых воздушных потоках, ветряк складывается на 90 градусов относительно своего рабочего положения, из-за чего его работа прекращается.

Боковая лопатка состоит из небольшой профильной трубы скрепленной с тонкой металлической пластиной, пружины и растяжки располагающейся между лопаткой и хвостом. Растяжка нужна для того, чтобы контролировать угол складывания ветряка.

В лопатке необходимо использовать крепкую пружину из углеродистой стали, которая в крайней точке выдерживает нагрузку до 12 кг. Растяжку изготавливают из тонкого велосипедного троса.

Устанавливаем мачту

Мачта является опорой для ветряка и на этом этапе ни в коем случае не стоит экономить. Лучше всего будет установить мачту на открытой территории, где в радиусе нескольких десятков метров не будет никаких строений. Сама мачта изготавливается из металличесской водопроводной трубы длинной в 7 метров. Если же возле ветряка находятся строения или деревья, то мачту следует сделать хотя бы на метр выше относительно их уровня. На пути к лопастям ветрового генератора не должно быть никаких препятствий, а иначе КПД ветряка будет значительно меньше ожидаемого.

Ветровой генератор – это массивная конструкция весом в несколько сотен килограмм, поэтому, чтобы он не проседал в почве, его необходимо устанавливать на крепком бетонном фундаменте. Помимо закрепления основы мачты в фундаменте, ветряк дополнительно фиксируется несколькими растяжками из монтажных тросов шириной не менее 5 мм. Растяжки крепятся к мачте хомутов, вытягиваются на максимальную длину и крепятся к колышкам, которые забиваются в землю на глубину не менее метра.

Устанавливать мачту с генератором можно как с помощью автокрана, так и в ручную. Для этого используется противовес, изготовленный из тяжелого деревянного бруса.

Аккумуляторные батареи и электронная система ветряка

Чтобы хранить энергию выработанную ветровой электростанцией, используют небольшие аккумуляторные батареи, емкость которых должна быть не меньше 120 а\ч. Рекомендуется также взять батарею до 300 а/ч, и уже в процессе эксплуатации определить сколько времени необходимо для ее зарядки. На выбор батареи также влияет сфера применения АКБ: если батарея используется для обеспечения электрическом нагревательных приборов, то следует отдать предпочтение более емким аккумуляторам.

Чтобы питать аккумулятором технику работающую при напряжении тока 220 В, необходимо установить специальный инвертор преобразователя напряжения. Инверторы различаются между собой уровнем пиковой мощностью, на которой они могут питать технику. Так, если подключать к АКБ компьютер вместе с монитором, то будет достаточно инвертора рассчитанного на 1000 Вт, если же от аккумуляторной батареи будут работать строительные инструменты, такие как перфоратор, то придется взять инвертор на 2000 Вт.

На рисунке ниже Вы можете видеть простейшую схему для зарядки аккумуляторов ветряком: от генератора идут три вывода, которые подключаются к параллельно идущим трем диодным полумостам. От генератора будет вырабатываться напряжение равное 26 В, поэтому к диодным полумостам будет достаточно последовательно подключить две батареи напряжением 12 В.

Основным преимуществом такой схемы является ее легкость сборки и минимум используемых материалов. Ее недостатком будет то, что при небольших ветрах аккумуляторы практически не будут заряжаться. Процесс зарядки начнется только при ветре в 7 м/с, который не так уж и часто можно встретить на равнинных территориях России.

Как ухаживать за ветрогенератором

Ветряки не требуют включения от внешних источников питания, они полностью автономны, благодаря чему запускаются самостоятельно даже при очень слабом ветре. Ветрогенераторы для дома своими руками могут прослужить десятки лет, для этого следует придерживаться нескольких правил:

  1. Чтобы металлические компоненты ветровой электростанции не сгнили под атмосферными осадками, их стоит красить каждые 2 года
  2. Дважды в год смазывать подшипники в генераторе и поворотном узле
  3. Ветроколесо – самое уязвимое место всей конструкции и может с легкостью разбалансироваться при сильном ветре. Примером разбалансировки может служить излишнее дрожание лопастей. Если дефект ветроколеса был обнаружен, то его следует немедленно снять и провести ремонтные работы

Вам понравится

svoimirukami.lesstroy.net

Установка ветрогенератора своими руками на даче

Есть еще нюансы, которые надо учесть, если вы собираетесь приобщиться к ветроэнергетике. Так, стоит подумать о том, где лучше всего произвести установку ветрогенератора на даче.

Ветрогенератор для питания пары электрических лампочек и телевизора (малый дачный набор потребителей электроэнергии) можно установить прямо на крыше дома, особенно если модель не очень шумная. Но более серьезное оборудование придется выносить подальше от жилых строений — минимум на 20 м (а лучше - на 30-40 м).

Дело в том, что во время работы генератора возникают электромагнитные поля, которые никак нельзя считать полезными для здоровья (жить с мощным ветрогенератором на крыше - все равно, что жить под линией электро-передачи, на что не согласится ни один разумный человек). Кроме того, они создают помехи для работы электронной техники.

Помимо удаленности от жилых строений, при установке оборудования, следует предусмотреть высоту мачты. Чем выше, тем сильнее ветер и тем эффективнее работа ветрогенератора. Постройки и деревья мешают ветру, поэтому пропеллер желательно поднять как можно выше.

Оптимальной считается мачта, на 10 м превосходящая по высоте самую высокую помеху (дерево, здание) в радиусе 100 м.

Выбор высоты мачты ветрогенератора в зависимости от высоты препятствия: Н - высота мачты; h - высота препятствия; R - радиус ветрогенератора (расстояние от оси вращения до нижнего края лопасти)

Как вариант, можно увеличить радиус до 200 м, тогда мачта должна быть выше самой высокой помехи на 3-4 м. Установка ветрогенератора на даче посреди поля - оптимальный вариант: ни деревьев, ни домов - ветру есть, где разгуляться.

Если нет возможности установить ветрогенератор так, чтобы в радиусе 100 м не было никаких препятствий для ветра, то следует обеспечить, по крайней мере, такую длину мачты, чтобы от верхушки самого высокого препятствия до нижнего края лопасти имелось расстояние 3-4 м.

К сожалению, далеко не на каждом участке можно установить мощный ветрогенератор, соблюдая все требования. К тому же чем выше мачта, тем дороже оборудование, ведь нужны усиленное крепление и различные приспособления, обеспечивающие безопасность и предотвращающие опрокидывание мачты.

Еще один минус ветрогенератора заключается в том, что с его помощью невозможно организовать полностью автономное энергоснабжение загородного дома.

Среднестатистического ветроэлектростанцию, предлагаемыми современными производителями - достаточно для питания бытовых приборов, но его мощности не хватит для отопления в холодный сезон.

К примеру, на рынке предлагаются ветроустановки мощностью 5 кВт, укомплектованные генератором, мачтой, инвертором и 20 аккумуляторами (то есть полный набор оборудования, необходимый для работы устройства). Стоит такой комплект около $20 тыс., а заявленные 5 кВт выдает только при идеальных условиях (их оговаривает продавец, но скорость ветра в вашем регионе может и не соответствовать этим условиям).

Фактически такая ветроустановка снабжает электроэнергией только самые необходимые потребители. Если добавить к ним еще и внешнее освещение дома (двор, участок), то потребляемая мощность значительно возрастет (даже при условии использования энергосберегающих ламп) и придется приобретать ветроустановку, обеспечивающую 10 кВт.

А такое оборудование в полной комплектации стоит уже около $31 тыс. При этом заявленную мощность можно получить опять же лишь в идеальных условиях, которых может и не быть в данном конкретном регионе. Конечно, можно установить несколько ветрогенераторов или один, но очень мощный, созданный для небольших скоростей ветра. Однако это нерентабельно, к тому же оборудование займет много места.

С учетом всех перечисленных минусов ветроэлектростанцию рекомендуется использовать в качестве вспомогательного источника энергии для загородного дома. В сочетании с мини-ГЭС или солнечной электростанцией он прекрасно обеспечит дом электричеством.

genport.ru

как правильно подсоединять трехфазный контроллер?

Эксплуатация устройства

Порядок подключения ветрогенератора является важным моментом эксплуатации устройства, от которого зависит возможность выполнения комплектом своих функций, сохранность оборудования в рабочем состоянии и долговечность аппаратуры. Неправильное подключение может вывести из строя отдельные узлы, аккумуляторные батареи. Для того, чтобы исключить возможность ошибки, надо заранее уяснить себе схему присоединения элементов комплекса друг к другу, правильное подключение балласта и нагрузки.

Как правильно подключить ветрогенератор?

Прежде, чем начинать рассмотрение правил подключения, надо определиться с составом комплекта. Ветрогенератор представляет собой целую систему оборудования, из которого вращающийся ветряк — только преобразователь энергии ветра во вращательное движение, заставляющее функционировать генератор.

Дальше напряжение подается на контроллер сигнала. Это прибор, следящий за состоянием аккумуляторных батарей. Если они загружены полностью, контроллер переключает их с режима зарядки на режим потребления, параллельно включая балластное сопротивление (потребитель) для снятия лишнего заряда.

Напряжение с аккумуляторов идет на инвертор, который преобразует постоянный ток аккумуляторов в стандартные 220 В, 50 Гц, которые питают бытовую технику, освещение и прочие приборы потребления.

Основные схемы

Возможны различные схемы подключения ветрогенератора. Основная коммутация остается неизменной, варианты касаются только присутствия дополнительного источника энергии. Различают:

  • питание только от ветроустановки
  • ветрогенератор работает в паре с сетевым электричеством. При разряде аккумуляторов происходит переключение на сетевые ресурсы, после зарядки батарей установка вновь переключается на обеспечение потребителей
  • подключение параллельно с бензогенератором. Разряд батарей инициирует запуск бензогенератора, затем обратное подключение ветряка
  • параллельное подключение с солнечными батареями. Один из наиболее часто встречающихся комплектов. Используются солнечные батареи, работающие параллельно с ветряком и, по необходимости, берущие на себя основное обеспечение потребителей
  • на Западе излишки выработанной энергии сбрасываются в сеть, за что владелец ветряка получает некоторую плату. В России такого оборудования пока не имеется, поэтому излишки попросту утилизируются с помощью балластных сопротивлений.

Сетевая схема подключения

Сетевая схема представлена в двух вариантах:

  • сетевая схема без аккумуляторов. Выработанная энергия отдается в сеть, а потребители питаются из нее. Владелец платит только за разницу между выработанной и потребленной энергией. В России такой вариант не реализован
  • сетевая схема с аккумуляторами. В данном случае подключение к сети используется только при разряде аккумуляторов, т.е. сетевые ресурсы используются как гарантия.

Такая схема подключения имеет свои достоинства и недостатки, но для того, чтобы она была действительно выгодной, надо, чтобы выработанной энергии хватало на обеспечение большого количества потребителей, а оборудование стоило довольно дешево. В противном случае проще постоянно пользоваться сетевой энергией, а ветряк держать на случай внезапных перебоев. Так будет надежнее, проще и появится возможность увеличить срок службы ветрогенератора.

Как подключить контроллер к ветрогенератору?

Контроллер — это самый первый прибор, на который подается напряжение, выработанное генератором. Подключение контроллера производится посредством специальных клемм. Генератор подключается ко входу, а выходные клеммы соединяются с аккумуляторными батареями.

Функции контроллера могут быть значительно расширены, он способен производить мониторинг состояния аккумуляторов, следить за напряжением от генератора и вовремя переключать систему на сетевое питание.

Функционал контроллера полностью зависит от того, кто его собирал (заводское исполнение или самоделка), от типа конструкции, модели и т.д.

Существует множество схем для самостоятельного изготовления, в которых всего несколько простых деталей. Такие схемы легко реализуются даже людьми с начальной подготовкой, они надежны и нетребовательны. При самостоятельном изготовлении ветряка такие схемы обеспечивают полноценное функционирование, а отсутствие каких-то дополнительных возможностей не является значительным минусом. Чем меньше элементов в схеме, тем она надежнее и меньше подвержена отказам или поломкам, поэтому вариант наиболее удачный.

Подключение ветряка к аккумулятору

Подключение аккумулятора к генератору производится через выпрямитель — диодный мост. Аккумуляторные батареи нуждаются в постоянном токе, а генератор ветряка выдает переменку, причем, весьма нестабильную по амплитуде. Выпрямитель изменяет переменный ток, модифицируя его в постоянный. Если генератор трехфазный, то необходимо использовать трехфазный выпрямитель, на это надо обращать особенное внимание.

Прямое подключение ветряка к аккумулятору — опасное решение, поскольку параметры напряжения, выдаваемого ветряком, не имеют стабильности. Резкое повышение напряжения, выходящее за пределы номинала батарей, способно вывести их из строя.

Аккумуляторы обычно не новые, они способны закипеть. Поэтому настоятельно рекомендуется использовать хотя бы простенький контроллер, изготовленный из реле-регулятора. Он вовремя отключит зарядку и сохранит работоспособность аккумуляторных батарей. В любом случае не следует экономить на оборудовании и сокращать состав комплекта, так как от него зависит полноценная работа всей ветроустановки.

Подключение однофазного ветрогенератора к трехфазному контроллеру

Однофазный генератор может быть подключен к трехфазному контроллеру либо на одну фазу, либо параллельно на все три. Более правильным вариантом считается использование одной фазы, т. е. ветряк подключается к двум контактам — защемляющему и одному фазному. Это обеспечит правильную обработку напряжения и выдачу его на приборы потребления.

В целом, использование таких разнородных устройств нецелесообразно. Кроме того, путаница с вариантами подключения способна создать значительную угрозу целостности оборудования, что недопустимо. При сборке комплекта надо сразу определиться с его составом и типом смежных приборов, чтобы не допустить использования разноплановых устройств в единой связке. Допускать рискованные соединения можно только подготовленным людям, являющимися специалистами в электротехнике, хотя сами они подобные действия решительно отвергают.

Рекомендуемые товары

energo.house

Какой ветрогенератор нужен для частного дома: выбираем ВЭУ грамотно

Ветроэнергетическая установка служит для преобразования кинетической энергии в электрическую. Современные ветрогенераторы способны использовать до 45% энергии воздуха — это позволяет успешно использовать ВЭУ в качестве альтернативного энергоисточника, который помогает снизить траты на коммунальные услуги или полностью заменить собой подключение к общей энергосети.

Домашний ветрогенератор: в каких случаях есть смысл в установке

Стоимость возведения ВЭУ для дома или небольшого кооператива сравнительно ниже, чем у других альтернативных электрогенераторов. ВЭУ уступают в цене солнечным батареям, однако они подходят не для каждого жилища. Установка ВЭУ целесообразна в таких случаях:

  • среднегодовая скорость ветра равняется или превышает 3 м/c — в противном случае много энергии от ВЭУ вы не получите;
  • если на вашем участке часто отключат свет или регулярно случаются аварийные ситуации по независящим от вас причинам;
  • если подключение к общей сети в вашем регионе отсутствует или стоит слишком дорого;
  • для поддержания полной энергонезависимости.

Сам по себе ветрогенератор не представляет никакой опасности и никакого вреда не приносит. Вас может раздражать постоянное мелькание лопастей и производимый ими шум. Но проблема исчезает, если вы устанавливаете ВЭУ на северной стороне своего участка чуть поодаль от дома. В остальном ветроэнергетическая установка — выгодное приобретение. Давайте разберемся, какой ветрогенератор лучше и почему.

Ветрогенератор какой мощности нужен для частного дома

Рынок ветрогенераторов может предложить модели от производителей разных стран, включая США, Европу и СНГ. Установки от отечественных производителей стоят дешевле, однако при выборе стоит опираться на технические характеристики и гарантийные сроки. Средняя продолжительность службы ВЭУ при грамотном использовании — 20-25 лет. Если вам предлагают купить ветряк, который прослужит меньше 10 лет, лучше подыскать другие варианты.

Работу ветряка обычно тестируют на даче или небольшом загородном доме, где потребность в электроэнергии возникает периодически, а не на постоянной основе. Для снабжения малогабаритного коттеджа вам понадобится ВЭУ мощностью от 1,5 до 3 кВт. Месячная выработка энергии в таком случае колеблется от 500 до 600кВт. Для среднего дома (100-200 м²) с условием постоянного проживания требуется ветряк мощностью не меньше 5-6 кВт и ежемесячной выработкой энергии от 1000кВт.

Разобравшись с теорией, какой мощности ветрогенератор нужен для дома, необходимо учитывать и практический аспект — силу ветра. Приобретая ВЭУ с малой мощностью, вы сможете выжать из нее достаточное количество энергии лишь при урагане. Например, двухкиловатный ветряк с расчетной скоростью ветра 15 м/с даст вам 15-20% энергии при условии скорости ветра 6-8 м/с, а в полный штиль останется неподвижным. Это не повод отказываться от недорогих маломощных ветряков — просто купите ВЭУ с меньшей расчетной скоростью ветра. Та же двухкиловатная ветроэнергетическая установка, но с расчетной скоростью в 8 м/с, будет стабильно работать на максимуме, а в особенно ветреные дни выдаст все 40% энергии.

На что обратить внимание при покупке ВЭУ

Важно учитывать высоту мачты. Чем выше находится ветряк, тем больше ветра он сможет «поймать». Скорость ветра увеличивается в зависимости от высоты, так что даже в не особо ветреных районах ВЭУ может успешно работать, если мачта будет достаточно высокой. Стандартная высота мачты — 10 метров. С каждыми последующими десятью метрами мощность ветрового потока будет увеличиваться в полтора раза.

Обратите внимание и на такие факторы:

  • фактические объемы электроэнергии, которые сможет выработать ветряк в условиях вашего участка;
  • актуальность выбранной модели, как долго она выпускается и насколько хорошо ее оценили другие пользователи;
  • гарантийные сроки и периодичность технического обслуживания;
  • расчетный срок использования ветроэнергетической установки;
  • степень сложности монтажа и обслуживания.

Какой ветряк лучше: горизонтальный или вертикальный?

ВЭУ разделяются на типы по направлению оси вращения — горизонтальные и вертикальные. Горизонтальные (крыльчатые) располагают вертикальными лопастями, которые крепятся к мачте на горизонтальной оси. Такие ветрогенераторы занимают около 90% рынка; их легко отыскать в любом каталоге. Популярность крыльчатых ветряков обуславливается их высоким КПД, простым управлением, высокой устойчивостью к ураганам и демократичной стоимостью. Их можно устанавливать на любой высоте и не бояться поломки даже во время шторма.

Вертикальные ветряки (карусельчатые) получили свое название из-за вертикальной оси вращения ротора. Они отличаются легким монтажом и стабильной работой даже при малом ветре. Карусельчатые ветрогенераторы малошумны и компактны, из-за чего их часто устанавливают для домашнего использования. Минус таких ВЭУ — меньшая эффективность (в сравнении с крыльчатыми). Вертикальный ветряк нельзя поставить на высокой мачте из-за особенностей конструкции, поэтому они хорошо работают только в ветреной местности.

Горизонтальные ВЭУ более эффективны: половина работы их лопастей происходит за счет сопротивления противоположному движению ветра. Вертикальные же ветрогенераторы из-за смены направления ветра теряют свою мощность. Горизонтальные требуют меньше места и меньших затрат, они эффективны и мощны. Низкий уровень шума делает вертикальные ВЭУ привлекательным приобретением, однако они будут целесообразной покупкой только для тех домов, которые не требуют большого количества электроэнергии и располагают накопительными аккумуляторами на случай безветренной погоды.

Для малых нужд целесообразно купить мини ветрогенератор. Эти устройства располагают мощностью до 1 кВт и используются для автономного питания системы подачи воды, небольших сельскохозяйственных ферм и снижения нагрузки на общую сеть. Такие ВЭУ часто используют на дачах для питания кухонных приборов: мини-плит, микроволновок, чайников, светильников.

altenergiya.ru

Кинетический ветрогенератор - | Grand-Mine

Кинетический ветрогенератор вырабатывает кинетическую энергию зависимое от скорости ветра, а кинетический генератор "переделывает" кинетическую энергию в простую в пропорции 8:1 (я, иногда, устанавливаю вместо кинетического генератора токарный стол)

Скорость ветра зависит от высоты, погоды и случайного фактора, меняющегося во времени. Дождь увеличивает скорость на 20%, гроза на 50%.*

1. Чтобы установить Кинетический ветрогенератор вам нужен: сам ветрогенератор и кинетический генератор
а крафтятся они так:
1) Кинетический генератор


(Генератор, 6 железных оболочек, электромотор и железный стержень)

2)Кинетический ветрогенератор:


(Основной корпус механизма, 4 железных стержня, 4 железные пластины=48 железа)

2. Нужно энергохранилеще

3. Проводим провода от (МФЭХ) до 160 блока (так-как это самая оптимальная высота. На ВСЕХ остальных блоках хоть выше, хоть ниже скорость ветра будет ниже чем на 160 блоках)

4. Ставим Кинетический генератор

ВАЖНО
Нужно чтобы был в кинетическом генераторе на текстурках (типо диска)
Главное чтобы не вот так

Это получается при зажатом шифте когда вы нажимаете правой кнопкой мыши по кинетическому генератору
Убрать это можно при не зажатом шифте правой кнопкой мыши

5.Ставим кинетический ветрогенератор
Зажимаем шифт и тыкаем правой кнопкой мыши

и тоже важно как и с кинетическим генератором с зажатым шифтом с ключом


Убрать также без зажатого шифта нажать правой кнопкой мыши ключиком
5. ставим ротор так-как это 160 блок, я выбрал углеволоконный ротор

Углеволоконные роторы можно ставить в 11 блоков в сторону низ\верх\лева\справа.

и вот что у меня получилось

если вы хотите поставить также в 2 слоя то от них должно быть расстояние 35 блоков.
У меня всё.
Удачи и приятной игры =)

* - Информация взятая с WIKI

grand-mine.ru

Самодельный ветрогенератор: фото сборки, видео

Самодельный ветрогенератор на 0,5 кВт/ч, изготовление ветрогенератора на неодимовых магнитах: фото, видео

В большинстве регионов страны большую часть времени года преобладают умеренные ветра, для таких регионов рекомендуется устанавливать тихоходные ветрогенераторы вырабатывающие достаточно энергии при сравнительно небольших оборотах генератора.

При проектировании ветряка, нужно в первую очередь определиться с основной деталью – генератором. Его можно изготовить самостоятельно, в качестве генератора можно использовать, например электродвигатель от беговой дорожки или автомобильный генератор.

Если говорить об автомобильном генераторе, то он не совсем подходит в качестве ветрогенератора, ведь он предназначен для высоких оборотов более 1000 об/мин, и при слабом ветре автогенератор не будет заряжать аккумулятор, к тому же его обмотка также потребляет энергию. Поэтому генератор от авто требует существенной доработки.

В этом ветрогенераторе за основу взят самодельный генератор аксиального типа с неодимовыми магнитами на роторе. На фото схема аксиального генератора.

Сделать такой генератор не сложно, но его изготовление потребует времени.

Сборка ветрогенератора.

Для изготовления генератора аксиального типа с постоянными магнитами понадобится:

  • Ступица от автомобиля, можно использовать б/у ступицу от ВАЗа.
  • Неодимовые магниты круглые – 40 шт. размером 25 х 8 мм или больше.
  • Проволока медная – диаметром 0,7 – 0,8 мм.
  • Эпоксидная смола.
  • Суперклей.
  • Крепёжные элементы (болты, гайки, шайбы).

Схема генератора в разрезе.

Изготовление ротора.

Размечаем места под магниты на диске ступицы и наклеиваем магниты на диск ротора, магниты нужно разместить на диске в точной последовательности с чередованием полюсов.

Клеить магниты можно суперклеем, затем чтобы хорошо закрепить их нужно залить эпоксидной смолой. Нужно изготовить две таких части для ротора.

Изготовление статора.

Для более эффективной работы генератора лучше изготовить 3 фазный статор, чем однофазный.

Схема подключения катушек трёхфазного статора.

 

Поскольку это будет тихоходный ветрогенератор, и давать зарядку на аккумулятор (12 V) он должен уже при 100 оборотах в минуту, то общее количество витков во всех катушках должно быть примерно 1200.

В этой конструкции используется 15 катушек по 80 витков в каждой. Для катушек лучше не использовать слишком тонкую проволоку, чем сопротивление меньше, тем больше ток.

Размер катушек зависит от размеров магнитов, внутренний диаметр катушек должен быть равен диаметру магнитов.

Чтобы повысить магнитный поток в катушки устанавливаются сердечники из трансформаторной стали.

Катушки крепятся на статоре и заливаются эпоксидной смолой. Выходы от катушек генератора подключаются к выпрямителю (диодный мост).

Изготовление лопастей.

Для изготовления лопастей можно использовать полихлорвиниловую (ПВХ) трубу с толщиной стенки 5 – 6 мм, диаметром 200 мм.

Размечаем трубу и разрезаем её электролобзиком на полосы заготовки, затем из заготовок выпиливаем лопасти. Края лопастей зачищаем наждачной бумагой. Лопасти крепятся к ротору генератора болтами и гайками.

Количество и размер лопастей напрямую влияют на скорость вращения вала генератора. Чем больше количество и площадь лопастей, тем больше вероятность, что лопасти будут вращаться при слабом ветре. Но при сильном ветре такой винт не сможет набрать высокую скорость вращения.

И наоборот если количество лопастей небольшое (2 – 3) и площадь их поверхности также небольшая, то при сильном ветре такой винт будет вращаться быстрее, но при слабом ветре винт практически не будет вращаться.

Для тихоходного ветряка оптимально использовать 6 лопастей длиной по 1 метру. Размер лопастей нужно подбирать индивидуально под каждый генератор.

Мачта.

Чем выше, расположен ветрогенератор, тем больше вероятность, что его лопасти поймают воздушный поток, поэтому для эффективной работы генератора понадобится хорошая мачта.

На рисунке показано как правильно установить мачту.

Существует несколько разновидностей конструкций мачт, тут каждый проектирует в зависимости от своих возможностей, но рекомендуется использовать мачту высотой не менее 8 — 10 метров.

Для защиты генератора при сильном ветре можно использовать складывающийся хвостовик, его схема и принцип работы показаны на рисунках.

 

Чертежи хвостовика.

При сильном порыве ветра хвостовик складывается и вырывает ветроколесо из воздушного потока.

Мощность такого ветрогенератора при скорости ветра 8 м/с, достигает 0,5 кВт/ч, при слабом ветре мощность будет около 0, 2 Вт/ч. При изготовлении самоделки всё делается на глаз, поэтому работу генератора нужно тестировать и усовершенствовать.

Схема подключения трёхфазного ветрогенератора к потребителям.

Также рекомендую прочитать статью с примерами схем подключения ветрогенератора.

Рекомендую посмотреть видео где показано как сделать генератор на неодимовых магнитах.

sam-stroitel.com

описание, конструкция, принцип работы и изготовление своими руками

Подключение к магистральной сети электроснабжения до сих пор доступно не всем. Есть немалое число населенных пунктов, до которых линии электропередач не дошли. Да и подключенные поселки и деревни, вследствие общей изношенности линий, испытывают частые перебои с электроснабжением. Кроме того, дачные поселки, выстроенные недавно, зачастую не имеют возможности подключиться к линии, расположенной в солидном отдалении.

Решение вопроса с электроснабжением традиционно возлагается на бензиновые или дизельные электростанции, нуждающиеся в снабжении топливом, капризные и требующие постоянного наблюдения устройства. При этом, есть альтернативные источники, не нуждающиеся в топливе. Одним из них является ветрогенератор.

Что из себя представляет ветрогенератор?

Ветрогенератор — это устройство, использующее энергию ветра для выработки электрического тока. Воздушные потоки, свободно перемещающиеся в атмосфере, имеют гигантскую энергию, причем, совершенно бесплатную. Ветроэнергетика — это попытка извлечь ее и обратить на пользу.

Ветрогенератор представляет собой набор устройств, принимающих, обрабатывающих и подготавливающих для использования энергию. Потоки ветра взаимодействуют с ротором ветряка, заставляя его вращаться. Ротор посредством повышающей передачи (или напрямую) соединяется с генератором, который заряжает аккумуляторные батареи. Заряд через инвертор перерабатывается в стандартный вид (220 В, 50 Гц) и подается на приборы потребления.

На первый взгляд, комплекс устроен довольно сложно. Существуют и более простые конструкции, например, ветряки, питающие насосы. Тем не менее, для сложных приборов требуется полный комплект оборудования, способный обеспечить стабильное и качественное электроснабжение.

Зачем он нужен?

Отличительное свойство электроэнергии состоит в том, что ее можно производить в любых количествах, если позволяет оборудование. Ветрогенератор как раз и относится к таким устройствам — он производит электроэнергию. Таким образом, ветряк представляет собой электростанцию, способную обеспечивать как крупные участки с большим количеством потребителей, так и отдельные дома или приборы.

Возможности устройства зависят от размеров крыльчатки и мощности генератора. Эти два параметра являются определяющими и зависят друг от друга. Чем мощнее ротор, тем большей мощности генератор он сможет вращать, вырабатывая большое количество энергии.

При этом, ветряк может быть создан самостоятельно и обеспечивать потребности отдельной группы приборов — например, освещения, водоснабжения, вентиляции и т.д. Такая избирательность удобна для сокращения расходов на электроэнергию, обеспечения бесперебойной подачи питания на старых изношенных линиях.

Конструкция и принцип работы

Конструктивно ветрогенераторы сочетают механическую, электромеханическую и электрическую части. К механической относится ветряк, непосредственно принимающий энергию ветра и преобразующий ее во вращательное движение. Оно передается на электромеханическое устройство — генератор, преобразующий кинетическую энергию вращения в электрический ток. После этого действуют чисто электронные устройства:

  • выпрямитель. Генератор вырабатывает переменный ток, который не годится для заряда аккумуляторных батарей. Для дальнейшего использования его надо выпрямить, для чего используется выпрямительное устройство
  • контроллер заряда. Обеспечивает своевременное переключение аккумуляторных батарей с режима зарядки на режим питания потребителей, чтобы избежать выхода АКБ из строя
  • аккумулятор (АКБ). Накапливает заряд, необходимый для поддержания напряжения в сети при ослаблении ветра
  • инвертор. Преобразует постоянный ток аккумулятора в обычные 220В 50 Гц переменного тока, необходимых для питания стандартных потребителей.

Все перечисленные электронные устройства являются типичным комплектом оборудования, используемым с любым типом ветряка. Изменение конструкции крыльчатки не влияет на состав комплекта, если только не происходит значительного увеличения скорости вращения, требующего изменения параметров генератора.

Виды ветрогенераторов

Используются два основных вида ветряков, имеющих принципиальные различия:

  • горизонтальные
  • вертикальные

В обоих случаях речь идет об оси вращения ротора. Конструкция различных моделей горизонтальных устройств мало отличается друг от друга, представляя собой подобие бытового вентилятора или пропеллера. Вертикальные устройства обладают намного большим разнообразием типов конструкции, внешне значительно отличаясь друг от друга. Рассмотрим их подробнее:

Горизонтальные ветряки

Горизонтальные конструкции имеют большую эффективность, так как поток ветра они воспринимают только рабочей стороной лопастей. Наибольшее распространение получили трехлопастные крыльчатки, но для небольших конструкций число лопастей может быть увеличено.

Именно горизонтальные конструкции используются для изготовления больших промышленных образцов, имеющих огромный размах лопастей (больше 100 м), которые в объединенном виде образуют довольно производительные электростанции. Государства западной Европы, такие как Дания, Германия, скандинавские страны активно используют ветряки для обеспечения населения энергией.

Устройства имеют один недостаток — они нуждаются в наведении на ветер. Для небольших ветрогенераторов проблема решается установкой хвоста наподобие самолетного, который автоматически располагает конструкцию по ветру. Большие модели имеют специальное устройство наведения, контролирующее положение крыльчатки относительно потока.

Вертикальные конструкции

Ветрогенераторы вертикального типа имеют меньшую эффективность, вследствие чего используются для обеспечения энергией лишь отдельных потребителей — частный дом, коттедж, группу приборов и т.д. Для самостоятельного изготовления такие устройства подходят больше всего, так как обладают широким выбором вариантов конструкции, не нуждаются в подъеме на очень высокую мачту (хотя это им и не противопоказано).

Вертикальные роторы могут быть собраны из любых подручных материалов, в качестве образца можно использовать любой тип из множества известных:

  • роторы Савониуса или Дарье
  • более современный ротор Третьякова
  • ортогональные конструкции
  • геликоидные устройства и т.д.

Описывать все типы подробно незачем, так как их количество постоянно увеличивается. Практически все новые разработки базируются на вертикальной оси вращения и предназначены для использования в частных домах или усадьбах. Большинство разработок предлагает собственный вариант решения основной проблемы вертикальных устройств — низкого КПД. Некоторые варианты имеют довольно высокие показатели, но обладают сложным устройством корпуса (например, конструкция Третьякова).

Расчет и выбор

Расчет мощности ветряка сводится к подсчету суммарной мощности потребления осветительными, вспомогательными и бытовыми приборами. Полученное значение увеличивается на 15-20% (запас мощности необходим при возникновении непредвиденных ситуаций), и на основании этих данных рассчитывается или выбирается готовый генератор.

От его параметров ведется построение всего остального комплекта — механические требования ложатся в основу проектирования ветряка, а эксплуатационные параметры — мощность, напряжение, сила тока — используются при создании системы накопления и обработки полученного тока.

Выбирая приборы, следует также обеспечивать небольшой (15-20%) запас мощности, который обеспечит устойчивость комплекса при возникновении форс-мажорных ситуаций.

Изготовление ветряка своими руками

Основные работы, которые предстоит сделать, это — изготовление и установка вращающегося ротора. Прежде всего следует выбрать тип конструкции и ее размеры. Определиться в этом поможет знание требуемой мощности устройства и производственные возможности.

Большинство узлов (если не все целиком) придется изготовить самостоятельно, поэтому на выбор повлияет, какие познания имеются у создателя конструкции, с какими приборами и устройствами он знаком наилучшим образом. Обычно сначала делается пробный ветряк, с помощью которого проверяется работоспособность и уточняются параметры сооружения, после чего приступают к изготовлению рабочего ветрогенератора.

Рекомендуемые товары

energo.house

Notice: Trying to access array offset on value of type null in /var/www/www-root/data/www/mdv63.ru/wp-content/plugins/wpdiscuz/class.WpdiscuzCore.php on line 942 Notice: Trying to access array offset on value of type null in /var/www/www-root/data/www/mdv63.ru/wp-content/plugins/wpdiscuz/class.WpdiscuzCore.php on line 975

Отправить ответ

avatar
  Подписаться  
Уведомление о