Схема электроснабжения частного дома 380В 15 кВт
Одним из важнейших этапов строительства или ремонта загородного дома является его электрификация. Поэтому приходится решать такой важный вопрос, как подключение объекта к электросети. Для этого в первую очередь понадобится схема электроснабжения частного дома 380В, 15 кВт, которая может быть двух типов – однофазная и трехфазная. Спросом пользуются оба варианта, однако в последнее время предпочтение отдается трехфазной схеме, которая существенно снижает нагрузку на сеть за счет ее равномерного распределения в виде трех параллельных линий.
Однофазное и трехфазное подключение
Между одно- и трехфазным подключением существует много различий технического плана. Так, например, подключение по трехфазной схеме осуществляется с использованием четырех или пяти проводов. Из них три являются фазными, по которым подается ток, а остальные два – это нулевой провод и заземление. В некоторых случаях для нуля и заземления используется один общий провод.
При подключении по однофазной схеме применяется два или три провода. Это соответствует фазе нулю и заземлению. Использование двух проводов означает, что ноль и заземление находятся на едином проводнике. Заранее зная количество фаз, можно сделать расчеты допустимой мощности и определить количество электрооборудования, которое может быть одновременно включено в сеть на каждой линии.
В случае однофазного подключения все подаваемое напряжение сосредотачивается на одной линии, что нередко приводит к перегрузкам. Толщина проводов на внутренних линиях домашней сети значительно выше тех, которые используются в трехфазной схеме. Это связано с более высокой нагрузкой, которая приходится только на одну линию. С учетом всех перечисленных факторов, при устройстве электроснабжения частного дома, предпочтение чаще всего отдается трем фазам.
Подключение по трехфазной схеме
В первую очередь требуется подготовить всю необходимую документацию. Она включает в себя технические условия эксплуатации, которые выдаются организацией – поставщиком электроэнергии. На основании технических условий осуществляется составление проектной документации на электроснабжение объекта.
Вам понадобятся следующие документы:
- Договор с энергоснабжающей организацией.
- Акт осмотра имеющегося электрооборудования.
- Заключение лабораторного исследования схемы, предназначенной для конкретного объекта.
- Акт разграничения электрических сетей по балансовой принадлежности.
В составляемом проекте учитываются особенности дальнейшего потребления электроэнергии. Все потребители разделяются на группы, которые включают в себя розетки и систему освещения. Каждая группа может быть отдельно выключена, если требуется провести ремонтные работы. В это время другая группа продолжает использоваться, не доставляя хозяевам излишних неудобств.
Для всех групп выполняются расчеты максимальной мощности потребления электроэнергии. В соответствии с этим выбирается и наиболее оптимальное сечение проводников. Как правило, линии освещения прокладываются кабелем, сечение которого составляет 1,5 мм2, а для розеток необходимо уже не менее 2,5 мм2. Каждая группа подключается к автоматическим защитным устройствам, исключающим возгорание проводки в случае короткого замыкания.
Таким образом, при наличии проекта подключения можно выполнить расчеты потребности в материалах, приборах и оборудовании, а также заранее определить размеры электрощита. На прилагаемых схемах отмечаются все места, где располагаются выключатели, розетки, стабилизирующие устройства и другое стационарное оборудование.
Непосредственное подключение может выполняться подземным или воздушным способом. Как правило, в частных домах используется второй вариант, имеющий ряд существенных преимуществ. В этом случае можно воспользоваться любыми схемами подключения, при минимальных затратах времени на выполнение работ. В процессе дальнейшей эксплуатации воздушные линии значительно легче ремонтировать. Большое значение имеет стоимость подключения, которая гораздо ниже, чем при использовании подземной прокладки кабельной линии.
При выполнении воздушного подключения следует учитывать расстояние от дома до столба, которое не должно превышать 15 м. В том случае, когда расстояние больше указанного, требуется установка дополнительного столба. За счет этого исключается сильное провисание или обрыв провода при негативном воздействии внешних факторов. Также следует обратить внимание на то, чтобы провода не создавали помехи пешеходам и транспортным средствам. Высота крепления трехфазной линии составляет не менее 2,7 м и более. Сами провода устанавливаются на специальных изоляторах, а уже потом они от столба подводятся к силовому щиту.
Силовой щит рекомендуется устанавливать на фасад здания, далее провода идут уже от него по всем помещениям. При наличии электрифицированных пристроек, питающая линия подводится к ним также от щитка. Для подключения и учета потребленной электроэнергии необходим трехфазный счетчик. В основном используются устройства прямого включения, принцип работы которых напоминает однофазный счетчик. В этом случае требуется всего лишь правильно соблюдать схему подключения устройства, размещенную на его задней крышке или в техническом паспорте.
В некоторых случаях в частном доме может использоваться схема полукосвенного включения трехфазного счетчика. Схема подключения дополняется трансформатором напряжения. Для оплаты потребленной электроэнергии показания прибора нужно умножить на коэффициент трансформации, указанный на трансформаторе.
Однолинейная схема электроснабжения частного дома
При разработке электроснабжения частных домов чаще всего применяется однолинейная схема, как наиболее оптимальный вариант. Она дает возможность для простого проектирования и монтажа, даже собственными силами. Однолинейная схема зарекомендовала себя, как эффективная и удобная в эксплуатации. По своей сути она является сильно упрощенной принципиальной схемой, где все виды подключений и прокладка сетей выполнены одной линией одинаковой толщины. Отсюда и появилось название однолинейной схемы.
Существует два варианта однолинейных схем – расчетная и исполнительная. Первый вариант используется в процессе строительства дома. Данная схема определяет порядок монтажа кабельных линий на конкретном объекте и выбор защитной аппаратуры. Предварительно выполняются расчеты всех силовых нагрузок на данную сеть. На расчетной однолинейной схеме указываются все имеющиеся мощности и их величины. В обязательном порядке отмечается расположение ВРУ, маркируются электрические щиты.
Исполнительная схема выполняется для действующих электроустановок, когда дом уже построен. К этому времени от проектной организации уже получены результаты обследования здания для подготовки наиболее подходящего расположения всех элементов и устройств электроснабжения.
Однолинейная схема электроснабжения своими руками
Очень часто с целью упрощения восприятия чертежей по электроснабжению используются те или иные методики, одной из которых является однолинейная система электроснабжения жилого помещения, производственного или другого строения. Такая система позволяет понять и разработать те или иные проекты повышенной сложности. Сегодня мы расскажем, как создать однолинейную схему электроснабжения своими руками, и что она представляет собой.
Однолинейная схема электроснабжения
Ключевая особенность однолинейной схемы электроснабжения состоит в том, что такая принципиальная схема состоит только из линий обозначения трех- или двухфазных цепей. Подобное решение позволит более разумно использовать техническую документацию и совместить в рамках одного проекта сразу несколько чертежей, которые не связаны друг с другом.
По типу однолинейные схемы электроснабжения подразделяются на такие:
- исполнительные;
- расчетные.
Расчетная схема
Расчетная однолинейная схема электроснабжения чаще всего применяется после окончательного просчета нагрузок, которые требуются для электропитания одного помещения. Часто такую схему проектируют уже после того, как были совершены просчеты по проводам и кабелям.
Расчетная однолинейная схема включает в себе следующее:
- структурная электрическая;
- функциональная электросхема;
- монтажная электросхема;
- кабельные планы;
- чертежи;
- проект пожарной безопасности.
Исполнительная схема
А вот исполнительная схема электроснабжения применяется с целью перерасчета существующей системы подачи электроснабжения, чаще всего, это делают для того, чтобы серьезно обновить уже готовый проект.
Исполнительная схема электроснабжения – это документ, который включает в себя такие данные:
- текущее состояние сетей;
- приборов, которые входят в сети;
- рекомендации по устранению тех или иных недостатков, выявленных в ходе проведения тех или иных технических мероприятий.
Классификация однолинейных схем
Во время проектирования систем электроснабжения своими руками применяются разные схемы, которые отображают плановые работы, существующую уже систему или же разделение систем те или иным образом. Помимо расчетных и исполнительных, однолинейные схемы бывают такие:
- структурные – содержат общие данные про электроустановку, которая выражается в указании связей силовых элементов, в частности, трансформаторов, линий электропередач, точек врезки и многого другого;
- функциональные – их делают преимущественно с целью абстрактной передачи действий механизмов, к которым присоединяется электроснабжение, также указывается их взаимодействие друг с другом и то, как они влияют на общее положение дел с точки зрения безопасности. Такие схемы в основном применяются для проектирования промышленных объектов с большим количеством машин, механизмов и оборудования, которые тоже нужно наносить на схему;
- принципиальные – чаще всего выполняются согласно ГОСТ и других стандартов той или иной страны, например, IEC, ANSI, DIN и т.д.;
- монтажные – должны четко быть согласованными с теми или иными архитектурными решениями и строительными конструкциями, в частности, несущими. Каких-то специальных требований к их оформлению нет, то размеры оборудования и сечение проводов нужно указывать четко, также нужно указывать точно диаметры кабелей и четкие размеры элементов крепежа и прочих аксессуаров.
Помимо перечисленных схем с кабельными планами есть также и электрические специальные схемы, которые используются при проектировании об отображении компонентов по отдельности.
Например, в микроэлектронике для того чтобы отобразить микрокристалл интегральной микросхемы, нужна специальная топологическая схема. Такие схемы называют мнемосхемами, они имеют вид плакатов, где действующими элементами выступают приборы и сигнализирующая аппаратура и всевозможные имитационные агрегаты. На сегодняшний день их чаще всего визуализируют на мониторе компьютера, где есть функция принятия решения пользователем вручную.
Итак, можно сделать вывод, что однолинейные графические системы должны быть созданы согласно действующим в стране строительным правилам и нормам и включать в себя такую информацию:
- полные и правдивые сведения об оборудовании;
- расчеты аварийного выключения электроснабжения объекта как целиком, так и частично;
- сведения о системе автономного питания, что важно на этапе проектирования частных домов, располагающихся вдалеке от центральных электромагистралей.
Однолинейная схема электроснабжения своими руками
Такая однолинейная схема электроснабжения того или иного объекта должна соответствовать нормам ГОСТ. Графическое изображение должно включать в себя:
- три фазы, которые питают сеть помещения;
- линии групповых сетей, которые отходят от питающих.
Если составляете схему своими руками впервые, помните, что самое в ней главное – это дать с ее помощью общее понятие о конструкции системы электропитания рассматриваемого помещения.
В итоге вы должны начертить довольно простое изображение, которое обязано четко показывать ключевые параметры сети электроснабжения.
Делается все очень просто:
- начертите линию, которая будет определять многофазное питание;
- рядом с ней поставьте цифру с перечеркнутым штрихом.
В данной схеме цифра соответствует количеству фаз, а перечеркнутый штрих – это их определение.
Кроме того, что чертеж включает в себя изображения отдельных проводов, необходимо изобразить на нем дополнительные детали электросхемы объекта. Чтобы знать, как нужно обозначать УЗО в квартире, выключатели, контакторы и прочие элементы, изучите соответствующий ГОСТ, который без труда можно отыскать на тематических ресурсах в Интернете. В них вы легко сориентируетесь на тему того, как своими руками обозначить в чертеже тот или иной элемент системы.
Чтобы защитить групповые линии от перегрузок и общих цепей объекта от электрозамыкания, нужно применять автоматические выключатели. Проект, помимо ключевых составляющих, таких как кабели ввода или заземления либо УЗО, должна включать в себя информацию о наличии розеток или выключателей света в помещениях.
Ниже приведем пример создания однолинейной типовой схемы электроснабжения для жилой квартиры, частного дома, производственного или социального объекта. Так, она включает в себя:
- точку подключения объекта к электросети;
- вводно-распределительные устройства;
- точку прибора, применяемого для подключения и его марку;
- иногда нужны параметры щита;
- кабель питания должен не только быть изображенным схематически, то и должно быть указано его сечение и марка;
- информация о номинальных и максимальных токах приборов, которые применяются в рамках того или иного помещения.
Также не забывайте о необходимости применения примерных расчетных нагрузок, которые могут быть предельными для той или иной сети электропитания в вашем населенном пункте. Их правила выполнения могут отличаться в зависимости от требования к помещению.
Попытайтесь уделять внимание каждому элементу, даже минимальному, поскольку ключевые требования к проекту выдвигаются компанией, которая снабжает вас электричеством. Подобная однолинейная схема электроснабжения того или иного жилого и нежилого объекта является ключевым документом, который отвечает за эксплуатационную ответственность разных сторон.
Если вы хотите своими руками и совершенно бесплатно создать однолинейный проект того или иного объекта, вам потребуется ЕСКД, то есть Единая система конструкторской документации.
В домашних условиях своими руками ее можно начертить вручную или специальной чертежной программы на компьютере. В частности, программа AutoCAD вам поможет создать проект офиса, торгового центра, частного дома или другого строительного объекта.
Если вам нужно создать такую схему, но своими руками вы не осилите эту работу, то необходимо обратиться в конструкторское бюро своего населенного пункта, специалисты которого помогут вам справиться с этой задачей.
Проектируем электрику вместе: Однолинейная схема электроснабжения
Почему схема однолинейная? Однолинейная схема – это та же принципиальная схема, только выполненная в упрощенном виде: все линии однофазных и трехфазных сетей изображаются одной линией, отсюда и название. Назначение однолинейной схемы.. Точка подключения.. Граница балансовой принадлежности.. Коммерческий учет электроэнергии.. Правила выполнения однолинейной схемы.. Пример однолинейной схемы электроснабжения.. Однолинейная схема частного дома.Почему схема однолинейная?
В состав проектной документации может входить несколько электрических схем. В их числе есть и однолинейная схема.
Название ее чисто условное. Однолинейная схема – это та же принципиальная схема, только выполненная в упрощенном виде: все линии однофазных и трехфазных сетей изображаются одной линией, отсюда и название.
Различают исполнительную и расчетную однолинейную схему.
Для находящихся в эксплуатации электроустановок используется исполнительная схема. Она выполняется тогда, когда возникает необходимость ввести серьезные изменения в проект по результатам обследования действующей электроустановки и выявления несоответствий существующим нормативам и правилам.
Для проектируемых новых объектов выполняется расчетная однолинейная схема. Она выполняется после расчетов электрических нагрузок, выбора защитно-коммутационных аппаратов и кабельно-проводниковой продукции. Расчетная однолинейная схема является основой для разработки электрических принципиальных и электромонтажных схем, необходимых для выполнения монтажных работ.
Правила выполнения однолинейной схемы электроснабжения
Правила, согласно которым выполняются все виды электрических схем, в том числе и однолинейная схема электроснабжения, определены ГОСТ 2. 702-75.
Как уже говорилось выше, под понятием «однолинейная схема электроснабжения» понимается графическое изображение трех фаз питающей сети и отходящих линий групповых сетей в виде одной линии. Это условное изображение значительно упрощает и делает более компактными схемы электроснабжения. Подробная детализация подобным схемам не нужна, поскольку они предназначены давать общее представление о строении электросети и основных ее элементах.
Условное изображение трехфазного напряжения питания, для примера, приведено на рисунке «а», а его упрощенное изображение, которое и явилось причиной названия однолинейных схем отображено на рисунке «б».
Для того, чтобы визуально отобразить на схемах трехфазное подключение, используют несколько обозначений, таких как перечеркнутая линия с цифрой «3», расположенной рядом с вводом или выводом проводки, и прямая линия, перечеркнутая тремя косыми отрезками.
Для однолинейных схем электроснабжения обозначения приборов, пускателей, контакторов, выключателей, розеток и прочих элементов применяют согласно ГОСТ 2. 709, как и для всех видов электрических схем.
Назначение однолинейной схемы
Однолинейная схема электроснабжения служит одним из основных документов при заключении договоров на поставку электроэнергии и выдаче технических условий (ТУ) на присоединение к электрическим сетям.
Исходя из однолинейной схемы электроснабжения, определяются границы балансовой принадлежности и эксплуатационной ответственности сторон.
Граница балансовой принадлежности и эксплуатационной ответственности сторон находится в точке подключения. До точки подключения эксплуатационную ответственность несет поставщик электроэнергии (владелец сетей), после нее – потребитель электроэнергии.
Коммерческий учет электроэнергии осуществляется во вводном устройстве, устанавливаемом, как правило, на границе балансовой принадлежности. Конкретное место установки приборов коммерческого учета прописывается в ТУ на присоединение к сетям. Обычно владелец сетей всегда требует установки шкафа учета в точке подключения, поскольку, как было сказано, за участок линии от точки подключения до объекта эксплуатационную ответственность несет потребитель. На самом объекте могут устанавливаться приборы технического учета для контроля общего потребления и оценки тепловых потерь электроэнергии.
Какие сведения должны быть указаны на однолинейной схеме?
На однолинейной схеме, входящей в состав проекта электроснабжения, указывают:
• точку подключения объекта;
• границу балансовой принадлежности;
• марку и номинальный ток вводного устройства в точке подключения;
• сведения о приборах коммерческого учета;
• марку питающего кабеля или воздушной линии, их длину и сечение;
• расчетные значения потерь напряжения в кабельных и воздушных линиях;
• установленная и расчетная мощность ВРУ, их расчетный ток и cosφ;
• марки и номинальные токи защитно-коммутационных аппаратов;
• расчетные нагрузки;
• шкаф АВР и режим его работы.
Выбор сечения проводников и расчет потерь напряжения можно посмотреть на странице «Выбираем сечение проводников», выбор номинальных токов аппаратов защиты — на странице «Выбор автоматических выключателей».
Однолинейная схема должна быть информативной
Как мы видим, однолинейная схема является одним из основополагающих документов в проекте электроснабжения. Она содержит сведения о расчетных нагрузках, о потерях напряжения, о приборах коммерческого учета, о режимах работы объекта при отключениях электроэнергии и т. д.
Сведения, перечисленные выше, должны присутствовать на однолинейной схеме в обязательном порядке. Отнеситесь к оформлению однолинейной схемы со всей ответственностью и тогда у вас не будет проблем с согласованием и утверждением проекта.
Пример оформления однолинейной схемы жилого дома представлен на рис. 1. Схема кликабельна, ее можно увеличить.
Пример однолинейной схемы электроснабжения
Однолинейные схемы электроснабжения других объектов не имеют принципиальных различий с рассмотренной нами однолинейной схемой электроснабжения частного дома или любого другого сооружения.
В населенных пунктах воздушные линии 380/220В проходят, как правило, в непосредственной близости от домов. Поэтому приборы учета электроэнергии допускается устанавливать на фасадах домов, как это показано на рис. 1.
Рис. 1
Если статья Вам понравилась и Вы цените вложенные в этот проект усилия – у Вас есть возможность внести посильный вклад в развитие сайта на странице «Поддержка проекта».
Статьи по теме:
1. Схема электроснабжения загородного дома
2. Внутреннее электроснабжение
3. Групповые сети освещения
Внимание!
Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Он посвящен основам электротехники и электричества с акцентом на домашние электрические установки и процессы, в них происходящие.
Схемы городских электрических сетей | Электроснабжение городов
- Подробности
- Категория: Подстанции
Содержание материала
Страница 14 из 14
Специфика требований при проектировании систем электроснабжения городов заключается в необходимости применения возможно простых схем с минимальным количеством электрооборудования.
Внутренние распределительные электрические сети до 1 кВ большинства жилых и общественных зданий и предприятий состоят из вводно-распределительного устройства (ВРУ), распределительных линий и соответствующего электрооборудования и выполняются в виде разветвленных магистральных сетей.
Схемы ВРУ до 1 кВ зависят от требований надежности электроприемников, расположенных в здании, количества и назначения линий внутренней и внешней сетей. На рис. 1 приводится принципиальная схема электрической сети 12-этажного жилого дома. Эта схема соответствует электроприемникам II категории по надежности питания. На рис. 2 приводится схема ТП и ввода в здание для электроприемников III категории.
Рис. 1. Принципиальная схема электрической сети жилого дома: 1 — кабели ввода 380 В; 2 — переключатели; 3 — плавкие предохранители; — питающие линии квартир; 5 — линии двигателей и общедомовых электроприемников; б — линии освещения лестничных клеток, 7 — линии наружного освещения здания; 8 — линии освещения технического подполья; 9 — то же чердака, шахт лифтов; ВРУ — вводно-распределительное устройство
Рис. 2. Схема ТП и ввода в здание для электроприемников III категории
Рис. 3. Структурная схема внутренних электрических сетей многоэтажного и многосекционного здания с напряжением 660 В
При зданиях большого объема с количеством этажей 35 — 40 и более ТП 10—20/0,38 кВ оправдано размещать на промежуточных технических этажах, в чердачных помещениях, на крыше зданий. На рис. 3 показана структурная схема внутренних электрических сетей многоэтажного и многосекционного здания с применением напряжения 660 В.
Лекция 5. Электрические сети жилых зданий — Студопедия
Содержание лекции:
— принципиальные схемы электроснабжения жилых домов.
Цель лекции:
— знакомство со схемами электроснабжения жилых домов.
В современных жилых зданиях вводы внешних сетей и коммутационно-защитная аппаратура внутренних распределительных сетей объединяются в единое комплексное вводно-распределительное устройство, которое и является главным распределительным щитом. ВРУ целесообразно размещать в секциях дома, ближайших к ТП. К распределительной части ВРУ присоединяют питающие линии квартир, силовых потребителей, питающие и групповые линии рабочего, эвакуационного и аварийного освещения общедомовых помещений, противопожарных устройств, огней светового ограждения, освещения и силовых потребителей, встроенных и пристроенных общественных помещений.
Для питания электроприемников жилых домов высотой 9—16 этажей применяют как радиальные, так и магистральные схемы. На рисунке 5 дана магистральная схема с двумя переключателями на вводах. При этом одна из питающих линий используется для присоединения электроприемников квартир и общего освещения общедомовых помещений, другая — для подключения лифтов, противопожарных устройств, эвакуационного и аварийного освещения и т.п. Каждая из линий рассчитана с учетом допустимых перегрузок при аварийном режиме. Перерыв в питании по этой схеме не превышает 1 ч, что достаточно электромонтеру для нужных переключений на ВРУ.
1, 2 — трансформаторы; 3— предохранители; 4— переключатели; 5,6— ВРУ; 7, 8— питающие линии. Рисунок 5 — Принципиальная схема электроснабжения жилых домов высотой 9—16 этажей с двумя переключателями на вводах |
а — исходная; 6 — модифицированная.
Рисунок 6 — Принципиальная схема электроснабжения жилых домов высотой 9 — 16 этажей с тремя вводами
На рисунке 6, а приведена схема питания жилых домов той же этажности, но с тремя вводами, причем вводы резервируют друг друга. Необходимость в большом числе вводов возникает для питания зданий высотой 9—16 этажей с электроплитами, а также многосекционных домов с большим числом квартире газовыми плитами. Модификация этой схемы приведена на рисунке 6, б. Такая схема удобна при ремонте одной из сборок низкого напряжения на подстанции. Недостатком этой схемы является то, что часть электроприемников на период ремонта необходимо отключать, так как на один кабель приходится вся нагрузка дома.
Для питания жилых домов высотой 17 этажей и более применяют радиальные схемы с АВР на вводах; к силовым вводам присоединяют и другие электроприемники I категории: противопожарные устройства, огни светового ограждения, эвакуационное и аварийное освещение.
Перспективным является размещение ТП вблизи жилых зданий или под зданиями.
На отходящей от ВРУ линии устанавливают автоматические выключатели или предохранители; аппарат управления устанавливают на несколько линий одного назначения.
Учет электроэнергии, расходуемой общедомовыми потребителями, осуществляется с помощью трехфазных счетчиков, которые устанавливают на ответвлениях и присоединяют к соответствующим секциям шин.
В жилых зданиях квартирного типа устанавливают один однофазный счетчик на каждую квартиру. Допускается установка одного трехфазного счетчика. Расчетные квартирные счетчики рекомендуется размещать совместно с аппаратами защиты (предохранителями, автоматическими выключателями) и выключателями (для счетчиков) на общих квартирных щитках. Для безопасной замены счетчика перед ним должен быть установлен рубильник или двухполюсный выключатель, располагаемый на квартирном щитке. Рекомендуемые схемы стояков приведены на рисунке 7.
Рисунок 7 — Рекомендуемые схемы стояков
К внутридомовым питающим линиям относятся кроме питающих линий квартир также линии, питающие электродвигатели, электрооборудование лифтовых насосов, вентиляторов и др.
1 — выключатель; 2— счетчик электроэнергии; 3— автоматические выключатели; 4— общее освещение; 5—розетка на 6 А; 6 — розетка на 10 А; 7— электроплита; 8— этажный щиток. Рисунок 8 — Принципиальная схема групповой квартирной сети |
От ВРУ прокладывают:
— питающие линии лифтов; к одной линии подключают не более четырех лифтов из разных секций; число лифтов, присоединяемых к каждой питающей линии, не ограничивается;
— групповые линии рабочего эвакуационного и аварийного освещения;
— групповые линии штепсельных розеток для подключения уборочных механизмов;
— линии, питающие встроенные в жилые дома предприятия и учреждения (они могут получать питание от ТП вместо ВРУ).
Групповая квартирная сеть предназначена для питания осветительных и бытовых электроприемников.
Групповые линии выполняют однофазными, а при значительных нагрузках — трехфазными четырехпроводными, но при этом должна быть предусмотрена надежная изоляция проводников и приборов, а также устройство автоматического защитного отключения.
Трехфазные линии в жилых домах должны иметь сечение нулевых проводников, равное сечению фазных проводников, если фазные проводники имеют сечение до 25 мм2, а при больших сечениях — не менее 50 % сечения фазных проводников. Сечения нулевых рабочих и нулевых защитных проводников в трехпроводных линиях должны быть не менее сечения фазных проводников.
Рекомендуется общее освещение выделять на отдельную групповую линию.
Нормами регламентируется число штепсельных розеток, устанавливаемых в квартирах. Так, в жилых комнатах квартир и общежитий — одна розетка на каждые 6 м2 площади комнаты; для подключения бытового прибора мощностью до 2,2 кВт — одна штепсельная розетка с заземляющим контактом на ток 10 А.
На рисунке 8 приведена схема групповой квартирной сети с электроплитой. В целях безопасности корпус стационарной электроплиты и бытовых приборов зануляют, для чего от этажного щитка прокладывают отдельный проводник. Сечение последнего равно сечению фазного проводника.
Однолинейная схема электроснабжения | ИП Субботин
Однолинейная схема электроснабжения
Чтобы осуществить подключение к электросетям, необходимо выполнить множество предварительных работ. Причем эти работы выполняются заявителем самостоятельно. Речь идет обо всех мероприятиях, необходимых для технологического подключения, осуществляемых в пределах территории (фактических границ) подключаемого участка. Большую часть времени на выполнение всех этих мероприятий занимают проектные работы, то есть составление, оформление и согласование проекта электроснабжения.
Среди прочего, в сетевую организацию необходимо предоставить однолинейную схема электроснабжения, с указанными на ней точками подключения к электрическому оборудованию сетевой организации. Кроме этого, данная схема потребуется специалистам строительной компании, которые будут непосредственно выполнять данные работы.
Однолинейная схема обязательно должна присутствовать среди прочих документов, при условии, что максимальная мощность всех энергопринимающих устройств на объекте не превышает 15 кВт. Если мощность больше, в сетевую компанию предоставляют полноценный проект электрики (см. страницу Проектирование электроснабжения).
Что такое однолинейная схема электроснабжения?
Так называют графическое изображение сети, в котором все устройства цепи выполнены для одной фазы, как правило фазы «А», и, следовательно, объединены одной линией. Подготовка такой электрической схемы необходима для составления технической документации о присоединении, так как однолинейная схема более проста и наглядна для понимания, и при её представлении не требуется дополнительных выездов на объект.
На схеме отображаются все подключенные к сети электросети (приборы, выключатели, розетки, светильники и вся нагрузка). При этом каждый тип приборов имеет свои условные обозначения по ГОСТам.
Различают несколько видов однолинейных схем:
1. Исполнительная. Такая схема составляется для уже действующей системы электроснабжения. Необходимость в исполнительной схеме возникает при модернизации существующей сети или при ее ремонте после проверки, в ходе которой были выявлены нарушения или дефектные участки. Кроме того, проектная схема может отличаться, и как правило отличается, от исполнительной, так как иногда приходится на стадии выполнения монтажных работ отступать от проектных решений.
2. Расчетная. Эта схема составляется для первичного подключения электроснабжения на строящемся объекте. Схема составляется с учетом всех нагрузок, после чего специалисты проектной организации могут рассчитать необходимое сечение проводов, кабелей, подобрать устройства автоматической защиты, с учетом результатов расчетов. Кроме того, такая однолинейная схема является подробной и понятной инструкцией при выполнении монтажа сети.
3. Структурная. Подвид однолинейных схем, укрупненно отображающий взаимосвязи между трансформаторными подстанциями, распределительными щитами и точками подключения электрооборудования.
4. Принципиальная электрическая схема. Такие схемы более подробные, они выполняются в строгом соответствии с ГОСТами, без использования сокращений или упрощений. На принципиальной схеме обязательно должны быть указаны марки и основные параметры всего используемого оборудования. Имея принципиальную схему, можно без проблем выполнить закупку необходимого оборудования или выполнить полный комплекс электромонтажных работ.
5. Функциональные. Такие линейные схемы могут выполняться в произвольной форме, без строгих правил, так как они используются для распределения оборудования с учетом его мощности. Функциональные схемы относятся к планировочным документам. Часто, в виде функциональных схем выполняются разделы по Релейной защите или Автоматической системе учета и контроля электроэнергии.
6. Монтажные. Составляются с учетом особенностей здания, расположения несущих стен и перекрытий, архитектурных элементов. На монтажной линейной схеме указывают точные размеры кабелей и проводов, их сечение, обозначают крепежные элементы.
Но главной однолинейной схемой, которая обязательно должна присутствовать в проекте подключения электричества, является расчетная схема – если речь идет о первичном подключении электроэнергии.
Особенности составления схемы
Так как главным назначением схемы является формирование общего представления об электрической системе объекта, нет необходимости в ее детализации. Но для составления данной электрической схемы необходимо выполнить следующие действия:
- Расчет общей мощности силовой нагрузки. Он осуществляется сложением максимальной (установленной) мощности каждого включенного в схему электроприбора.
- Выбор сечения проводов СИП и кабелей. Этот параметр определяется, исходя из результатов расчета силовой нагрузки. При выборе проводников, обязательно производится расчет падения напряжения в проводнике и расчет стойкости проводника к току короткого замыкания. Если необходимо округлить цифры, округляют в большую сторону.
- Выбор защитных устройств. Они подбираются тоже в соответствии с максимальной силовой нагрузкой и ожидаемыми токами короткого замыкания. При этом рекомендуется установка двух типов защитных устройств – автоматических выключателей и УЗО, такое сочетание оптимально для однофазных и трехфазных систем внутреннего электроснабжения жилых объектов.
При составлении однолинейной схемы электроснабжения на чертеже обязательно указывается точка подключения к электросетям. В многоквартирном доме это общий ввод, в частном – электрический щит на ближайшей опоре сетевой компании. Необходимо указывать тип вводно-распределительного устройства, тип и марку счетчика электроэнергии, характеристики кабелей и способ их прокладки. Также, на чертеже присутствует информация о допустимой единовременной нагрузке (как правило, это 5 кВт или 15 кВт) группах потребителей электроэнергии и наименование объекта электроснабжения.
Если электрическая система подразумевает автономное или резервное электроснабжение (установка ДГУ или ИБП), дополнительный источник электроэнергии тоже указывается в схеме.
Этапы составления
однолинейной схемы электроснабженияВесь процесс составления однолинейной схемы лежит на потребителе электроэнергии. Понятно, что самостоятельно человек не может составить такую схему, если он не обладает достаточными знаниями и компетенциями. Поэтому необходимо обратиться в специализированную проектную организацию, которая занимается составлением, утверждением и согласованием подобных документов.
Проектирование однолинейной схемы электроснабжения начинается с получения технических условий (ТУ) в сетевой компании. Далее, при прохождении трассы линии внутри границ земельного участка заявителя, изготавливается однолинейная схема, в соответствии с указанными выше принципами.
В случае прохождения трассы линии по муниципальной земле, должен быть разработан полноценный проект электроснабжения, который необходимо согласовать со всеми заинтересованными службами. Для начала необходимо будет получить генплан в городской Архитектуре, на котором будут отображены коммуникации, прилегающие к участку, и на его основе изготовить инженерно-топографический план местности. Генплан необходим для того чтобы в процессе электромонтажа линии не были повреждены другие коммуникации. Также, в этом случае, в городской Архитектуре нужно получить разрешение на проведение геодезических, а затем земляных, работ.
Следующий этап – разработка проекта электроснабжения, в который также входит и однолинейная схема электроснабжения. После разработки документы утверждаются в муниципальном отделении и у будущего энергопоставщика.
При обращении в надежную проектную организацию можно быть уверенными в том, что с разработкой и согласованием схемы, как и остальных документов, не возникнет проблем и осложнений. Подобные услуги не стоят дорого, и обычно не отнимают много времени, так как работами занимаются опытные специалисты с большим опытом работы.
Наша компания предлагает широчайший спектр услуг по проектированию и монтажу систем электроснабжения. Для обратной связи воспользуйтесь станицей Контакты нашего сайта.
Проект электроснабжения офиса | Заметки электрика
Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».
В своих предыдущих статьях я неоднократно говорил о том, что электромонтажные работы необходимо выполнять по проекту.
В проекте изображен план питающей сети, выполнен расчет нагрузок, выбраны марки и длины кабелей соответствующих сечений в зависимости от условий их прокладки, выбрано электрооборудование (распределительные щиты, вводные и групповые автоматы, УЗО, дифавтоматы, приборы учета электроэнергии, электроустановочные изделия, светотехническая аппаратура и т. д.), составлена однолинейная принципиальная схема электроснабжения, а также монтажные схемы электропроводки силовой сети и сети освещения.
В данной статье я представляю Вашему вниманию пример проекта электроснабжения офиса, расположенного в жилом доме. Этот проект можно взять за основу для проекта электроснабжения квартиры или частного дома, несколько изменив его под свои нужды. Кстати, у меня на сайте уже имеется аналогичная статья про электроснабжение магазина «Промтовары» — можете ознакомиться с ней.
Проект электропроводки для офиса выполнен на основании технических условий (ТУ) на проектирование и соответствует требованиям ПУЭ 7-издания, экологических, санитарно-гигиенических, противопожарных и других норм, действующих на территории Российской Федерации и обеспечивающих безопасную для жизни и здоровья людей эксплуатацию объекта при соблюдении предусмотренных проектом мероприятий.
Итак, начнем по-порядку.
Технические условия на электроснабжение офиса
После оформления заявки на технологическое присоединение от ОАО «Региональной сетевой компании» были получены технические условия (ТУ). С процедурой получения технических условий (ТУ) Вы можете познакомиться более подробно в этой статье.
Согласно ТУ, офису была присвоена III категория по надежности электроснабжения и выделена мощность 7 (кВт) при однофазном питании 220 (В).
Для 3-ей категории электроприемников (ЭП) достаточно иметь один ввод (источник питания), а перерыв в электроснабжении допускается до 24 часов (ПУЭ, п.1.2.21).
План питающей сети и монтаж заземления
Офис находится на первом этаже в многоквартирном жилом доме. Электроснабжение офиса осуществляется от ВРУ-0,38 (кВ) жилого дома через устанавливаемое рядом ВРУ-0,38 (кВ) нежилых помещений (ШР-11).
ШР-11 — это металлический распределительный шкаф наружной установки с габаритами 500х1600х350 (мм). Производитель в данном проекте выбран IEK, но возможна замена оборудования на аналогичное других производителей с соответствующими техническими характеристиками.
Проектируемое ВРУ-0,38 (кВ) нежилых помещений (ШР-11) установлено в подвале и запитано кабелем марки АВВГ (4х35) с кабельных наконечников существующего ВРУ-0,38 (кВ) жилого дома. Длина этой кабельной линии составляет 5 (м).
Около ВРУ-0,38 (кВ) нежилых помещений (ШР-11) выполнен монтаж заземляющего устройства в виде треугольника.
В качестве вертикальных заземлителей используются стальные круглые стержни диаметром 16 (мм) длиной 1 (м). Соединение вертикальных заземлителей (вершин треугольника) между собой осуществляется горизонтальными заземлителями, выполненными из стальной полосы размером 4х40 (мм) длиной 1 (м).
Горизонтальные заземлители заглублены в землю на 0,8 (м). Все соединения выполнены сваркой, а сварные швы обработаны битумом.
Читайте мою статью о том, как правильно выполнить монтаж заземляющего устройства.
Измеренное сопротивление заземляющего устройства составило 1,9 (Ом), что удовлетворяет условиям проекта (не более 10 Ом). Замер сопротивления я производил с помощью измерителя М-416.
Соединение заземляющего устройства с главной заземляющей шиной (ГЗШ) выполнено открыто стальной полосой 4х40 (мм) на расстоянии 0,4 (м) от уровня пола. Пересечение стальной полосы с перегородкой выполнено в стальной трубе Т50.
Таким образом, в ВРУ-0,38 (кВ) нежилых помещений выполнено разделение PEN проводника на нулевой рабочий N и нулевой защитный РЕ, т.е. выполнен переход с системы заземления TN-C на TN-C-S.
От проектируемого ВРУ-0,38 (кВ) нежилых помещений (ШР-11) по подвалу проложен вводной кабель марки ВВГнг (3х10) до ВРУ-0,22 (кВ) офиса.
Как видите, сечение вводного кабеля несколько завышено, т.к. для 7 (кВт) мощности достаточно было применить кабель (3х4) или (3х6) — см. таблицу выбора сечения кабелей. Но видимо это было сделано с целью дальнейшего увеличения выделяемой мощности для офиса.
К сведению: вот список марок кабелей и проводов, которые разрешено применять для прокладки электропроводки. Заодно напомню, что провод ПУНП запрещен к применению.
Общий план питающей сети подвала.
Длина вводного кабеля ВВГнг (3х10) составляет 45 (м). Он проложен по подвалу открыто в ПВХ-гофрированной трубе на отметке 2 (м) от уровня пола. ПВХ-гофра крепится к стенам и потолку с помощью пластиковых клипс или металлических скоб.
Такой способ крепления мне нравится — получается достаточно быстро, надежно и смотрится вполне эстетично. Смотрите сами, особенно когда в ряд проложено несколько параллельных кабелей.
В подвале находится множество труб различных коммуникаций и инженерных сетей.
В связи с этим, при прокладке кабеля нужно соблюдать следующие требования ПУЭ (п.2.1.56 и п.2.1.57):
Согласно ПУЭ, п.2.1.58, проход кабеля через стены, перегородки и междуэтажные перекрытия осуществляется в стальной трубе Т50 с толщиной стенки не менее 3,2 (мм).
С подвала вводной кабель ВВГнг (3х10) через междуэтажное перекрытие в металлической трубе поднимается на 1 этаж офиса до ВРУ-0,22 (кВ).
ВРУ-0,22 (кВ) установлено в помещении №7 (см. план помещений) на отметке 2 (м) от уровня пола.
В офисе имеется 7 помещений:
- тамбур
- кабинет №1
- кабинет №2
- кабинет №3
- кабинет №4
- санузел
- коридор
В таблице ниже указаны площади и характеристики этих помещений. Как видите, тамбур и санузел относятся к влажным помещениям, т.е. у которых относительная влажность воздуха составляет более 60%, но менее 75% (ПУЭ, п.1.1.7.). Соответственно, к электропроводке в этих помещениях будут предъявляться особые требования, про которые я расскажу ниже.
Схема подключения вводного щита в офисе
В качестве вводного щита выбран ЩУРн-1/12зо.
ЩУРн-1/12зо-0-36 УХЛ3 — это навесной учетно-распределительный металлический щит на 12 модулей с классом защиты IP31, с замком и окном, предназначенный для однофазного счетчика
В этом щите установлены следующие коммутационные аппараты:
- вводной однополюсный автоматический выключатель ВА47-29 1Р 32 (А)
- однофазный (электронный однотарифный) счетчик активной электроэнергии прямого включения СОЭ-5/60-1-110, 5-60 (А) с классом точности 1,0
- дифференциальный автомат АД-12 2Р 16 (А), 30 (мА) — 2 шт.
- однополюсный автоматический выключатель ВА47-29 1Р 16 (А) — 2 шт.
- однополюсный автоматический выключатель ВА47-29 1Р 10 (А) — 2 шт.
- нулевая шина N
- шина заземления РЕ («земля»)
Все аппараты защиты имеют характеристику С. Читайте мою подробную статью о время-токовых характеристиках В, С и D.
Однолинейная принципиальная схема вводного щита (для увеличения схемы кликните на нее):
Фаза L вводного кабеля ВВГнг (3х10) через вводной однополюсный автомат ВА47-29 с номинальным током 32 (А) подключается к однофазному электронному счетчику СОЭ-5/60-1-110 прямого включения. Туда же подключается и ноль N. Со счетчика фаза уходит на распределительные (групповые) автоматы, а ноль N — на нулевую шинку N. Нулевой защитный проводник РЕ подключается сразу же на шину заземления РЕ.
При подключении кабеля не забывайте соблюдать цветовую маркировку жил.
Монтаж вводного щита выполнен при помощи медного провода ПВ-1 сечением 10 кв. мм. Для облегчения монтажа можно применить соединительную шину или, другими словами, гребенку. Также рекомендую почитать мою статью о том, как правильно подключать автоматы.
Схема вводного щита состоит из 6 групповых линий:
- розетки помещений № 3-5 (гр. 1)
- розетки помещений № 2, 3 (гр. 2)
- освещение помещений № 1, 2 и наружное освещение (гр. 3)
- освещение помещений № 3-7 (гр. 4)
- тепловая завеса (гр.5)
- кондиционер (гр. 6)
Групповые линии электропроводки выполняются трехжильными кабелями ВВГнг (3х1,5) и ВВГнг (3х2,5). Каждая группа защищена своим автоматом или дифавтоматом с определенными характеристиками в зависимости от мощности нагрузки.
Вот таблица с расчетом нагрузок потребителей. Расчетные нагрузки приняты исходя из проектируемого оборудования.
Коэффициент спроса у силового оборудования взят 0,8, а у освещения — 1. Усредненный косинус всех потребителей составил cosφ=0,87.
В итоге получилось, что установленная мощность офиса составляет 5 (кВт). После учета коэффициентов спроса расчетная мощность получилась 4,28 (кВт). Не трудно рассчитать суммарный расчетный ток с учетом усредненного cosφ=0,87. Получилось 22,38 (А). Сечение вводного кабеля ВВГнг составляет 10 кв.мм, т.е., как я и говорил в начале статьи, он выбран с хорошим запасом, т.к. длительно-допустимый ток питающего кабеля составляет 55 (А).
Я специально составил общую таблицу для удобства выбора сечений проводов и кабелей. Как пользоваться этой таблицей я подробно рассказывал в этой статье.
В качестве аппарата защиты питающего кабеля установлен вводной автоматический выключатель ВА47-29 с номинальным током 32 (А) с характеристикой С. Даже если нагрузка в офисе по каким-либо причинам превысит более 32 (А), то вводной кабель не перегреется и не выйдет из строя.
Такие проверки нужно обязательно проводить, т.к. каждый автоматический выключатель обладает «условным током неотключения», т. е. для нашего примера по время-токовой характеристике С (ссылка на статью про ВТХ я указывал чуть выше) при токе 1,13·In = 1,13·32 = 36,16 (А) автомат не отключится.
Также существует такое понятие, как «условный ток отключения» автомата, т.е. для нашего случая при токе 1,45·In = 1,45·32 = 46,4 (А) автомат из холодного состояния отключится за время около 60 минут (1 час). Длительно-допустимый ток питающего кабеля 10 кв.мм составляет 55 (А) и возникновение таких ситуаций нам не страшны.
А если бы вводной кабель имел бы сечение не 10 кв.мм, а 4 кв.мм (что позволительно для данного проекта), то в случае возникновения перегруза в 47 (А) по кабелю в течение часа проходил бы ток, который в значительной мере превышал бы его длительно-допустимый ток (35 А) — кабель начал бы сильно греться, плавиться, что могло привести к пожару или короткому замыканию, в итоге вводной кабель в любом случае вышел бы из строя.
Поэтому я рекомендую для защиты кабеля сечением:
- 1,5 кв. мм — устанавливать автомат на 10 (А)
- 2,5 кв.мм — устанавливать автомат на 16 (А)
- 4 кв.мм — устанавливать автомат на 20 (А) или 25 (А)
- 6 кв.мм — устанавливать автомат 25 (А)
- 10 кв.мм — устанавливать автомат на 32 (А) или 40 (А)
Надеюсь, что объяснил доступно.
Рассмотрим расчет мощности и тока питающей линии на кондиционер. Расчетная мощность кондиционера равна 0,8 (кВт), а расчетный ток с учетом cosφ=0,87 получился около 4,18 (А). Сечение кабеля для питания кондиционера выбран ВВГнг (3х2,5), т.е. с хорошим запасом. Длительно-допустимый ток кабеля (3х2,5) составляет 25 (А), кстати, в проекте указано даже чуть больше — 30 (А). В качестве аппарата защиты установлен автоматический выключатель ВА47-29 с номинальным током 16 (А).
При наличии проекта электроснабжения, Вы без каких-либо проблем приобретете весь необходимый материал для монтажных работ. Приведу Вам еще несколько полезных материалов по теме выбора и приобретения электротехнических изделий:
Монтаж системы уравнивания потенциалов
Несколько слов хотел бы сказать о том, как выполнена система уравнивания потенциалов в офисе.
Согласно ПУЭ, п.7.1.87, по ходу передачи электрической энергии, для обеспечения дополнительной электробезопасности необходимо выполнять монтаж дополнительной системы уравнивания потенциалов (ДСУП). Особенно это касается помещений с повышенной опасностью, т.е. в нашем случае это санузел.
В санузле устанавливается стальная протяжная коробка уравнивания потенциалов (КУП) У-994 с клеммником. Этот клеммник соединяется с шиной РЕ вводного щита с помощью медного провода сечением 6 кв.мм. А дальше делается заземление следующих металлических конструкций:
- мойки
- трубы холодного водоснабжения (ХВС)
- трубы горячего водоснабжения (ГВС)
Более подробно о выполнении системы уравнивания потенциалов Вы можете познакомиться в этой статье.
Монтажные схемы электропроводки
Монтажные схемы в проекте разбиты на два чертежа. На первом чертеже изображена монтажная схема электропроводки силовой части, а на втором — только осветительной.
На монтажной схеме показаны:
- пути прокладки всех кабельных линий
- места установки всех распределительных коробок
- места установки всех розеток и выключателей
- места установки светильников и прочего электрооборудования (кондиционер, тепловая завеса)
Надеюсь, что Вам известны все разрешенные способы соединения жил проводов в распределительных коробках.
Соединение жил проводов розеточных (силовых) линий лично я выполняю с помощью опрессовки, а линий освещения — с помощью клеммников Wago. Пайку я стараюсь избегать — вот причины на это.
Монтажная схема силовой электропроводки офиса:
Кабели к розеткам, кондиционеру и тепловой завесе прокладываются в ПВХ — гофрированных трубах диаметром 20 (мм) за подвесным потолком и за листами гипсокартона. Проход кабелей через стены и перегородки осуществляется в стальной трубе Т25.
В данном проекте электроснабжения офиса предусмотрены двойные розетки РА16-756 от Wessen (16 А с заземляющим контактом, для скрытой установки, класс защиты IP20). Устанавливаются они на отметке 0,8 (м) от уровня пола.
Для информации: в 2008 году компания WESSEN вошла в состав Schneider Electric.
Всего в офисе установлено 8 двойных розеток:
- 2 розетки в кабинете №1 (гр. 2)
- 3 розетки в кабинете №2 (две розетки с гр. 2, а третья — с гр. 1)
- 1 розетка в кабинете №3 (гр. 1)
- 2 розетки в кабинете №4 (гр. 1)
Все розетки офиса запитаны кабелем ВВГнг (3х2,5) через дифференциальные автоматы АД12 16 (А), 30 (мА).
В тамбуре, коридоре и санузле розетки не установлены.
Тепловая завеса установлена на входе в офис и запитана кабелем ВВГнг (3х2,5) от автоматического выключателя ВА47-29 1Р 16 (А) — гр.5. Кондиционер установлен между кабинетами №2 и №3 и запитан кабелем ВВГнг (3х2,5) от автоматического выключателя ВА47-29 1Р 16 (А) — гр.6.
Монтажная схема сети освещения:
Сети освещения выполнены кабелем ВВГнг (3х1,5) и защищены автоматами ВА47-29 1Р 10 (А) — гр. 3 и гр.4. Кабели к светильникам и выключателям прокладываются в ПВХ — гофрированных трубах диаметром 16 (мм) за подвесным потолком и за листами гипсокартона. Проход кабелей через стены и перегородки осуществляется в стальной трубе Т25.
Все выключатели устанавливаются на отметке 1,6 (м) от уровня пола.
Выбор и расстановка светильников соответствует требованиям СанПин 2.2.1/2.1.1.1278 — 03.
В кабинете №1 установлены 6 потолочных встраиваемых светильников ARS/R 418 4х18 (Вт) с люминесцентными трубчатыми лампами от изготовителя «Световые технологии» (d=26 мм, G13, класс защиты IP20).
Включение этих светильников осуществляется трехклавишным выключателем ВС0516-351-18 от Wessen (16А с индикатором, для скрытой установки, класс защиты IP20). Каждой клавишей включаются 2 светильника в ряду.
Такие же светильники установлены в кабинетах №2, №3 и №4 в количестве 2 штук в каждом кабинете. Управление освещением в кабинете №2 и №3 осуществляется двухклавишным выключателем С56-039 от Wessen (6А с индикатором, для скрытой установки, класс защиты IP20).
Вот подробная схема подключения двухклавишного выключателя для 2 групп светильников.
Включение светильников в кабинете №4 осуществляется одноклавишным выключателем С16-053 от Wessen (6А с индикатором, для скрытой установки, класс защиты IP20).
Описание схемы подключения одноклавишного выключателя.
В санузле установлен один потолочный светильник DR/PRS 418 4х18 (Вт) с люминесцентными трубчатыми лампами от изготовителя «Световые технологии» (d=26 мм, G13, класс защиты IP43). Этот светильник соответствует требованиям к электроустановочным изделиям, установленным во влажных помещениях.
В коридоре установлен встраиваемый светильник RG 100 с лампой накаливания 100 (Вт) от изготовителя «Световые технологии» (цоколь Е27, класс защиты IP54).
Управление светом в санузле и коридоре осуществляется с помощью двухклавишного выключателя С56-039 от Wessen (6А с индикатором, для скрытой установки, класс защиты IP20).
В тамбуре установлен настенно-потолочный светильник ПСХ-60 с лампой накаливания 60 (Вт) (цоколь Е27, класс защиты IP54), который управляется прямо из тамбура с помощью одноклавишного выключателя LEX411604 от ELSO.
Для наружного освещения у входа в офис установлен светильник ПСХ-60 с лампой накаливания 60 (Вт) (цоколь Е27, класс защиты IP54), который управляется из тамбура с помощью одноклавишного выключателя LEX411604 от ELSO.
Рекламная вывеска установлена на углу дома. Включение вывески осуществляется также из тамбура с помощью одноклавишного выключателя LEX411604 от ELSO.
Всего в офисе установлено 15 подрозетников и 11 распределительных (ответвительных) коробок У 192.
P.S. В данной статье я привел Вам пример типового проекта электроснабжения офиса, расположенного в жилом доме. Как я и говорил в начале статьи, этот проект Вы можете взять за основу для проекта электропроводки в квартире или частного дома, изменив его под свои нужды. Спасибо за внимание.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Электроэнергетические системы в зданиях
В этой статье рассматриваются системы распределения электроэнергии в зданиях на самом базовом уровне. Мы обсудим общие принципы того, как электричество перемещается из инженерных сетей в удобную розетку в комнате. Компоненты системы различаются в зависимости от размера здания, поэтому мы будем рассматривать системы как для малых, так и для больших зданий.
Электроэнергия от энергокомпании
Электроэнергетические компании наиболее эффективно передают энергию от электростанции при очень высоких напряжениях.В Соединенных Штатах энергетические компании обеспечивают электроэнергией средние и большие здания напряжением 13 800 вольт (13,8 кВ). В небольших коммерческих зданиях или жилых домах энергокомпании понижают напряжение с помощью трансформатора, установленного на опоре или на земле. Оттуда электричество через счетчик подается в здание.
Распределение электроэнергии в малых зданиях
Небольшие коммерческие или жилые здания имеют очень простую систему распределения электроэнергии. Коммунальному предприятию будет принадлежать трансформатор, который будет установлен на площадке за пределами здания или будет прикреплен к опоре электросети.Трансформатор снижает напряжение с 13,8 кВ до 120/240 или 120/208 вольт, а затем передает электроэнергию на счетчик, который принадлежит коммунальному предприятию и ведет учет потребляемой мощности.
После выхода из счетчика мощность передается в здание, где вся проводка, панели и устройства являются собственностью владельца здания. Провода передают электричество от счетчика на щит, который обычно находится в подвале или гараже дома.В небольших коммерческих зданиях панель может располагаться в кладовой. Щит управления будет иметь главный служебный выключатель и ряд автоматических выключателей, которые управляют потоком энергии в различные цепи в здании. Каждая ответвленная цепь обслуживает устройство (некоторые приборы требуют больших нагрузок) или несколько устройств, например розетки или фонари.
Распределение электроэнергии в больших зданиях
Большие здания имеют гораздо более высокую электрическую нагрузку, чем небольшие здания; поэтому электрооборудование должно быть больше и прочнее.Владельцы крупных зданий также будут покупать электроэнергию высокого напряжения (в США 13,8 кВ), потому что это дешевле. В этом случае владелец предоставит и обслужит собственный понижающий трансформатор, который понижает напряжение до более приемлемого уровня (в США 480/277 вольт). Этот трансформатор может быть установлен на площадке вне здания или в трансформаторной комнате внутри здания.
Затем электричество передается на распределительное устройство. Роль распределительного устройства заключается в безопасном и эффективном распределении электроэнергии между различными электрическими шкафами по всему зданию.Оборудование имеет множество функций безопасности, включая автоматические выключатели, которые позволяют отключать питание на выходе — это может произойти из-за неисправности или проблемы, но это также может быть сделано намеренно, чтобы позволить техническим специалистам работать на определенных ветвях энергосистемы.
Следует отметить, что очень большие здания или здания со сложными электрическими системами могут иметь несколько трансформаторов, которые могут питать несколько частей распределительного устройства. Мы стараемся упростить эту статью, поделившись основными концепциями.
Электричество покидает распределительное устройство и перемещается по первичному фидеру или шине. Шина или фидер — это проводник большого сечения, способный безопасно и эффективно проводить ток большой силы тока по всему зданию. Автобус или фидер подключаются по мере необходимости, а проводник подводится к электрическому шкафу, который обслуживает зону или этаж здания.
В каждом электрическом шкафу будет еще один понижающий трансформатор — в США он снизит мощность с 480/277 вольт до 120 вольт для розеток.Этот трансформатор будет питать ответвительную панель, которая управляет серией ответвлений, покрывающих часть здания. Каждая ответвленная цепь покрывает подмножество электрических потребностей области, например: освещение, удобные розетки для ряда комнат или электричество для части оборудования.
ОДНОЛИНЕЙНАЯ СХЕМА КАК ИЗОБРАТЬ ЭЛЕКТРИЧЕСКОЕ УСТАНОВКУ ДОМА
ЧТО ТАКОЕ ОДНОЛИНЕЙНАЯ СХЕМА
Однолинейная схема представляет собой графическое изображение электроустановки .Она отличается от других диаграмм тем, что в случае однолинейной схемы каждая цепь представлена одной линией , в которой представлены все проводники соответствующего участка.
ОСНОВНЫЕ ЭЛЕМЕНТЫ ОДНОЛИНЕЙНОЙ СХЕМЫ
Следуя стандартной электрической символике, основные элементы установки будут представлены на однолинейной схеме. В некоторых из них можно было найти даже более сложные элементы, более характерные для более сложных схем.
РАСПРЕДЕЛИТЕЛЬНАЯ ПАНЕЛЬРаспределительная панель содержит элементы для защиты и контроля электроснабжения дома . На этой панели организована электрическая система и распределяется мощность установки.
На однолинейной схеме электрическая панель обычно представлена прямоугольником с пунктирной линией.
ЦЕПИОбычный дом обычно имеет не менее 5 цепей.На однолинейной схеме мы увидим их в виде линии, в которую включены все проводники.
Верхний конец обычно соответствует началу схемы. Нижний конец обычно подключается к другой цепи или к приемнику.
- Первая цепь: управляет освещением (интенсивность 10 А)
- Вторая цепь: показывает большинство вилок (ток 16 А)
- Третья цепь: представляет розетки для кухни и ванной (интенсивность 16 А)
- Четвертый контур: для духовки (интенсивность 25 А)
- Пятый контур: объединяет стиральную машину и стиральные машины (интенсивность 20 А)
ЭЛЕКТРИЧЕСКИЕ ПРИЕМНИКИ
Электрические приемники представляют все подключенные устройства, являются ли они тепловыми, например, плиты, утюги, духовки и т. д.; или светящиеся, такие как лампы
СИЛОВОЙ ВЫКЛЮЧАТЕЛЬФункция силового автоматического выключателя заключается в отключении подачи электричества в установку в случае короткого замыкания или перенапряжения. Этот переключатель контролирует, чтобы максимально допустимая нагрузка на установку не превышалась.
УСТРОЙСТВО ОСТАТОЧНОГО ТОКА
Его функцию можно спутать с функцией IGA, поскольку устройство защитного отключения также отключает установку, но по другой причине . Устройство остаточного тока отвечает за защиту установки от возможных утечек тока.
В случае отключения установки это произойдет из-за утечки на землю или неисправности какого-либо электрического прибора.
МИНИАТЮРНЫЙ ВЫКЛЮЧАТЕЛЬ (MCB)
MCB отвечают за защиту электрических цепей от перегрузок и коротких замыканий. . В них есть:
- Магнитный триггер, который срабатывает, когда ток превышает его номинальное значение.
- Тепловой разъединитель, отключающий электрический поток в случае его перегрева.
РАСПРЕДЕЛИТЕЛЬНАЯ ПЛАТА
Она находится в распределительном щите, где расположены элементы безопасности, управления и защиты. Обычно это близко к входной двери в дом
Практические рекомендации по проектированию электроустановок жилых домов
Электроснабжение в зданиях
При проектировании электроснабжения жилого дома необходимо рассчитывать мощность как для отдельных групп КРУ, так и для Количество кормления в целом должно определяться с учетом существующего или планируемого использования оборудования.Трехфазное, двухфазное и однофазное оборудование может быть подключено к трехфазным распределительным устройствам.
Проектирование электрооборудования жилых домов (практические рекомендации)Расчет трехфазного тока SC
Уметь выбирать и тестировать электрические аппараты и проводники, например, в кабеле распределительного устройства жилого дома, трехфазное короткое замыкание При расчетах необходимо учитывать токи как до трансформатора 10 кВ или 20 кВ, так и после трансформатора на стороне 0,4 кВ.
Для расчета тока короткого замыкания согласно проектной принципиальной схеме (рисунок 1а) должна быть составлена схема замены (рисунок 1b).
Сопротивления электрооборудования на стороне высокого напряжения не учитываются при расчете токов короткого замыкания, так как они очень малы.
Рисунок 1 — Пример фрагмента схемы электроснабжения жилого дома: а) расчетная схема; б) схема замещения, где К1 – К4 — точка короткого замыканияТрехфазный ток короткого замыкания рассчитывается следующим образом:
где:
- E S — электромагнитная сила системы, В;
- Z S — полное сопротивление, Ом.
Расчет тока однофазного короткого замыкания
Расчет тока однофазного короткого замыкания для проверки чувствительности электрических устройств . Это очень важно, так как в некоторых случаях однофазный ток короткого замыкания может быть решающим при выборе защитных устройств. На практике при выборе защитных устройств однофазные токи короткого замыкания часто не учитываются.
В низковольтных сетях с заземленной нейтралью при расчетах однофазного тока короткого замыкания используется метод симметричных компонентов.На рисунке 2 показан замкнутый контур со значениями сопротивления, использованными в конструкции.
Рисунок 2 — Расчетная схема однофазного контура короткого замыканиягде:
- U f — фазное напряжение
- Z T — полное сопротивление трансформатора
- R f — сопротивление фазного провода
- X f ” — внутреннее индуктивное сопротивление фазного провода
- R N — сопротивление нейтрального проводника
- X N ” — внутреннее индуктивное сопротивление нейтрального проводника
- X c ‘ — внешнее индуктивное сопротивление контура короткого замыкания
Название: | Проектирование электроустановок жилых домов (практические рекомендации) — Рижский технический университет; Институт Энергетики; Отдел электроснабжения |
Формат: | |
Размер: | 3.1 MB |
Страницы: | 42 |
Загрузить: | Прямо здесь | Видео курсы | Членство | Загрузите обновления |
Соответствующее содержание EEP со спонсорскими ссылками
Системы электропроводки и методы электропроводки
Введение
Системы электропроводки в основном стандартизированы несколькими правилами, правила и законы.Электропроводка должна быть установлена правильно и безопасно в соответствии с электротехническими нормами и стандартами. Если электрическая проводка выполнена неправильно или без соответствия каким-либо стандартам, это может привести к таким инцидентам, как короткое замыкание, поражение электрическим током, повреждение устройства / прибора или привести к неисправности устройства, что в дальнейшем приведет к сокращению срока службы устройства.
Перед выполнением фактических монтажных работ для жилой, коммерческой или промышленной электропроводки необходимо учесть несколько факторов.Эти факторы включают тип конструкции здания, тип потолка, конструкции стен и пола, методы проводки, требования к установке и т. Д.
Давайте обсудим некоторые основы электропроводки, т. Е. Концепцию электропроводки, необходимые шаги, применяемые методы и общие Кратко о видах электропроводки.
ПРЕДУПРЕЖДЕНИЕ: Это не руководство пользователя или учебное пособие по электрическому подключению. Это всего лишь теория, объясняющая различные системы электропроводки и различные возможные способы установки электропроводки.Если вы планируете проект, связанный с электромонтажом сети переменного тока, обязательно обратитесь за помощью и советом к профессионалу.
Электробезопасность
Перед началом любых монтажных работ в первую очередь следует позаботиться о безопасности персонала. Электричество опасно, и прямой или косвенный контакт с электрооборудованием или проводами при включенном питании может привести к серьезным травмам, а иногда даже к смерти. Следуйте приведенным ниже инструкциям, чтобы обеспечить безопасность на рабочем месте.
- Всегда используйте защитные средства, такие как очки, перчатки, обувь и т. Д., И избегайте любого прямого контакта с цепями под напряжением или под напряжением.
- Иметь навыки и методы, чтобы различать открытые токоведущие части электрического оборудования.
- Отключите источник питания при установке или подключении проводов.
- Мощность, подаваемая в установку, должна контролироваться с помощью главного распределительного щита, который должен состоять из автоматического выключателя.
- Электропроводящие инструменты и материалы должны храниться на безопасном расстоянии от токоведущих частей цепи или оборудования.
- Используйте токопроводящие ручные инструменты, на которые они рассчитаны, для выполнения электрических работ. Если они используются для номинального напряжения (или тока), отличного от номинального, прочность изоляции инструмента нарушится и вызовет поражение электрическим током.
Узнайте больше об электробезопасности в этой статье: Электробезопасность
Распределение электроэнергии
Электроэнергетический совет / отдел обеспечивает подачу электроэнергии до внешних помещений потребителя (жилых, коммерческих или промышленных).Потребитель должен подключиться от этой точки к главному распределительному щиту / распределительному щиту дома.
От главного распределительного щита / распределительного щита различные типы электрических нагрузок, такие как вентиляторы, освещение, комнатные охладители и холодильники, подключаются через соответствующие цепи и электрическую проводку.
Image
Существуют различные типы проводов, используемых для подключения нагрузок к сети, которые могут использоваться как для домашней электропроводки, так и для промышленной электропроводки.Некоторые из них обсуждаются ниже.
Типы систем электропроводки
Электропроводка — важная часть здания, будь то жилое здание (отдельные дома или квартиры), большие коммерческие помещения (офисные здания) или промышленные предприятия (фабрики). Существует несколько способов и систем электропроводки, которые используются для освещения и других силовых цепей.
Тип электропроводки играет важную роль в общей стоимости установки.Итак, очень важно понимать, какие типы систем электропроводки подходят для конкретной работы.
Некоторые общие факторы, которые следует учитывать при выборе конкретной системы электропроводки:
- Стоимость системы электропроводки
- Тип используемых проводов / кабелей
- Качество проводов
- Тип нагрузки (легкая, HVAC, двигатели и т. д.)
- Безопасность системы электропроводки
- Возможность будущих модификаций / расширений
- Срок службы установки
- Строительство здания (деревянное, бетонное, кирпично-строительное и т. д.))
- Пожарная безопасность
Независимо от типа проводки и выбора провода, система электропроводки должна обеспечивать защиту от регулярного механического износа при нормальных условиях эксплуатации.
Обычно тип провода определяет системы электропроводки (или, по крайней мере, их классификацию). Вот некоторые из наиболее часто используемых систем электропроводки в жилых, коммерческих, промышленных, аудиториях и т. Д .:
- Проводка с планками
- Проводка кожуха и заглушки
- Проводка с планками (CTS или TRS)
- Проводка кабелепровода (поверхностная или скрытая)
- Проводка в свинцовой оболочке
Давайте теперь посмотрим на эти системы проводки / установки по очереди.
Проводка с планками
В этом случае фарфоровые, деревянные или пластиковые планки крепятся к стенам или потолку через равные промежутки времени, т.е. на расстоянии 0,6 м между каждой планкой. Кабели с ПВХ изоляцией проходят через отверстия каждой планки, и, следовательно, планка поддерживает и удерживает провод.
Это недорогой метод электромонтажа, который используется для временных установок. Поэтому он не подходит для домашней электропроводки, а также является устаревшим методом.
Изображение
Проводка в обсадной и заглушке
В этом случае кабель проходит через деревянный кожух с канавками.Деревянный кожух подготовлен таким образом, чтобы он имел необходимую фиксированную длину с параллельными канавками, в которых проходят кабели. Деревянный кожух крепится к стене или потолку саморезами.
После размещения кабелей в пазах корпуса на него надевается деревянная заглушка с пазами, закрывающая кабели. Это тоже дешевая система электропроводки, но при коротком замыкании велик риск возгорания.
Электропроводка из планок
В этом случае изолированные провода проходят через прямые деревянные рейки из тикового дерева.Деревянные рейки крепятся к потолку или стенам с помощью дюбелей и шурупов. Кабели крепятся к обрешетке с помощью зажимов из луженой латуни.
Эти зажимы крепятся к обрешетке с помощью нержавеющих гвоздей. Этот монтаж проводки прост и дешев, по сравнению с другими системами электропроводки, а также требует меньше времени на установку. В основном они используются для установки внутри помещений.
В этом типе проводки в качестве электрического проводника обычно используется провод в оболочке Cabtyre (CTS) или провод в жесткой резиновой оболочке (TRS).
Кабельная проводка
В этой проводке кабели из ПВХ прокладываются либо через трубы из ПВХ, либо через стальные трубы. Эта проводка из кабелепровода может быть либо поверхностной, либо скрытой.
Если трубопроводные трубы проходят по поверхности стен и потолка, это называется поверхностной разводкой труб. Если кабелепроводы проложены внутри поверхности стен и потолка и покрыты штукатуркой, это называется скрытой проводкой кабелепровода.
Поверхностная проводка кабелепровода используется в промышленности для подключения тяжелых двигателей.С другой стороны, скрытая проводка — самый популярный и распространенный способ электромонтажа жилых домов. Электропроводка из кабелепровода — самый безопасный способ подключения, а также красивый внешний вид (скрытая проводка из кабелепровода).
Проводка в свинцовой оболочке
Этот метод подключения также аналогичен проводке CTS / TRS, за исключением типа провода / кабеля. В этом случае электрический проводник сначала изолируют вулканизированной индийской резиной, а затем покрывают оболочкой из свинцово-алюминиевого сплава (95% свинца и 5% алюминия).
Подобно проводке с обрешеткой, эта проводка также проходит на деревянной обрешетке и фиксируется с помощью луженых зажимов.
Типы чертежей
Электрические чертежи играют важную роль в электромонтажных работах, поскольку они передают информацию о подключении различных устройств и оборудования к сети. Информация на чертежах дает полный дизайн или план электромонтажа, а также помогает собрать различное оборудование.
Некоторые электрические схемы описаны ниже.Прежде чем узнать об этих схемах, сначала вы должны знать и иметь представление о различных символах, используемых при подготовке чертежа, а также для понимания электрических соединений. Ознакомьтесь с различными символами электропроводки.
Блок-схема
Это функциональный чертеж, на котором показаны и описаны основные принципы работы оборудования или устройств. Он состоит из основных функций или частей, представленных блоками и соединенных линиями, показывающими взаимосвязь между блоками.
Эта диаграмма обычно рисуется перед тем, как реализовать принципиальную схему. Он не дает подробной информации о системе, а также оставляет информацию о более мелких компонентах. И поэтому большинство технических специалистов мало интересуются этой диаграммой.
Схема (схема)
Здесь электрическая схема представлена графически в упрощенном виде. Он включает информацию о положении (в мм, см или м) различных элементов, таких как осветительные приборы, розеточные коробки, распределительные коробки, потолочные вентиляторы и т. Д.
Линейная схема
Это упрощенное обозначение электрической системы, также называемое однолинейной схемой или однолинейной схемой. Это похоже на блок-схему, за исключением того, что различные электрические элементы, такие как трансформаторы, переключатели, фонари, вентиляторы, автоматические выключатели и двигатели, представлены стандартными схематическими обозначениями.
Он состоит из символов, обозначающих компоненты, и линий, обозначающих провода или проводники, соединяющие компоненты вместе.
Линейная диаграмма фактически получена из блок-схемы. Он не дает никакой информации о компоновке частей и их подробной информации о подключении компонентов.
Однако вы можете выполнить электромонтаж, следуя информации, приведенной на этой схеме. Эти диаграммы обычно предназначены для иллюстрации работы электрической цепи.
Схема электрических соединений
Схема электрических соединений представляет собой графическое изображение цепи, которая показывает проводку между частями или элементами или оборудованием.
Предоставляет подробную информацию о проводке, чтобы можно было легко понять, как установить соединение между устройствами. Он включает в себя взаимное расположение, расположение устройств, а также клеммы на устройствах.
На нем показаны источники питания и заземляющие соединения, функции управления и сигнализации (с упрощенными формами), завершение неиспользуемых контактов и выводов, соединение с помощью вилок, блоков, розеток, клеммных колодок, вводов и т. Д.
Схема подключения
Это список кабелей или проводов, используемых в установке, с указанием номера, длины, типа и количества снятия изоляции, необходимого для пайки кабеля.Он дает дорожки качения провода, а также точки начала и окончания.
В некотором сложном оборудовании таблица соединений показывает взаимосвязь оборудования (например, двигателей и нагревателей) с исходными и конечными контрольными точками. Он также включает идентификационную маркировку проводов, цвета, размер и т. Д. Проводов.
Список деталей
Хотя это не чертеж, список деталей является неотъемлемой частью чертежа, который определяет различные символы и детали, используемые на других чертежах, таких как электрическая схема, линейная диаграмма и блок-схема.
Дает информацию о типе компонентов схемы с их номерами позиций. Этот список полезен для идентификации, определения местоположения и перекрестных ссылок на фактический компонент, помеченный или приведенный на других электрических чертежах, чтобы обеспечить выбор соответствующих деталей перед выполнением электропроводки.
Подготовка электропроводки
Поскольку мы обсуждаем последовательность шагов при электромонтаже, например, понимание безопасности, знание типов систем электропроводки, понимание различий между различными электрическими чертежами и символами, следующим шагом процесса электропроводки является подготовка провода или кабели и электрические инструменты.
Подготовка проводки включает следующие соображения.
- Типом проводника может быть одинарный сплошной провод или многожильный провод (который состоит из нескольких тонких опор). Одиночные сплошные провода не являются гибкими и используются там, где требуются жесткие соединения, например, у подрядчиков по переключению питания. Для электрических установок предпочтительны многопроволочные проводники.
- Характеристики провода зависят от нескольких факторов, таких как количество жил в проводнике, тип изоляции, площадь поперечного сечения провода, диаметр жил и т. Д.
- Выбор проводов зависит от цветового кода, указанного в различных стандартах, например, коричневый для фазового провода, синий для нейтрали, зеленый для заземления и т. Д. Щелкните здесь, чтобы кратко узнать о цветах проводов или кабелей.
- Для выполнения монтажных работ требуются различные основные электрические инструменты, и некоторые из этих инструментов включают резак, съемники, тестеры, плоскогубцы и т. Д. Эти инструменты описаны в наших предыдущих статьях, поэтому, пожалуйста, проверьте эти электрические инструменты, щелкнув здесь.
- Выбирайте такие компоненты, как электрические коробки, переключатели, розетки и т. Д., В зависимости от их размера и номинальных характеристик.
Начните соединять компоненты вместе, следуя схемам подключения. После того, как компоненты, инструменты и кабели выбраны, учитывая и соблюдая безопасность персонала и оборудования, приступайте к установке.
Типы электропроводки
Мы знаем, что электрическая цепь — это замкнутый путь, по которому электричество течет от фазы или горячего провода к устройству или аппарату, а затем обратно к источнику через нейтральный провод.
По пути электрический тракт может состоять из приспособлений, переключателей, розеток, соединительных коробок и т. Д. Таким образом, проводка может быть проложена через эти элементы до фактического подключения к аппарату или устройству.
В основном, проводка делится на два типа в зависимости от того, как устройства запитаны или подключены к источнику питания. Это:
- Параллельное подключение
- Последовательное подключение
При параллельном подключении несколько устройств в установке получают питание от одной цепи.Это наиболее распространенная электропроводка в домах и на производстве, при которой устройства подключаются параллельно источнику питания, как показано на рисунке.
В этом случае фазный (или горячий) и нейтральный кабели проложены через электрические коробки (распределительные коробки), от которых ответвляются отдельные розетки, приспособления и устройства.
Последовательная проводка — это редко используемая проводка, в которой горячий провод проходит через несколько устройств, а затем последняя клемма устройства подключается к нейтральному проводу.Это похоже на старые рождественские огни или последовательную проводку огней, в которых одно перегорание лампы приводит к отключению всей сети.
Примеры электропроводки
Для лучшего понимания концепции электропроводки здесь мы приводим несколько примеров схем электропроводки, которые обычно используются в наших домах / офисах.
Одиночная лампа (или любая другая нагрузка), управляемая односторонним переключателем
В этом случае горячий провод подключается к одной клемме переключателя, а другая клемма переключателя подключается к положительной клемме лампы, а затем — к отрицательной клемме лампы подключается к нейтральному проводу, как показано на рисунке.
Две лампы, управляемые односторонним переключателем
В этом случае две лампы подключаются параллельно проводам питания (фаза и нейтраль), которые прокладываются с помощью одностороннего переключателя, как показано на рисунке.
Одиночная заслонка, управляемая двухпозиционными переключателями
Эта проводка также называется лестничной проводкой. В этом случае лампочка / лампа управляются из двух разных мест / источников с помощью двух двухпозиционных переключателей. Этот тип проводки используется в спальнях для включения / выключения лампы от двух источников (у кровати и на распределительном щите).Подключение переключателей к лампе показано ниже.
Электропроводка склада
Электропроводка этого типа используется в больших проходах, длинных переходах, складах и туннельных сооружениях с большим количеством комнат или участков. Он следует линейной последовательности переключения огней с одного конца на другой.
Когда человек покидает одну комнату и входит в другую, поворот переключателя света выключает лампу предыдущей комнаты, а лампы присутствующей комнаты — ВКЛЮЧАЕТСЯ.Он выключает одну лампу и включает другую. Принципиальная электрическая схема для электропроводки склада показана ниже.
Люминесцентная лампа, управляемая односторонним переключателем
Переключение люминесцентной лампы с помощью одностороннего переключателя через балласт и конденсатор показано на рисунке ниже. При этом фазный провод подключается к одному концу переключателя, а другой конец переключателя подключается к дросселю (или балласту). Один электрод лампы подключен к дросселю, а другой к нейтральному выводу, как показано на рисунке.
Розетка Розетка Проводка
Розетка содержит вилку и пропускает через нее ток, когда питание подается в розетку через переключатель. Одинарное гнездовое соединение и радиальное гнездовое соединение показаны на рисунке ниже.
Электропроводка платы управляющего переключателя
Принципиальная схема панели управляющего переключателя показана на рисунке ниже. При этом потолочный вентилятор, люминесцентная лампа и лампочка управляются соответствующими переключателями.
Заключение
Это простое учебное руководство по системам электропроводки, различным типам электропроводки, факторам, которые следует учитывать при выборе метода установки, используемым различным типам электрических чертежей, а также нескольким примерам схем / схем электропроводки.
Подключение домов к электросети
Рис. 1. Типовая панель автоматического выключателя соединяет электрические устройства дома с сетью. [1]Подключение домов к электросети — заключительный этап электросети.После того, как подстанции распределительной сети снизят напряжение до безопасного уровня, этот этап может быть завершен. Провода отходят от соседних линий электропередач и подключаются к отдельным зданиям (домам, квартирам, предприятиям и т. Д.), Сначала проходя через электросчетчик, чтобы измерить, сколько электроэнергии потребляет дом. Затем электричество проходит через сервисную панель, в которой находятся устройства электробезопасности (автоматические выключатели и предохранители). Эта сервисная панель имеет все провода, идущие к различным электроприборам в доме. [2]
Каждый дом подключен к электросети через какой-то блок предохранителей или автоматический выключатель, как показано на рисунке 1.
Отказ от обслуживания
Воздушное подключение к электросети от инженерных линий до служебного входа называется служебным отводом. Имеет три провода; 1 нейтральная линия и 2 горячие линии. Горячие линии поддерживают определенный потенциал (например, 120 В) по сравнению с нейтральной линией. Существует два типа сброса служебных данных: отключение службы мачты и отключение службы скоб.Подземное служебное соединение называется боковым служебным. [2]
Рис. 2. Подъем на мачте с метеозаборником (вверху), вертикально соединенным через трубопровод с электросчетчиком (внизу). [3]Служебное падение мачты
Мачта представляет собой комбинацию трубы и флюгера, которая находится наверху крыши (Рисунок 2). Подъемник прикрепляется к мачте за ручку мачты. «Капельные петли» служат, прежде всего, для обеспечения провисания, которое снижает любое механическое напряжение на линиях электропередач и предотвращает попадание воды по линиям в водосток. [2]
Служба поддержки Clevis
Clevis относится к разъемам, которые прикрепляют проводники линии обслуживания к стороне здания. В этой установке трубопровод и гидрозатвор прикреплены к бокам жилого дома ниже линии крыши. [2]
Рисунок 3. Трансформатор, установленный на площадке для распределения электроэнергии, соединяет первичные линии электропередачи с домами. [4]Сервисный боковой
Это подземный служебный вход, первичные линии электропередачи проходят через кабелепровод к входу контактного трансформатора, а вторичные линии электропередачи соединяют выход трансформатора со счетчиком электроэнергии. [2]
Рисунок 4. Схема расположения торговых точек со всего мира. [5]Главный выключатель
Главный выключатель используется во время аварийных ситуаций для прекращения подачи электроэнергии.
- Основное отключение может быть выполнено с помощью главного размыкающего выключателя. Это выключатель с внешним управлением (EXO), который расположен между сервисным счетчиком и электрической панелью (Рисунок 1).
- Основное отключение также может быть выполнено одним или несколькими автоматическими выключателями, расположенными в электрической панели, для этого автоматические выключатели должны быть включены последовательно с двумя горячими линиями проводов, поскольку это должно отключать питание всех цепей. [2]
Выходы
- основная статья
Электрические розетки служат для подключения различных устройств, которым требуется электричество. В мире существует множество различных типов розеток с различными характеристиками напряжения и электрического тока. [6] Некоторые из них показаны на рисунке 4.
Для дальнейшего чтения
Для получения дополнительной информации см. Соответствующие страницы ниже:
Список литературы
- ↑ Wikimedia Commons [Online], доступно: https: // upload.wikimedia.org/wikipedia/commons/5/5d/US_wiring_basement-panel.jpg
- ↑ 2,0 2,1 2,2 2,3 2,4 2,5 R.T. Пэйнтер, «Основные электрические компоненты и счетчики», в Introduction to Electricity , 1rst ed. Нью-Джерси: Прентис-Холл, 2011, гл. 8, сек. 8.1, стр. 331-340.
- ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipemmons/e/ea/Residence_service_drop.JPG
- ↑ sdpitbull через Flickr [Online], Доступно: https: // www.flickr.com/photos/stevestr/4624935949
- ↑ (2014, 23 июля). Файл: Plugs.png [Online]. Доступно: http://wikitravel.org/shared/File:Plugs.png
- ↑ R.T. Пэйнтер, «Основные электрические компоненты и счетчики», в Introduction to Electricity , 1rst ed. Нью-Джерси: Прентис-Холл, 2011, гл. 8, сек. 8.2, стр. 341-346.
Распределительное устройство — однофазное и трехфазное распределительное оборудование
Когда электроэнергия распределяется в точку ее использования, она обычно бывает однофазным или трехфазным переменным. ток (AC) напряжение.Однофазное переменное напряжение распределяется по жилым домам. и небольшие коммерческие здания. Обычно трехфазное переменное напряжение составляет распространяется на предприятия и крупные коммерческие здания. Таким образом основные типы систем распределения электроэнергии — жилые (однофазные) и промышленные или коммерческие (трехфазные).
Важный аспект как однофазного, так и трехфазного распределения системы заземления. Два способа заземления, системное заземление и оборудование заземление, будет обсуждаться в этом разделе, наряду с замыканием на землю. защитная экипировка.
ТЕРМИНОЛОГИЯ
В этом разделе (Раздел 10) однофазное и трехфазное распределение электроэнергии системы обсуждаются. Изучив этот раздел, вы должны иметь понимание следующих терминов:
- Жилой район
- Коммерческое распространение
- Промышленное распределение
- Однофазная двухпроводная система распределения
- Однофазная трехпроводная система распределения
- Горячая линия
- нейтральный
- Системное заземление
- Наземное оборудование
- Обозначение цвета изоляции
- Подключение трехфазного трансформатора треугольник-треугольник
- Подключение трехфазного трансформатора треугольником
- Подключение трехфазного трансформатора «звезда-звезда»
- Подключение трехфазного трансформатора звезда-треугольник
- Подключение трехфазного трансформатора с открытым треугольником
- Трехфазная трехпроводная система распределения
- Трехфазный, трехпроводной, с системой распределения нейтрали
- Трехфазная, четырехпроводная система распределения
- «Дикая» фаза
- Электрод заземления
- Прерыватель замыкания на землю (GFI)
- Защита тела от рук
- Национальный электротехнический кодекс (NEC)
- Осмотр электрооборудования
- Падение напряжения в ответвленной цепи
- Филиал цепи
- Заземляющий провод
- Кабель в неметаллической оболочке (NMC)
- Кабель в металлической оболочке
- Жесткий трубопровод
- Электрические металлические трубки (EMT)
ОДНОФАЗНЫЕ СИСТЕМЫ
Большая часть электроэнергии, производимой на электростанциях, производится как трехфазное переменное напряжение.Электроэнергия также передается в форма трехфазного напряжения по магистральным линиям электропередачи.
По назначению трехфазное напряжение может быть изменено на три отдельных однофазные напряжения для распределения по жилым помещениям.
Хотя однофазные системы используются в основном для электроснабжения жилых помещений. системы распределения, есть некоторые промышленные и коммерческие применения однофазных систем.Однофазное распределение мощности обычно возникает от трехфазных линий электропередач, поэтому системы электроснабжения способны питания как трехфазных, так и однофазных нагрузок от одной и той же мощности линий. ИНЖИР. 1 показана типичная система распределения электроэнергии от силовой станции (источника) к различным однофазным и трехфазным нагрузкам, которые подключены к системе.
РИС. 1. Типовая система распределения электроэнергии.
РИС.2. Однофазные системы распределения электроэнергии: (A) Однофазные,
двухпроводная система, (B) Однофазная трехпроводная система (взятая из двух
горячие линии), (C) Однофазная, трехпроводная система (взятая от одной горячей
линия и одна заземленная нейтраль).
Однофазные системы могут быть двух основных типов — однофазные двухпроводные. системы или однофазные трехпроводные системы. Однофазный двухпроводной система показана на фиг. 2А (верхняя диаграмма). Эта система использует 10 кВ Трансформатор, вторичная обмотка которого производит одно однофазное напряжение, например, 120 или 240 вольт.Эта система имеет одну горячую линию и одну нейтральную линия.
В бытовых распределительных системах этот тип чаще всего использовался несколько лет назад обеспечивали работу при напряжении 120 вольт. Однако, поскольку мощность прибора требования возросли, необходимость в системе с двумя напряжениями стала очевидной.
Для удовлетворения спроса на увеличение мощности в жилых домах однофазные трехпроводные система сейчас используется. Домашний служебный вход может быть запитан напряжением 120/240 вольт. энергии методами, показанными на фиг. 2B и 10 2C (в центре и внизу диаграммы).Каждая из этих систем получена от трехфазного источника питания. линия. Однофазная трехпроводная система имеет две горячие линии и нейтраль. линия. Горячие линии, изоляция которых обычно черная и красная, подключен к внешним выводам вторичных обмоток трансформатора. Нейтральная линия (белый изолированный провод) подключается к центральному отводу. распределительного трансформатора. Таким образом, с нейтрального на любую горячую линию, Может быть получено 120 вольт для освещения и требований малой мощности.
По горячим линиям подается 240 вольт для повышенных требований к мощности.
Таким образом, текущая потребность в крупномасштабном энергоемком оборудовании сокращается вдвое, поскольку используется 240 вольт, а не 120 вольт. Либо однофазная двухпроводная или однофазная трехпроводная система может использоваться для подачи однофазного питания для промышленного или коммерческого использования. Однако эти однофазные системы в основном предназначены для бытового электроснабжения. распределение.
ТРЕХФАЗНЫЕ СИСТЕМЫ
Поскольку промышленные предприятия и коммерческие здания используют преимущественно трехфазное питание, они полагаются на трехфазные распределительные системы для подачи этой энергии. Большие трехфазные распределительные трансформаторы обычно располагаются на подстанциях. прилегающие к промышленным предприятиям или коммерческим зданиям.
Их цель состоит в том, чтобы подавать правильное напряжение переменного тока для удовлетворения необходимых требования к нагрузке.Напряжения переменного тока, которые передаются в распределительную подстанции находятся под высоким напряжением, которое необходимо понизить на три фазы. трансформаторы.
РИС. 3. Основные способы подключения трехфазного трансформатора: (A)
соединение дельта-треугольник, (B) соединение треугольник-звезда, (C) соединение звезда-звезда
соединение, (D) соединение звезда-треугольник и (E) соединение разомкнутый треугольник.
Подключение трехфазного трансформатора
Есть пять способов, которыми первичная и вторичная обмотки возможно подключение трехфазных трансформаторов.Это дельта-дельта, соединения по схеме «треугольник», «звезда-звезда», «звезда-треугольник» и «открытый треугольник». Эти основные методы проиллюстрированы на фиг. 3. Соединение дельта-дельта. (Рис. 3A) используется для некоторых приложений с более низким напряжением.
Метод «треугольник-звезда» (фиг. 3B) обычно используется для повышения напряжения, так как вольт-фарадная характеристика вторичной обмотки, соединенной звездой, приводит к с внутренним повышающим коэффициентом в 1,73 раза. Соединение звезда-звезда фиг.3C обычно не используется, в то время как метод звезда-дельта (фиг. 3D) можно выгодно использовать для понижения напряжения. Открытая дельта соединение (фиг. 3E) используется в случае повреждения одной обмотки трансформатора, или выведен из эксплуатации. Трансформатор по-прежнему будет трехфазным. мощность, но при меньшем токе и мощности. Эта связь может также желательно, когда полная мощность трех трансформаторов не нужно на потом.Два одинаковых однофазных трансформатора могут использоваться для подачи питания на нагрузку до третьего трансформатор необходим для удовлетворения повышенных требований к нагрузке.
Типы трехфазных систем
Трехфазные системы распределения электроэнергии, обеспечивающие питание промышленных и коммерческие здания, классифицируются по количеству фаз и количество необходимых проводов. Эти системы, показанные на фиг. 4, являются трехфазная трехпроводная система, трехфазная трехпроводная система с нейтраль и трехфазная четырехпроводная система.Подключение первичной обмотки здесь не рассматривается. Трехфазная трехпроводная система, показанная на ИНЖИР. 4A, может использоваться для питания нагрузки двигателя 240 или 480 вольт. Его основным недостатком является то, что он подает только один вольт, так как только К нагрузке подведены три горячие линии.
Обычный код цвета изоляции для этих трех горячих линий — черный, красный или синий, как указано в NEC.
РИС. 4. Промышленные системы распределения электроэнергии: (A) трехфазные, трехпроводные.
система, (B) трехфазная, трехпроводная система с нейтралью, (C) трехфазная,
четырехпроводная система.
Недостатком трехфазной трехпроводной системы может быть частично за счет добавления одной обмотки с центральным отводом, как показано в трехфазном трехпроводная система с нейтралью, показанная на фиг. 4Б. Эта система может использоваться как питание на 120/240 вольт или 240/480 вольт. Если предположить, что это используется для питания 120/240 вольт, напряжение от горячей линии в точке 1 и горячая линия в точке 2 к нейтрали будет 120 вольт, потому что обмотки с центральным отводом.
Однако 240 вольт по-прежнему будет доступно на любых двух горячих линиях. Нейтральный провод имеет цветовую маркировку с белой или серой изоляцией. В Недостатком этой системы является то, что при замене проводки она можно подключить нагрузку 120 вольт между нейтралью и точкой 3 (иногда называемая «дикой» фазой). Напряжение присутствует здесь будет комбинация трехфазных напряжений между точками 1 и 4 и пункты 1 и 3.Это будет напряжение более 300 вольт! Хотя существует ситуация «дикой фазы», эта система способен питать как нагрузки большой мощности, так и нагрузки низкого напряжения, например, используются для освещения и небольшого оборудования.
Наиболее широко используемой трехфазной системой распределения электроэнергии является трехфазная четырехпроводная система. Эта система, показанная на фиг. 4C, обычно поставляет 120/208 вольт и 277/480 вольт для требований промышленной или коммерческой нагрузки.Здесь проиллюстрирована система на 120/208 вольт. От нейтрального до любого горячего линии, можно получить 120 вольт для освещения и маломощных нагрузок. Через любые две горячие линии, 208 вольт для питания двигателей или других высокомощные нагрузки. Самая популярная система для промышленных и коммерческих Распределение питания — это система на 277/408 В, которая способна обеспечить как трехфазные, так и однофазные нагрузки. Система 240/416 вольт иногда используется для промышленных нагрузок, в то время как система на 120/208 вольт часто используется для подземного распространения в городских районах.Обратите внимание, что эта система на основе характеристик напряжения трехфазного соединения звездой, и что соотношение VL = VP × 1,73 существует для каждого приложения. этой системы.
ЗАЗЕМЛЕНИЕ РАСПРЕДЕЛИТЕЛЬНЫХ СИСТЕМ
Концепция заземления в системе распределения электроэнергии очень важно. Системы распределения должны иметь непрерывную бесперебойную работу. основания. Если заземленный провод разомкнут, земля больше не функциональный.В условиях открытого грунта могут возникнуть серьезные проблемы с безопасностью. и вызвать ненормальную работу системы.
Распределительные системы должны быть заземлены на подстанциях, а в конце линий электропередачи до подачи питания на нагрузку. Заземление необходим на подстанциях для безопасности населения и энергетики обслуживающий персонал компании. Заземление также дает точки для соединения нейтрали трансформатора для заземления оборудования. Безопасность и оборудование Основания будут рассмотрены более подробно позже.
На подстанциях все внешние металлические части должны быть заземлены, а все трансформатор, автоматический выключатель и корпуса переключателей должны быть заземлены. А также металлические заборы и любой другой металл, входящий в состав подстанции. конструкция должна быть заземлена. Заземление гарантирует, что любой человек, который прикосновение к любой из металлических частей не вызовет поражения электрическим током. Следовательно, если высоковольтная линия соприкоснется с любым из заземленные части, система будет открыта защитным оборудованием.Таким образом существенно снижается опасность появления высоких напряжений на подстанциях. заземлением. Фактическое заземление выполняется сваркой, пайкой, или привинчивание проводника к металлическому стержню или стержню, который затем физически помещен в землю. Это стержневое устройство называется заземляющим электродом. Правильные методы заземления необходимы для безопасности, а также для производительность схемы. Есть два типа заземления: (1) заземление системы, и (2) заземление оборудования.Еще один важный фактор заземления — это замыкание на землю. защитная экипировка.
ЗАЗЕМЛЕНИЕ СИСТЕМЫ
Заземление системы включает фактическое заземление токоведущей проводник (обычно называемый нейтралью) системы распределения электроэнергии.
Трехфазные системы могут быть звездообразными или треугольными. Звездообразная система имеет очевидное преимущество перед дельта-системой, так как по одной стороне каждого фазная обмотка подключена к земле.Мы определим землю как ориентир точка нулевого напряжения, которая обычно является фактическим подключением на землю. Общие выводы звездообразной системы при подключении к земле, стать нейтральным проводом трехфазного четырехпроводного система.
Дельта-система не поддается заземлению, так как она не имеет общей нейтрали. Проблема замыканий на землю (линейный замыкания на землю), возникающие в незаземленных системах треугольника, намного больше чем в звездообразных системах.Распространенным методом заземления дельта-системы является использовать соединение трансформатора звезда-треугольник и заземлить общие клеммы первичной обмотки, соединенной звездой. Тем не менее, звездообразная система теперь используется больше. часто для промышленного и коммерческого распределения, так как вторичный легко заземляется и обеспечивает защиту от перенапряжения от молнии или шорты на землю.
Однофазные системы на 120/240 В или 240/480 В заземлены в аналогично трехфазному заземлению.Нейтраль однофазной трехпроводная система заземляется металлическим стержнем (заземляющим электродом), приводимым в действие в землю в месте расположения трансформатора. Провода заземления системы изолированы белым или серым материалом для облегчения идентификации.
Заземление оборудования
Второй тип заземления — это заземление оборудования, которое, как термин подразумевает, размещает рабочее оборудование с потенциалом земли. Дирижер для этой цели используется либо неизолированный провод, либо зеленый изолированный провод. провод.NEC описывает условия, при которых требуется фиксированное электрическое оборудование. быть заземленным. Обычно все стационарное электрооборудование, расположенное в промышленных заводы или коммерческие здания должны быть заземлены. Типы оборудования которые должны быть заземлены, включая корпуса для коммутации и защиты оборудование для регулирования нагрузки, корпуса трансформаторов, корпуса электродвигателей, и стационарное электронное испытательное оборудование. Промышленные предприятия должны использовать 120 вольт, однофазные дуплексные розетки заземленного типа для всех переносных инструменты.Заземление этих розеток можно проверить с помощью плагин-тестер.
ЗАЩИТА ОТ ЗАЗЕМЛЕНИЯ
Прерыватели замыкания на землю (GFI) широко используются в промышленности, коммерческие и жилые системы распределения электроэнергии. Требуется NEC, что все 120-вольтовые, однофазные, 15- или 20-амперные розетки розетки, установленные на открытом воздухе или в ванных комнатах, имеют замыкание на землю к ним подключены прерыватели.Эти устройства также называют защитой от замыканий на землю. прерыватели цепи (GFCI).
Работа с GFI
Эти устройства разработаны таким образом, чтобы исключить опасность поражения электрическим током. от людей, контактирующих с горячей линией переменного тока (линия-земля короткая). Прерыватель цепи предназначен для обнаружения любых изменений в цепи. условия, например, возникшие при коротком замыкании между линией и землей.
Один тип GFI имеет провода управления, проходящие через магнитный тороидальный петля (см. фиг.5). Обычно переменный ток, протекающий через два проводники внутри петли равны по величине и противоположны по направлению. Любое изменение в этом равном и противоположном состоянии воспринимается магнитным полем. тороидальная петля. Когда происходит короткое замыкание на землю, мгновенное происходит изменение условий цепи. Изменение вызывает магнитное поле в тороидальную петлю. Индуцированный ток усиливается до уровня, достаточного для размыкания механизма выключателя.Таким образом, любое короткое замыкание линии на землю вызовет прерыватель замыкания на землю. открыть.
Скорость работы GFI настолько высока, что опасность поражения электрическим током людей значительно сокращается, так как только минутный ток открывает схема.
РИС. 5. Упрощенная схема прерывателя замыкания на землю
Приложения GFI
Требуются строительные площадки, на которых устраивается временная проводка. использовать GFI для защиты работников, использующих электрооборудование.Защита от замыканий на землю частных лиц и коммерческого оборудования должна Предусмотрено для систем с соединением звездой от 150 до 600 вольт на каждую распределительный щит номиналом более 1000 ампер. В этой ситуации, GFI откроет все незаземленные проводники на щитке, когда короткое замыкание на землю. Теперь GFI используются для всех типов жилых домов, коммерческое и промышленное применение.
Типы систем защиты от замыканий на землю
Используются четыре основных типа систем защиты от замыканий на землю. Cегодня.Это: больничные приложения, жилые помещения, моторные приложения защиты и специальное распределение электроэнергии системные приложения. Эти системы защиты от замыканий на землю можно разделить на по тому, что они должны защищать, или по типу защиты, которую они должны предоставлять. Разработаны приложения для больниц и жилых помещений. чтобы уберечь людей от чрезмерных ударов. Двигатель и электрическая мощность приложения предназначены для защиты электрооборудования.
Другой метод классификации — в зависимости от силы тока. требуется перед срабатыванием системы охранной сигнализации или отключением электрического цепь происходит. Типичные значения тока, которые вызовут срабатывание сигнализации или отключение для активации 0,002 ампера (2 мА) для больничных приложений, 0,005 амперы (5 мА) для жилых помещений, от 5 до 100 ампер для защиты электродвигателей схемы применения и от 200 до 1200 ампер для распределения электроэнергии применение оборудования.
Необходимость защиты от замыканий на землю
Чтобы понять необходимость прерывателя цепи замыкания на землю (для защиты людей) сначала необходимо понять некоторые основные факты.
Эти факты относятся как к людям, так и к замыканиям на землю.
Важным фактом является то, что сопротивление тела человека зависит от количество влаги, присутствующей на коже, мышечная структура тело, и напряжение, которому подвергается тело.Эксперименты Показано, что сопротивление тела из одной руки в другую немного где от 1000 до 4000 Ом. Эти оценки основаны на нескольких предположения относительно влажности и мышечной структуры. Мы также знаем что сопротивление тела (из рук в руки) ниже при более высоком напряжении возрастов. Это связано с тем, что более высокое напряжение способно «сломать» вниз »внешние слои кожи. Таким образом, более высокое напряжение более опасный.
Мы можем использовать закон Ома, чтобы оценить, что типичный результирующий ток от среднего сопротивления тела (из рук в руки) около 115 мА при 240 вольт переменного тока и около 40 мА при 120 вольт переменного тока. Эффекты 60 Гц AC на теле человека принято принимать, как указано в ТАБЛИЦЕ. 1.
Фибрилляция желудочков — это патология сокращения сердце. Как только возникает фибрилляция желудочков, она будет продолжаться, и смерть наступит. произойдет в течение нескольких минут.Реанимационные методы, если они применяются немедленно, может спасти жертву. Смерть от поражения электрическим током из-за высокого процента смертей, происходящих дома и на производстве. Многие из этих смертей происходят из-за контакта с цепями низкого напряжения (600 вольт и ниже), в основном системы на 120 и 240 вольт.
=========
ТАБЛИЦА 1. Реакция тела на переменный ток
Величина воздействия тока на тело 1 мА или меньше Нет ощущений (не ощущается).
Более 5 мА Болезненный шок.
Более 10 мА Мышечные сокращения; может вызвать «замораживание» электрическая схема для некоторых людей.
Более 15 мА Сокращения мышц; может вызвать «замораживание» электрическая схема для большинства людей.
Более 30 мА затрудненное дыхание; может вызвать потерю сознания.
от 50 до 100 мА Возможна фибрилляция желудочков сердца.
От 100 до 200 мА Фибрилляция желудочков сердца определена.
Более 200 мА Сильные ожоги и мышечные сокращения; сердце больше склонен к прекращению биений, чем к фибрилляции.
1 ампер и выше: необратимое повреждение тканей тела.
========
Защита от замыканий на землю для дома
Прерыватели замыкания на землю для дома бывают трех типов: (1) контурные. прерыватель, (2) розетки и (3) вставные типы. Защита от замыканий на землю устройства сконструированы в соответствии со стандартами, разработанными Андеррайтером. Лаборатории.Автоматические выключатели GFI сочетают в себе защиту от замыканий на землю. и прерывание цепи при той же перегрузке по току и коротком замыкании защитное оборудование, как и стандартный автоматический выключатель. Схема GFI автоматический выключатель занимает то же место, что и стандартный автоматический выключатель. Он обеспечивает такую же защиту разветвленной цепи, что и стандартный автоматический выключатель, а также защита от замыканий на землю. Чувство GFI система постоянно контролирует текущий баланс в незаземленных (горячих) провод и заземленный (нейтральный) провод.Ток в нейтрали провод становится меньше тока в горячем проводе при замыкании на землю развивается. Это означает, что часть тока в цепи возвращается заземлить другим способом, кроме нулевого провода. Когда дисбаланс при возникновении тока датчик (дифференциальный трансформатор тока) отправляет сигнал на твердотельную схему, которая активирует механизм отключения. Это действие открывает горячую линию. Дифференциальный ток всего 5 мА приведет к тому, что датчик отправит сигнал неисправности и вызовет автоматический выключатель чтобы прервать цепь.
Обычно розетки GFI обеспечивают защиту от замыканий на землю на 120-, Системы переменного тока на 208 или 240 вольт. Розетки GFI бывают на 15 и 20 ампер. конструкции. 15-амперный блок имеет конфигурацию розетки для использования с Только вилки на 15 ампер. Устройство на 20 ампер имеет конфигурацию розетки. для использования с вилками на 15 или 20 ампер. Эти розетки GFI имеют подключения для проводов под напряжением, нейтрали и заземления. Все розетки GFI имеют двухполюсный механизм отключения, который отключает как горячий, так и подключения нейтральной нагрузки в момент возникновения неисправности.
Вставные розетки GFI обеспечивают защиту путем подключения к стандартному настенная розетка. Некоторые производители предлагают устройства, которые тоже не будут двух- или трехпроводные розетки. Главное преимущество этого типа единицы в том, что ее можно перемещать из одного места в другое.
Защита от замыканий на землю для распределительного оборудования
Замыкания на землю могут вывести из строя электрооборудование, если продолжить работу.Междуфазные короткие замыкания и некоторые типы замыканий на землю обычно высокий ток. Обычно они адекватно обрабатываются обычными защитное оборудование от сверхтоков. Однако некоторые замыкания на землю производят эффект искрения из-за относительно малых токов, которые недостаточно велики для срабатывания обычных защитных устройств. Электрическая дуга может вызвать ожоги. оборудование. Система с напряжением 480 или 600 вольт более восприимчива к образованию электрической дуги. возраст, чем система на 120, 208 или 240 вольт, потому что более высокие напряжения выдерживают эффект искрения.Быстро обнаруживаются сильноточные неисправности обычными устройствами максимального тока. Должны быть обнаружены слаботочные значения GFIs.
Замыкания на землю, вызывающие искрение в оборудовании, вероятно, самые частые неисправности. Они могут возникнуть в результате повреждения или порчи. изоляция, грязь, влага или неправильные соединения. Они обычно случаются между одним токоведущим проводом и заземленным корпусом оборудования, кабелепроводом, или металлический корпус.Напряжение между фазой и нейтралью источника вызовет ток, протекающий по горячему проводнику, по пути дуги и обратно через наземный путь. Импеданс проводника и заземления путь (корпус, кабелепровод или корпус) зависит от многих факторов. Как В результате невозможно предсказать значение тока короткого замыкания. Это также может увеличить или уменьшаться по мере продолжения неисправности.
Очевидно, что многие факторы влияют на величину, продолжительность, и эффект дугового замыкания на землю.В некоторых условиях возникает большой величина тока короткого замыкания, в то время как другие ограничивают ток короткого замыкания относительно небольшое количество. Величина дугового тока и время, в течение которого дуга сохраняется. может нанести очень большой ущерб оборудованию. Наверное, важнее коэффициент — это период времени дугового напряжения, так как чем дольше время дуги, тем больше вероятность того, что дуги распространятся на разные области внутри оборудования.
Реле тока заземления — это один из методов защиты оборудования от замыкания на землю.Ток протекает через нагрузку или короткое замыкание по горячим и нейтральные проводники и возврат к источнику на этих проводниках-а, в некоторой степени по наземной дорожке. Нормальный ток пути заземления очень маленький. Следовательно, практически весь ток, текущий из источник также возвращается по той же горячей линии и нейтральным проводникам. Однако, если происходит замыкание на землю, ток заземления увеличится. до точки, где ток уйдет через неисправность и вернется через наземный путь.
В результате ток возвращается в токоведущий и нейтральный проводники. меньше, чем выходящая сумма. Разница указывает на количество тока в пути заземления. Реле, которое это чувствует разность токов, может действовать как устройство защиты от замыканий на землю.
Защита электродвигателей от замыканий на землю
Системы защиты двигателей обеспечивают защиту в диапазоне от 5 до 100 ампер.Этот тип системы защиты от замыканий на землю обеспечивает защиту от замыкания на землю как в однофазных, так и в трехфазных системах. Многие отказы системы изоляции начинаются с небольшого тока утечки, который накапливается со временем, пока не возникнет повреждение. Эти системы защиты от замыканий на землю обнаруживать токи утечки на землю, пока они еще малы, и, таким образом, предотвратить серьезное повреждение двигателей.
РАЗРАБОТКА ЭЛЕКТРОПРОВОДОВ ДЛЯ СИСТЕМ РАСПРЕДЕЛЕНИЯ
Схема электропроводки систем распределения электроэнергии может быть очень сложный.При подключении необходимо учитывать множество факторов. дизайн системы распределения, установленной в здании. Электропроводка стандарты указаны в Национальном электротехническом кодексе (NEC), который опубликовано Национальной ассоциацией электрозащиты (NEP А). NEC, местные стандарты электропроводки и правила проверки электрооборудования следует учитывать при проектировании электропроводки. рассмотрение.
Есть несколько соображений по проектированию электропроводки распределительной системы. которые специально указаны в NEC.В этом разделе мы будем занимается расчетом падения напряжения, проектированием ответвлений, фидерной цепью дизайн и дизайн систем заземления.
Национальный электротехнический кодекс (NEC) Используйте
NEC устанавливает минимальные стандарты для электропроводки в Соединенные Штаты. Стандарты, содержащиеся в NEC, соблюдаются, поскольку включены в различные городские и общественные постановления, касающиеся с электропроводкой в жилых домах, на промышленных предприятиях и в коммерческих здания.Таким образом, эти местные постановления соответствуют стандартам изложено в НЭК.
В большинстве регионов США лицензия должна быть получена любым физическое лицо, занимающееся электромонтажом. Обычно нужно пройти тест управляется городом, округом или штатом, чтобы получить это лицензия.
Эти тесты основаны на местных постановлениях и NEC. Правила для электрическая проводка, установленная местной электросетью компании также иногда включаются в лицензионный тест.
Осмотр электрооборудования
Когда строятся новые здания, они должны быть проверены, чтобы убедиться, что электропроводка соответствует нормам местных постановлений, NEC и местная энергетическая компания. Организация, поставляющая Электроинспекторы варьируются от одного населенного пункта к другому. Обычно местная энергетическая компания может посоветовать людям, с кем связаться для получения информации об электротехнических обследованиях.
Падение напряжения в электрических проводниках
Хотя сопротивление электрических проводников очень низкое, длина провода может вызвать значительное падение напряжения. Это проиллюстрировано на фиг. 6. Помните, что падение напряжения — это ток, умноженный на сопротивление (I × R). Следовательно, всякий раз, когда через систему протекает ток, напряжение капля создается. В идеале падение напряжения, вызванное сопротивлением проводника будет очень мало.
Однако более длинный отрезок электрического проводника имеет большее сопротивление. Поэтому иногда необходимо ограничить расстояние, на котором проводник может распространяться от источника питания до нагрузки, которую он питает. Многие типы нагрузок не работают должным образом, когда значение меньше полного имеется напряжение источника.
На РИС. 6 видно, что по мере увеличения падения напряжения (VD) напряжение, приложенное к нагрузке (VL), уменьшается.Как ток в системе увеличивается, VD увеличивается, вызывая уменьшение VL, так как напряжение источника остается такой же.
ТАБЛИЦА 2. Размеры медных и алюминиевых проводников
РИС. 6. Падение напряжения в электрической цепи
Расчет падения напряжения с использованием таблицы проводников
При проектировании электропроводки важно уметь для определения величины падения напряжения, вызванного сопротивлением проводника.
ТАБЛИЦА 2 используется для выполнения этих расчетов. NEC ограничивает сумму падения напряжения, которое может иметь система. Это означает, что длинные серии проводников обычно следует избегать. Помните, что дирижер с большая площадь поперечного сечения вызовет меньшее падение напряжения, так как его сопротивление меньше.
Чтобы лучше понять, как определить размер необходимого проводника чтобы ограничить падение напряжения в системе, мы рассмотрим пример проблемы.
Пример задачи:
Дано: 200-амперная нагрузка, расположенная в 400 футах (121,92 метра) от 240-вольтной однофазный источник. Ограничьте падение напряжения до 2 процентов от источника.
Находка: размер правого медного проводника, необходимый для ограничения напряжения. падение системы.
Решение:
1. Допустимое падение напряжения составляет 240 В, умноженное на 0,02 (2%). Этот равно 4.8 вольт.
2. Определите максимальное сопротивление для 800 футов (243,84 метра). Этот эквивалентно 400 футов (121,92 метра) × 2, поскольку есть два токопроводящие жилы для однофазной системы.
3. Определите максимальное сопротивление для 1000 футов (304,8 метра) дирижер.
4. Используйте ТАБЛИЦУ 2, чтобы найти сечение медного проводника, у которого сопротивление постоянному току (DC) (Ом на 1000 футов) значение, равное до или меньше значения, рассчитанного в пункте 3 выше.Выбранный дирижер размер проводника 350 MCM, правая медь.
5. Проверьте этот провод по таблице допустимых значений тока, чтобы убедиться, что он достаточно большой, чтобы выдерживать 200 ампер. ТАБЛИЦА 3 показывает, что 350 млн м3, Правый медный проводник выдерживает ток 310 ампер; поэтому используйте Проводники 350 MCM. (Всегда не забывайте использовать самый большой проводник, если Шаги 4 и 5 дают противоречивые значения.)
6. Если сила тока больше, чем указано в таблицах, используйте больше, чем один провод такого же размера для проектных расчетов.
ТАБЛИЦА 3. Значения амплитуды проводов в дорожке качения или кабеле (3 или меньше)
Альтернативный метод расчета падения напряжения
В некоторых случаях более простой метод определения сечения проводника для ограничение падения напряжения заключается в использовании одной из следующих формул для Найдите площадь поперечного сечения (см) проводника.
… где:
p = удельное сопротивление из ТАБЛИЦЫ 2
I = ток нагрузки в амперах,
VD = допустимое падение напряжения, а
d = расстояние от источника до груза в футах.
Пример задачи для однофазной системы, приведенный выше. раздел можно настроить следующим образом:
Следующий по величине размер — провод 350 MCM.
РАЗРАБОТКА ОТВЕТСТВЕННОЙ ЦЕПИ
Ответвленная цепь определяется как цепь, идущая от последнего устройство защиты от перегрузки по току энергосистемы. Ответвительные цепи, согласно NEC, их мощность составляет 15,20,30,40 или 50 ампер.Нагрузки более 50 ампер не должны подключаться к ответвленной цепи.
В NEC существует множество правил, применимых к проектированию ответвленных цепей.
Следующая информация основана на NEC. Во-первых, каждая схема должны быть спроектированы таким образом, чтобы исключить случайное короткое замыкание или заземление. вызвать повреждение любой части системы. Затем предохранители или автоматические выключатели должны использоваться в качестве устройств защиты от перегрузки по току параллельной цепи. Должен короткое замыкание или заземление, защитное устройство должно открыть и прервать прохождение тока в ответвленной цепи.Один важный Согласно правилу NEC, провод № 16 или № 18 (удлинитель) может быть отключен. от проводов № 12 или № 14, но не от проводников больше, чем №12. Это означает, что удлинитель провода №16 не должен быть подключенным к розетке с проводом № 10. Ущерб меньше провода (из-за эффекта нагрева) до того, как устройство максимального тока сможет open устраняется применением этого правила. Цепи освещения составляют единое целое наиболее распространенных типов ответвлений.Обычно они либо Схемы на 15 или 20 ампер.
Максимальный номинал отдельной нагрузки (например, переносного прибора). подключен к параллельной цепи) составляет 80 процентов тока параллельной цепи рейтинг. Следовательно, на 20-амперную схему не может быть одной нагрузки. который потребляет более 16 ампер. Если нагрузка постоянно подключена прибора, его текущий рейтинг не может превышать 50 процентов от емкость ответвительной цепи — если подключены переносные приборы или фонари к той же схеме.
Падение напряжения в ответвленных цепях
Ответвительные цепи должны быть спроектированы так, чтобы подавалось достаточное напряжение. подключены ко всем частям схемы. Расстояние, на которое ответвление цепи может выходить из источника напряжения или панели распределения питания, поэтому ограничено. Падение напряжения на 3% указано в NEC как максимально допустимый для параллельных цепей в электропроводке дизайн.
Метод расчета падения напряжения в параллельной цепи: пошаговый процесс, который иллюстрируется следующей задачей.Обратитесь к принципиальной схеме, представленной на фиг. 7.
Пример задачи:
Дано: 120-вольтная 15-амперная ответвленная цепь питает нагрузку, состоящую из из четырех ламп. Каждая лампа потребляет от источника 3 ампера тока.
Лампы расположены на расстоянии 10 футов (3,05 метра) от источника питания. распределительный щит.
Найти: напряжение на лампе номер 4.
Решение:
1.Найдите сопротивление для 20 футов (6,1 м) проводника (такое же как для 10-футового проводника × 2). Медный провод №14 применяется на 15 ампер. ответвленные цепи. Из ТАБЛИЦЫ 2 мы находим, что сопротивление 1000 футов (304,8 метра) медного провода № 14 составляет 2,57 Ом. Следовательно, сопротивление 20 футов провода составляет: [не показано]
РИС. 7. Схема для расчета падения напряжения в ответвленной цепи
Обратите внимание, что напряжение на лампе номер 4 значительно снижено. от значения источника 120 В из-за падения напряжения в проводниках.Также обратите внимание, что сопротивления, используемые для расчета падений напряжения представлены оба провода (горячий и нейтральный) ответвленной цепи. Обычно 120-вольтовые параллельные цепи не должны простираться более чем на 100 футов (30,48 метра). от распределительного щита. Предпочтительное расстояние — 75 футов. (22,86 метра). Падение напряжения в проводниках параллельной цепи может быть уменьшается за счет уменьшения длины цепи или использования большего проводники.
При проектировании электропроводки жилых помещений падение напряжения во многих отраслях схемы сложно рассчитать, так как осветительные и переносные розетки прибора размещаются в одних и тех же цепях.С переносная техника и «вставные» фонари используются не все время, падение напряжения будет варьироваться в зависимости от количества огней и используемая техника.
Эта проблема обычно не встречается в промышленных или коммерческих схема разводки светильников, так как осветительные блоки обычно больше и постоянно устанавливаются в ответвленных цепях.
Электромонтаж ответвлений
Ответвительная цепь обычно состоит из кабеля с неметаллической оболочкой, который подключается к распределительному щиту.Каждая ответвленная цепь, которая подключен к распределительному щиту, защищен плавким предохранителем или автоматический выключатель.
На силовой панели также есть главный выключатель, который управляет всеми ответвлениями. схемы, которые к нему подключены.
РИС. 8. Схема распределительного щита на однофазный,
трехпроводная ветвь
Однофазные ответвительные цепи
Схема однофазного трехпроводного (120/240 В) распределения питания панель показана на фиг.8. Обратите внимание, что восемь цепей на 120 В и одна 240-вольтовая цепь доступны от силовой панели. Этот тип системы используется в большинстве домов, где есть несколько 120-вольтных параллельных цепей. и, как правило, требуются три или четыре ответвления на 240 вольт. Обратите внимание на фиг. 8 что на каждой горячей линии есть автоматический выключатель, а на нейтральная линия подключается непосредственно к ответвленным цепям. Нейтралы должны никогда не открываться (плавиться). Это мера предосторожности при электромонтаже. дизайн.
Трехфазные ответвительные цепи
Схема трехфазного четырехпроводного (120/208 В) распределения питания панель показана на фиг. 9. Есть три однофазных 120-вольтовых ветви схем и двух трехфазных 208-вольтных ответвленных цепей. Однофазный филиалы сбалансированы (по одной горячей линии от каждого филиала). Каждая горячая линия имеет индивидуальный автоматический выключатель. Необходимо подключить трехфазные линии. так что перегрузка в ответвленной цепи приведет к тому, что все три линии открыть.Это достигается за счет использования трехфазного автоматического выключателя, который расположен внутри, как показано на фиг. 9.
РИС. 9. Схема распределительного щита для трехфазного, четырехпроводного
ответвленная цепь.
АНАЛИЗ КОНСТРУКЦИИ КОНТУРА ПИТАТЕЛЯ
Цепи фидера используются для распределения электроэнергии для распределения энергии панели. Многие фидерные цепи простираются на очень большие расстояния; следовательно, Падение напряжения необходимо учитывать при проектировании цепи фидера.В высшем в цепях фидера снижается падение напряжения. Однако многие Для цепей фидера более низкого напряжения требуются проводники большого диаметра для обеспечения допустимый уровень падения напряжения. Сильноточные фидерные цепи также представляют проблему с точки зрения массивной защиты от перегрузки, которая иногда требуется. Эта защита обычно обеспечивается системным распределительным устройством. или центры нагрузки, где берут начало фидерные цепи.
РИС.10. Схема трехфазного выключателя
Определение размера контуров подачи
Величина тока, на которую должна быть рассчитана фидерная цепь. зависит от фактической нагрузки, требуемой распределением мощности параллельной цепи панели, которые он поставляет. Каждая панель распределения питания будет иметь отдельный фидерный контур. Кроме того, каждая фидерная цепь должна иметь свою собственную перегрузку. защита.
Следующая задача — это пример расчета размера питателя. схема.
Пример задачи:
Дано: подключены три люминесцентных светильника мощностью 15 кВт. к трехфазной четырехпроводной (277/480 вольт) системе. Осветительные блоки имеют коэффициент мощности 0,8.
Найдите: необходимый размер алюминиевых фидерных проводов THW для обеспечения этой нагрузки.
Решение:
1. Найдите линейный ток:
PT
IL = ——- 1.73 × ВЛ × пф
45 000 Вт
= ——— 1,73 × 480 В × 0,8
= 67,74 ампера
2. Из ТАБЛИЦЫ 3 мы находим, что размер проводника, который выдерживает 67,74 Ампер тока — это алюминиевый провод № 3 AWG THW.
Расчет падения напряжения для цепей фидера
При проектировании цепи фидера необходимо учитывать падение напряжения на проводнике. Падение напряжения в цепи фидера должно быть минимальным. так что максимальная мощность может быть доставлена к нагрузкам, подключенным к система подачи.NEC допускает падение напряжения не более 5%. совмещение ответвления и фидерной цепи; однако 5-процентное напряжение уменьшение представляет собой значительную потерю мощности в цепи. Мы можем рассчитать потери мощности из-за падения напряжения как V2 / R, где V2 — падение напряжения цепи, а R — сопротивление проводников цепи.
Расчет сечения фидера аналогичен расчету для ответвления. падение напряжения в цепи.Размер жилы должен быть достаточно большим. чтобы: (1) иметь требуемую допустимую нагрузку и (2) поддерживать падение напряжения ниже указанный уровень. Если второе требование не выполняется, возможно, потому что длинной фидерной цепи выбираемые проводники должны быть больше, чем требуется рейтинг допустимой нагрузки. Следующая проблема иллюстрирует расчет сечения фидера по падению напряжения в однофазная схема.
Пример задачи:
Дано: взрывозащищенная однофазная 240-вольтовая нагрузка на заводе рассчитана на 85 кг. Вт.Питатели (две горячие линии) будут иметь длину 260 футов (79,25 метра). медной жилы RHW. Максимально допустимое падение напряжения на проводе составляет 2 процента.
Найдите: требуемый размер проводника фидера.
Решение:
1. Найдите максимальное падение напряжения в цепи.
VD =% × Нагрузка
= 0,02 × 240
= 4,8 вольт
2. Найдите ток, потребляемый нагрузкой.
Мощность
I = —- Напряжение
85 000
= — 240
= 354,2 ампера
3. Найдите минимальную требуемую площадь проводника в миллиметрах. Используйте формулу дан для определения площади поперечного сечения проводника в однофазном систем, который ранее был приведен в «Альтернативном методе расчета падения напряжения »п.
см / дюйм = p × I × 2d
—— VD
10.4 × 354,2 × 2 × 260
= ———- 4,8
= 399 065,33 см
4. Определите сечение фидера. Следующий провод большего размера в ТАБЛИЦЕ 2 также 400 млн м3. Посмотрите ТАБЛИЦУ 3, и вы увидите, что 400 Медный провод MCM RHW выдерживает 335 ампер. Это меньше, чем требуется 354,2 ампера, поэтому используйте следующий больший размер, то есть 500 Проводник МСМ.
Размер жилы для трехфазной фидерной цепи определяется в аналогичным образом.В этой задаче размер кормушки будет определяться на основу цепи падения напряжения.
Пример задачи:
Дано: ex 480-вольтовая, трехфазная, трехпроводная (треугольник) цепь фидера обеспечивает сбалансированную нагрузку 45 киловатт в коммерческое здание. Загрузка работает с коэффициентом мощности 0,75. Питающий контур (три горячие линии) будет длиной 300 футов (91,44 метра) правого медного проводника. В максимальное падение напряжения составляет 1 процент.
Найдите: требуемый размер фидера (исходя из падения напряжения в цепи).
Решение:
1. Найдите максимальное падение напряжения в цепи.
VD = 0,01 × 480
= 4,8 вольт
2. Найдите линейный ток, потребляемый нагрузкой.
-П
IL = —— 1,73 × V × pf
45000 Вт = ——- 1,73 × 480 × 0,75
= 72.25 ампер
3. Найдите минимальную требуемую площадь проводника в миллиметрах. Используйте формулу для нахождения cmil в трехфазных системах, что было дано в более ранней раздел.
p × I × 1,73 d
см = —— VD
10,4 × 72,25 × 1,73 × 300
= ———— 4,8
= 81 245 см
4. Определите сечение фидера. Ближайший и следующий по размеру размер проводника в ТАБЛИЦЕ 3 — No.1 AWG. Проверьте ТАБЛИЦУ 3, и вы видите, что медный провод № 1 AWG RH выдержит ток 130 ампер, что значительно больше требуемых 72,25 ампер. Поэтому используйте медь № 1 AWG RH. проводники для фидерной цепи.
ОПРЕДЕЛЕНИЕ РАЗМЕРА ЗАЗЕМЛЕНИЯ
Обсуждены вопросы заземления при проектировании электропроводки. ранее. Еще одна необходимость при проектировании электропроводки — определение размера необходимого в цепи заземляющего проводника.Все схемы, работать при напряжении 150 вольт или меньше должен быть заземлен; поэтому все жилые электрические системы должны быть заземлены. Системы высокого напряжения, используемые в промышленные и коммерческие здания имеют требования к заземлению, которые определены NEC и местными кодами. Земля на службе вход в здание обычно представляет собой металлическую водопроводную трубу, которая идет непрерывно, под землей, или заземляющий электрод, вбитый в землю возле служебного входа.
Размер заземляющего проводника определяется номинальным током. системы. В ТАБЛИЦЕ 4 перечислены сечения заземляющих проводов оборудования. для внутренней проводки, а в ТАБЛИЦЕ 5 указан минимальный провод заземления. размеры для системного заземления служебных входов. Размеры заземления проводники, перечисленные в ТАБЛИЦЕ 4, предназначены для заземления оборудования, которое соединяет к дорожкам качения, кожухам и металлическим каркасам в целях безопасности. Примечание что нет.12 или кабель № 14, такой как 12-2 WG NMC, может иметь площадку для оборудования № 18. Земля содержится в том же оболочка кабеля в качестве токоведущих проводников. ТАБЛИЦА 5 используется для определения минимального размер заземляющих проводов, необходимых для служебных входов, в зависимости от размер проводов горячей линии, используемых с системой.
ЧАСТИ ВНУТРЕННЕЙ ЭЛЕКТРОПРОВОДКИ
Обсуждались некоторые детали внутренних систем распределения электроэнергии. ранее.Такие виды оборудования, как трансформаторы, распределительные устройства, проводники, изоляторы и защитное оборудование являются частями внутренней электропроводки. Однако есть определенные части внутренней системы распределения электроэнергии. системы, которые уникальны для самой системы электропроводки. Эти части включают кабели с неметаллической оболочкой (NMC), кабели с металлической оболочкой, жесткие кабелепровод и электрические металлические трубки (EMT).
ТАБЛИЦА 4. Размеры заземляющих проводов оборудования для внутренней обмотки
ТАБЛИЦА 5.Сечения заземляющих проводов для служебных входов
Кабель в неметаллической оболочке (NMC)
Кабель с неметаллической оболочкой — это распространенный тип используемых электрических кабелей. для внутренней проводки. Используется NMC, иногда называемый кабелем Romex. почти исключительно в жилых системах электропроводки. Самый распространенный вид используется № 12-2 WG, который проиллюстрирован на фиг. 11. Этот тип NMC поставляется в рулонах по 250 футов для внутренней проводки.Кабель имеет тонкий пластик. внешнее покрытие с тремя проводниками внутри. Проводники окрашены изоляция, указывающая, следует ли использовать провод в качестве провод под напряжением, нейтраль или заземляющий провод оборудования. Например, дирижер подключенный к горячей стороне системы имеет черную или красную изоляцию, а нейтральный провод имеет изоляцию белого или серого цвета. Оборудование заземляющий провод имеет зеленую изоляцию или не имеет изоляции (неизолированный дирижер).Есть несколько разных размеров втулок и соединителей. используется для установки NMC в зданиях.
РИС. 11. Кабель в неметаллической оболочке (MNC)
Обозначение № 12-2 WG означает, что (1) используемые медные жилы имеют калибр № 12 AWG, как измерено американским калибром проводов (AWG), (2) там два токоведущих проводника, и (3) кабель поставляется с провод заземления (WG). Для сравнения, кабель № 14-3 WG будет иметь три Нет.14 проводников и заземляющий провод. Размер NMC варьируется от Медные проводники с № 14 по № 1 AWG и от № 12 до № 2 AWG. алюминиевые проводники.
Кабель в металлической оболочке
Кабель в металлической оболочке аналогичен NMC, за исключением того, что имеет гибкую спираль. металлическое покрытие, а не пластиковое покрытие. Распространенный вид металла кабель с оболочкой называется кабелем BX. Как и NMC, кабель BX содержит два или три проводники. Также есть несколько размеров разъемов и втулок. используется при установке кабеля BX.Основное преимущество этого Тип кабеля с металлической оболочкой заключается в том, что он заключен в металлический корпус это гибкий, так что его можно легко согнуть. Прочие металлические корпуса обычно труднее сгибать.
Жесткий кабелепровод
Внешний вид жесткого водовода похож на водопроводную трубу. Он используется в специальные места для изоляции электрических проводов. Жесткий канал поставляется в 10-футовой длине, которая должна иметь резьбу для соединения частей все вместе.Кабелепровод крепится к металлическим монтажным коробкам с помощью контргаек и втулки. Он громоздкий в обращении и требует много времени для установки.
Электрические металлические трубки (EMT)
EMT, или тонкостенный канал, чем-то похож на жесткий канал, за исключением того, что его можно согнуть с помощью специального инструмента для гибки труб. ЕМТ проще для установки, чем жесткий кабелепровод, так как нарезка резьбы не требуется. Это также поставляется в 10-футовой длине. EMT устанавливается с использованием сжатия муфты для соединения кабелепровода с металлическими распределительными коробками.Электрика салона в системах электропроводки широко используется ЕМТ, так как ее можно легко согнуть, могут быть соединены вместе и могут быть подключены к металлическим монтажным коробкам.
Зависимость переменного тока от постоянного
Большинство рассмотренных до сих пор примеров, особенно те, которые используют батареи, имеют источники постоянного напряжения. Как только ток установлен, он также становится постоянным. Постоянный ток (DC) — это поток электрического заряда только в одном направлении.Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (AC) — это поток электрического заряда, который периодически меняет направление. Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока. Примеры включают коммерческую и бытовую энергетику, которая удовлетворяет многие наши потребности. На рисунке 1 показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока.Напряжение и частота переменного тока, обычно используемые в домах и на предприятиях, различаются по всему миру.
Рис. 1. (a) Напряжение и ток постоянного тока постоянны во времени после установления тока. (b) График зависимости напряжения и тока от времени для сети переменного тока частотой 60 Гц. Напряжение и ток синусоидальны и совпадают по фазе для простой цепи сопротивления. Частоты и пиковое напряжение источников переменного тока сильно различаются.
Рис. 2. Разность потенциалов V между клеммами источника переменного напряжения колеблется, как показано.Математическое выражение для V дается как [латекс] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex].
На рисунке 2 показана схема простой схемы с источником переменного напряжения. Напряжение между клеммами колеблется, как показано на рисунке: напряжение переменного тока соответствует
.[латекс] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex],
, где В — напряжение в момент времени t , В 0 — пиковое напряжение, а f — частота в герцах.Для этой простой цепи сопротивления I = V / R , поэтому переменный ток равен
[латекс] I = {I} _ {0} \ sin 2 \ pi {ft} \\ [/ latex],
, где I — ток в момент времени t , а I 0 = V 0 / R — пиковый ток. { 2} \ text {2} \ pi {ft} \\ [/ latex], как показано на рисунке 3.
Установление подключений: домашний эксперимент — светильники переменного / постоянного тока
Помашите рукой между лицом и люминесцентной лампой. Вы наблюдаете то же самое с фарами своей машины? Объясните, что вы наблюдаете. Предупреждение: Не смотрите прямо на очень яркий свет .
Рис. 3. Мощность переменного тока как функция времени. Поскольку напряжение и ток здесь синфазны, их произведение неотрицательно и колеблется от нуля до I 0 V 0 .Средняя мощность (1/2) I 0 V 0 .
Чаще всего нас беспокоит средняя мощность, а не ее колебания — например, у лампочки 60 Вт в настольной лампе средняя потребляемая мощность 60 Вт. Как показано на Рисунке 3, средняя мощность P ave составляет
[латекс] {P} _ {\ text {ave}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex].
Это видно из графика, поскольку области выше и ниже линии (1/2) I 0 V 0 равны, но это также можно доказать с помощью тригонометрических тождеств.Точно так же мы определяем средний или действующий ток I среднеквадратичное значение и среднее или действующее напряжение В среднеквадратичное значение , соответственно
[латекс] {I} _ {\ text {rms}} = \ frac {{I} _ {0}} {\ sqrt {2}} \\ [/ latex]
и
[латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex].
, где среднеквадратичное значение означает среднеквадратичное значение, особый вид среднего. Как правило, для получения среднеквадратичного значения конкретная величина возводится в квадрат, определяется ее среднее (или среднее) значение и извлекается квадратный корень.Это полезно для переменного тока, так как среднее значение равно нулю. Сейчас,
P среднеквадратичное значение = I среднеквадратичное значение V среднеквадратичное значение ,
, что дает
[латекс] {P} _ {\ text {ave}} = \ frac {{I} _ {0}} {\ sqrt {2}} \ cdot \ frac {{V} _ {0}} {\ sqrt {2}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex],
, как указано выше. Стандартной практикой является указывать I среднеквадратичное значение , V среднеквадратичное значение и P среднее значение , а не пиковые значения.Например, напряжение в большинстве домашних хозяйств составляет 120 В переменного тока, что означает, что В среднеквадратичное значение равно 120 В. Обычный автоматический выключатель на 10 А прервет постоянное напряжение I среднеквадратичное значение более 10 А. микроволновая печь потребляет P пр. = 1,0 кВт и т. д. Вы можете рассматривать эти среднеквадратичные и средние значения как эквивалентные значения постоянного тока для простой резистивной цепи. Подводя итог, при работе с переменным током закон Ома и уравнения мощности полностью аналогичны таковым для постоянного тока, но для переменного тока используются среднеквадратические и средние значения.{2} R \\ [/ латекс].
Пример 1. Пиковое напряжение и мощность для переменного тока
(a) Каково значение пикового напряжения для сети 120 В переменного тока? (b) Какова пиковая потребляемая мощность лампочки переменного тока мощностью 60,0 Вт?
СтратегияНам говорят, что V rms составляет 120 В, а P ave составляет 60,0 Вт. Мы можем использовать [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex], чтобы найти пиковое напряжение, и мы можем манипулировать определением мощности, чтобы найти пиковую мощность из заданной средней мощности.
Решение для (а)Решение уравнения [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex] для пикового напряжения В 0 и замена известного значения на V rms дает
[латекс] {V} _ {0} = \ sqrt {2} {V} _ {\ text {rms}} = 1,414 (120 \ text {V}) = 170 \ text {V} \\ [/ latex ]
Обсуждение для (а)Это означает, что напряжение переменного тока изменяется от 170 В до –170 В и обратно 60 раз в секунду.Эквивалентное постоянное напряжение составляет 120 В.
Решение для (b)Пиковая мощность равна пиковому току, умноженному на пиковое напряжение. Таким образом,
[латекс] {P} _ {0} = {I} _ {0} {V} _ {0} = \ text {2} \ left (\ frac {1} {2} {I} _ {0} {V} _ {0} \ right) = \ text {2} {P} _ {\ text {ave}} \\ [/ latex].