Армирование ленточного фундамента шириной 40 см: Армирование ленточного фундамента шириной 40 см количество в ряду

Содержание

Армирование ленточного фундамента шириной 40. Ленточный фундамент и его армирование. Армирование столбчатого фундамента

Схема армирования железобетонной конструкции определяется проектом фундамента. Организация, имеющая лицензию на проектные работы, рассчитывает сопротивляемость балки на изгиб, кручение, сжатие….. выбирает вид арматуры, места ее заложения, марку бетона, размеры конструкции и так далее.

Но многие частники армируют свои фундаменты «по образу и подобию», исходя из опыта эксплуатации железобетонных конструкций. В качестве компенсации отсутствия точных технических расчетов применяется метод внедрения в конструкцию сверхзапаса по прочности. Что достигается благодаря перерасходу материалов.

Возможно, это здание было даже трехколесным на востоке, или в этот момент у него была крытая комната под крышей, после чего остатки арочного окна были близки к верхнему краю этой стены. Макет здания трапецеидальный. Внутренняя стена и часовня или кухня полностью отсутствуют. Средняя глубина помещений в этом здании, к которым обращаются стены.

На первом этаже стенка 140 толщиной почти 140 см показывает на первом этаже 110-метровую глубину 200 см шириной, 200 и 220 см в высоту, плоскую крытую стенную выемку, из которой открывалось окно шириной 55 см и высотой 100 см, которое выходило наружу. Однако открытие было позже обнесено стеной. Имеет смысл рассмотреть этот магазин, если не обычный конференц-зал, как столовую, так как он имел самую близкую связь с кухней. Второй этаж, с двумя большими окнами, выходящими на север, но не такими высокими, широкими и глубокими, как у «Рыцарского зала» в Паласе, несомненно, служил гостиной.

Как располагать арматуру

Имеются правила расположения арматуры в балке.
Так как ленточный фундамент будет противостоять в основном изгибающим силам в вертикальной плоскости (прочность на сжатие бетонной конструкции всегда достаточна по умолчанию для небольшой массы дома), поэтому соответственно арматура закладывается в местах наибольших изгибающих нагрузок. Это верхняя и нижняя поверхность ленты.

Чем ближе к поверхности будет заложена арматура, тем она будет ближе к зоне максимальных нагрузок.


Таким образом, в ленточном фундаменте основные пруты закладываются у верхней и у нижней поверхностей.

Вероятно, окно в виде заливной прихожей вышло из этой камеры в часовню, заменив ораторское искусство. Но это кажется очень маловероятным. Оборудование оккупированных комнатами Бургфрау было намного проще, как вы можете себе представить. Годовой доход многих таких владельцев замков был не очень высоким. Часовня, согласно «размеру» замка, мала.

Будучи так называемым капелланом замка, он также должен был давать уроки неотложной помощи в чтении и письме, и даже должен был быть врачом и медсестрой. В то время на чтение и письмо было много; Обычным людям не хватало этих знаний почти полностью, и джентльмены рыцарей были большей частью этого искусства только до сих пор могущественными, чтобы они могли нарисовать свое имя, часто совершенно неразборчивое, под каким-то документом.

Расстояние до краев

Но, в тоже время по правилам, стержни должны находиться внутри бетона и не выступать из него. В этом лишь случае сохраниться целостность бетона испытывающего напряжения.

Имеется выработанное решение – закладка основных прутов производится на расстоянии не ближе 5 сантиметров от края конструкции.

Т.е. расстояние от любой поверхности фундамента до арматуры внутри него должна быть не менее 5 сантиметров.

Таким образом, капеллан замка также занимался написанием и чтением документов. Что касается оборудования часовни, то, вероятно, это было довольно просто на Эйбенштейне; распятие или резное святое изображение в апсиде, перед ним маленький деревянный стол для алтаря; на корабле справа несколько простых ферм. После того, как боковые стены не были восстановлены до их первоначальной высоты, нет никаких признаков потолочного потолка. Продольная ось часовни точно не равна направлению восток-запад. Отклонение от обычной практики должно объясняться расположением строительных площадок, что не подходит для этой цели.

Какие стержни применяется

Применяется ребристая арматура, имеющая поэтому хорошую связь с бетоном, в основном класса А-3. Ее диаметр чаще — 10 — 12 мм. Но для надежного запаса прочности иногда берут и потолще — 14 — 16 мм. Для изготовления поперечин возможно применение и гладких стержней диаметром 6 — 8 мм.

Для ленты фундамента шириной до 40 см таких стержней должно быть по 2 (и более) в каждом ряду, — и в верхнем и в нижнем.

Расстояние межу прутами в одном ряду не должно превышать 30 см.

Интерьер четырехугольных, 4, 10 м в ширину и 3, 6 м в глубину в среднем. Кверху кухонная комната сужается к дымовой трубе, верхняя привязанность которой, фактическая дымовая труба, рухнула. Также из очага не осталось следов. В стене на кухне, выходящей во внутренний двор, есть отверстие шириной 185 см и шириной 80 см, а в стороне есть окно шириной около 70 см, равномерно высокое. Это наблюдение можно, вероятно, сделать и в других замках. Этот фронт был полуоткрытым, покрытым более чем 4-метровой высотой, почти вертикальной скальной стеной, а кухня покрывала коридор крышей, опираясь на деревянные колонны, таким образом, сухая движение между дворцами палас и беседкой, а также в часовню и кухню Нога может быть выполнена. Предположительно, в этот момент в единственном коридоре было небольшое отверстие, которое можно было закрыть, которое проходило через хранилище и через которое были выброшены кухонные отходы и печная пещера. что есть такие пепла в кухне или перед кухнями, это вопрос опыта.

Все несущие пруты скрепляются между собой арматурой меньшего диаметра (6 — 8 мм), — в горизонтальной и в вертикальной плоскостях. Так образовывается каркас арматуры, который впоследствии закладывается бетоном. Шаг установки таких поперечен обычно от 0,5 метра.

Правила закладки арматуры


На углах не допускается сочленение отдельных несущих арматурных стержней. Только изогнуты цельные закладываются в угол.

В подобном «домашнем» строительстве не применяется сварка. Соединение ведется вязкой. Часто неизвестно, какой именно металл применен и допускается ли вообще его плавление и сваривание. Некоторая сталь при сварке, сильно теряет свои качества, а самое соединение становится не прочным.

На кухне это устройство не могло быть установлено, потому что оно построено на скалистом грунте. Иногда было объявлено, что такие пепла были потеряны, пепел на кухнях был объявлен отверстиями, через которые заключенные, приговоренные к голоду, были опущены. По большей части, однако, это был только этот пепел. Конечно, шлаки были очищены на некоторое время.

Так как кухня упоминается здесь, поваренная книга не должна упоминаться. Рыбалка в Тайе обеспечивала, вероятно, пищу жителей замка для большой. Потому что мясо вскоре будет потреблено, а затем просто бобы, чечевица и горох были основной пищей. Печенье и хлеб из ржи, для слуг овсянки. Если, в частности, добавляются яйца, молоко и масло, то без особых усилий торты могут быть собраны в замки более низкого ранга.

Порядок армирования фундамента

Заготавливается арматура необходимой длины, в том числе и тонкая для связывания основных стержней. Готовится, изгибается для установки в углах.

В траншее, вырытой под фундамент, арматурные стержни нижнего ряда укладывается на песчаную подушку. Для обеспечения необходимого расстояния, между подошвой будущего фундамента и прутьями, последние просто кладутся на кирпичи.

Стержни связываются между собой в единые нитки по длине, а также поперечинами. При этом соблюдается заданное расстояние по ширине, а также части каркаса выравниваются по осям фундамента.

По большей части, рыцарь, всегда полный плит, которые выменили под весом самых редких блюд, и которые всегда выливали самое вкусное вино из полных чашек, жили только в воображаемой силе романистов. Многие из них извратили бы свои рты, вынудив пустую бутылку этого кислого вина заполнить несколько пьедесталов в подвалах владельцев замка Вальдфиртель в районе Эйбенштейна. В основном отсутствовало свежее мясо, свежий хлеб и овощи. Хлеб обычно был тяжелым, его просто запекали, когда прежний всегда большой запас закончился.

Соленая и копченая рыба и говядина, последняя настолько тяжелая, что ее нужно было разбить, очень часто уже пахнущую духом, а также полукипящих, раздутых пряных бобовых. Помимо цапель, журавлей, аистов и лебедей, кулинарного искусства века, а также занимались подготовкой воронов и стервятников, последний был пойман во время необходимости даже на высоком дворе, который, как известно, очень часто находился рядом с замком. Они должны были пить из своих тарелок все из одной и той же деревянной чаши, которая была самой нечистой.

К нижним стержням подвязываются вертикально расположенные поперечины, затем монтируется верхние несущие пруты. Для этого они вывешиваются и стропуются в заданном положении, например, на положенных поперек траншеи палках, затем вяжутся с вертикальными поперечинами в каркас.

В итоге получается арматурный каркас стоящий на кирпичах.

Блюда состояли из твердого и уже гнилого мяса старых коров, коз и свиней, а затем в фруктах, которые были представлены хрюкающим четырехногим друзьям. Пища была приготовлена ​​в вонючем масле и жире, так что их простой запах раздражал рвоту. Хлеб был настолько тяжелым, что вы едва могли его пережевать. Скатерти были настолько нечисты, так ржавы и мусорны, что части их застряли на пальцах, и гости должны были вытирать пальцы на их одежде. Таким образом, Эней Сильвий развлекался какое-то время. «Еда простых людей была еще более зловещей и отвратительной».

Контроль и количество

Важно что бы при монтаже арматуры контролировалось расположение стержней по отношению к центральной оси фундаментной ленты. Для этого на кольях над траншеей натягиваются нити, соответствующие осям фундамента. По ним с помощью отвесов и ориентируется армирующий каркас. Также важно сделать каркас строго вертикальным.

Сколько потребуется арматуры, ответить можно простым расчетом, сделанным самостоятельно. Не забываются перехлесты на 30 см для стыковки, скругления и необходимость обеспечения целостных стержней на сопряжениях стен. Припасается и сталистая проволока для связывания.

Во времена Эней Сильвия, по крайней мере, были тарелки и вилки, но в столетии люди все еще обходились без этой посуды; вместо вилки пальцы служили, а вместо тарелки служил кусочек хлеба. Один потянулся за «кусками» в общей миске с пальцами и жидкостью из общей чаши с ложкой, и каждый едок имел ножи. Обычно один варил в течение всей недели в воскресенье и нагревал посуду Таким образом, кухня не слишком сильно израсходована, и относительно ограниченное пространство на Эйбенштейне вас не удивит.

Северная сторона двора ограничена стеной разной высоты. Как вы можете видеть, двор был окружен со всех сторон высокими стенами, также с северной стороны, вероятно, из-за того, что его нельзя было легко увидеть из переполненной южной канавы ручья внизу. Похоже, что разрушительный враг первым вторгся в эту часть замка, о чем свидетельствуют некоторые признаки того, что защитники замка впервые раскрыли эту часть. На первом этаже есть щелевидное оконное отверстие 5 внутри, 70 см в высоту, 80 см в ширину и наружу Высота 45 см и ширина 45 см сужены.

Вариант армировки

Видео западного производства, где наглядно показана установка армирования внутри опалубки. Эта технология предусматривает готовые приспособления для подвески арматуры перед заливкой. Но взять на вооружение кое-что можно.

Судя по крепости стен, здание должно было быть только целым. Первое этажное окно, напоминающее нишу, обозначает эту комнату как жилое пространство. Предположительно, это здание предназначалось для размещения гостей, иначе оно служило близким родственникам лорда замка, чтобы остаться. И хранилище, и стороны этого открытия сильно разрушены. Судьбы замка, возможно, неоднократно были серьезными, даже катастрофическими. Однако не исключено, что этот ущерб является бессмысленным, более поздним.

В ожидании такого шага, он тогда имел стену, открывающуюся в стене, потому что эта стена показывает, что это случилось в спешке. Такие переживания в ходе осады были не редкостью. Стена здания не показала бы такого желоба. С другой стороны, большая оконная выемка с кирпичными скамьями, рассчитанная на взгляд в открытую, говорит против нее. Теперь мы приходим к самой важной части каждого средневекового замка, к сторожевой башне или, как ее более старшее имя, к храму. Это было последнее убежище, в которое осаждали осажденные.

Все мы знаем, что при воздействии нагрузки на бетон – невозможно вызвать его упругую деформацию или пронаблюдать его необычайную пластичность; потому-что данные свойства у него напрочь отсутствуют. Не смотря на то, что у бетона довольно высокий предел прочности, силовые нагрузки он испытывает соответствующие. Поэтому, под воздействием неравномерных сил морозного пучения, разнонаправленной нагрузки со стороны стен здания – возникают деформации, способные создавать трещины в фундаменте и его постепенное разрушение.

Построенный в середине того же века, он был позже размещен снаружи более поздних зданий; Однако его система очень часто зависела от физического состояния сайта. В данном случае не было найдено более благоприятного местоположения, чем растение на скале — «Эйбенштейна», которое доминирует в следующей среде и легко становится недоступным. Хранение всегда было самой сильной, самой безопасной частью замка, а также силой стен.

Толстые стены в средневековых замках создаются путем первого строительства наружной и внутренней стенки кубовидных стен, а затем заполнения интервала наилучшим возможным известковым раствором, смешанным с полевыми камнями. Даже в самые ранние времена, когда здания замка по-прежнему состояли из деревянных блочных домов, крепость была сделана из камня. Обычно этим башням придавалась форма поперечного сечения круглой или четырехсторонней формы. Треугольные и пятиугольные были очень редки. Эта выпуклость, которая, кажется, защищает вход в башню от бокового зачистки, возможно, изначально была связана с образованием скалистого грунта башни.

Как видим, условий для разрушения фундамента – более чем достаточно. И наша цель, предотвратить его, уже на этапе строительства. Наиболее эффективной мерой, позволяющей обезопасить ваш фундамент от разрушений в ходе эксплуатации – является армирование фундамента . При этом в «тело» фундамента закладывается каркас из металлической арматуры. Более пластичная и упругая, по сравнению с бетоном, сталь арматуры – принимает на себя часть разрушительной нагрузки и препятствует возникновению трещин.

Как и во всех горных мирах, здесь также находится вход на значительную высоту над первым этажом комнаты, из которой можно достичь этого единого доступа. При обычных обстоятельствах к нему подводила деревянная лестница; Два отверстия на стене, из которых должны быть отмечены опорные балки, на которых лежит эта лестница. В военное время деревянная лестница была удалена и заменена веревкой или веревочной лестницей, которую можно было легко снять, когда осажденные отступили в башню. Сама башня размещала помещения различного назначения в своих одноэтажных домах.

Виды арматуры для фундамента

Итак, мы выяснили, что самой прочной конструкцией фундамента – будет конструкция с использованием арматуры. Если вы решили производить армирование фундамента своими руками , в первую очередь необходимо определить класс и подходящий диаметр арматурных прутков. При строительстве фундамента, используется только специальные прутья, имеющие ребристую поверхность – это обеспечивает наилучший контакт стальных прутьев с бетоном. Совершенно ясно, что диаметр арматуры – во многом будет определять прочность будущей конструкции; поэтому выбирать ее толщину, следует исходя из предполагаемой нагрузки и типа грунтов. При армировании фундамента, арматура тоньше 10-ти мм, как правило, не используется

В экстренном случае ему просто пришлось заменить весь замок. Внизу лежат сундук и кладовая, затем наверху лайки защитников и наверху, в основном под крышей, комната опекуна. Отсюда вид был возможен далеко в стране; Здесь можно наблюдать как мирных гостей, так и натиск врагов, и охранник охраняет охранников. Положение башни на скале, которая разбилась почти перпендикулярно реке Тая, также позволила осажденным, если бы они обеспечили достаточный запас твердой пищи, были снабжены подходящими лифтами для питьевой воды из реки.

Как и остальная часть замка, некогда остро ожидающая башня сегодня меньше изображения разрушения, но распада. Южная пограничная стена, обращенная к деревне, отсутствует, она рухнула в глубину, с западной стороны площадь более половины каменной кладки отсутствует.

Если вы собрались строить деревянный дом на устойчивом грунте, в этом случае вполне подойдет арматура имеющая диаметр 10мм. Если дом тяжелый и строится на слабом грунте – арматура потребуется более толстая (14 – 16 мм.). Данные требования, применимы в основном к продольным, верхним и нижним элементам арматурной сетки. Поперечные, вертикальные и горизонтальные, связывающие прутья – в основном не попадают под действие больших нагрузок и используются исключительно как вспомогательные элементы для создания каркаса; а поэтому, могут иметь меньшую толщину и гладкую поверхность.

Арматура для фундамента, при правильном расположении – представляет собой прочный каркас, из 4-х продольных и множества поперечных прутьев. Особого внимания, заслуживает создание каркаса, в угловых частях фундамента. Именно здесь могут возникать самые высокие нагрузки на фундамент, поэтому целостность арматурных прутьев в этом месте – играет очень важную роль. Продольные прутья, не следует разрезать, в местах поворота ленты фундамента. Арматура для фундамента легко сгибается, и поэтому угол каркаса – должен выполняться именно гнутыми, продольными прутками арматуры. Это всего лишь полезная рекомендация, но ее применение на практике – будет весьма кстати.


В то время, когда вы производите армирование фундамента своими руками, все прутья будущего каркаса – следует прочно соединить между собой. Это можно сделать двумя способами: с помощью сварки и вязальной проволоки. В большинстве случаев используется электрическая сварка, но существует мнение, что температурный нагрев – способен ослабить прочность конструкции. Поэтому, вам решать – каким образом вы будете скреплять металлические элементы каркаса.

Ленточный фундамент и его армирование


Армирование ленточного фундамента, производится одновременно с монтажом опалубки. Высота ленточного фундамента, может быть значительно больше его ширины. Следовательно, он не сильно подвержен горизонтальному прогибу (например, по сравнению с плиточным фундаментом) – что оказывает влияние на толщину используемой арматуры. По этой причине, арматура для ленточного фундамента, используется с минимально допустимой толщиной в 10 мм и редко – более толстая.

Армирование ленточного фундамента, предполагает создание 2-х арматурных поясов (верхнего и нижнего), их количество не зависит от высоты фундамента. Для фундамента шириной 40см, вполне будет достаточно четырех продольных прутков арматуры (2 верхних и 2 нижних). На подвижных и сыпучих грунтах, в каждый арматурный пояс, добавляется до четырех продольных прутьев; в остальных случаях, такое усиление является нецелесообразным и только увеличивает стоимость фундамента.


Для строительства дома, имеющего размер 6 х 6 метров, с внутренней 6-ти метровой несущей стеной – понадобится соорудить фундамент, общая длинна которого составит 30 метров. Расход продольной, ребристой арматуры в этом случае, составит ровно 120 метров. Вертикальные и продольные прутья для связки, устанавливаются с интервалом, не менее 0,5 м. При ширине ленты фундамента 40 см и ее высоте 70 см, на каждое поперечное соединение, понадобится 1,6 метров гладкой арматуры (ее можно использовать более тонкого диаметра – например, 6 мм). Все данные взяты с учетом того, что продольные прутья отстоят от поверхности фундамента, на 5 см с каждой стороны, то есть внешние размеры металлического каркаса – несколько меньше размеров всей ленты фундамента.

Если для связки вы решили использовать вязальную проволоку, то на каждое поперечное соединение, состоящее из четырех прутьев, понадобится около 30 см вязальной проволоки. Зная это, не трудно вычислить ее полный расход (для нашего примера, понадобится 72 метра).

Монолитный фундамент и его армирование

Армирование монолитного фундамента, точнее его сложность состоит в том, что такой фундамент может иметь несколько частей – например, плитную и ленточную, а их каркас при этом должен представлять собой единое целое. Диаметр всех рабочих стержней арматуры – не должен быть менее 10 мм.


Армирование монолитного фундамента, состоящего из нескольких горизонтальных сеток, в частности его плиточной части – производится отдельными, взаимно перпендикулярными стержнями. Расстояние между прутами арматуры, не должно быть менее 10 см и более 20 см. Внутренние пересечения стержней в такой конструкции, фиксируются электродуговой сваркой или вязальной проволокой, в шахматном порядке. А два крайних ряда арматурных прутов, полностью соединяются по всему периметру.


Для заделки всевозможных монолитных, железобетонных стоек в такой вид фундамента, из конструкции последних – производятся выпуски арматуры, с дальнейшим присоединением к основному каркасу. Рассчитать количество материала для монолитного фундамента – будет несложно, зная его размеры.

Армирование ленточного фундамента шириной 40 см: своими руками, чертежи, фото

Усиление бетонных конструкций арматурой выполняют для повышения прочности основания. Пошаговая инструкция с чертежами и фото поможет выполнить армирование ленточного фундамента шириной 40 см своими руками.

Зачем армируют ленточный фундамент

При растягивании бетон удлиняется всего на несколько миллиметров. При высоких нагрузках неармированный фундамент подвержен деформации и разрушению. Бетон растрескивается, увеличивается риск обрушения здания.

Металлические элементы железобетонного фундамента выдерживают высокие нагрузки в десятки раз выше максимально допустимых для бетона. Стальная арматура предотвращает разрушение основания, сохраняет устойчивость построек.

Схема армирования

Для ленточного фундамента используют арматурную решетку. Если посмотреть в поперечном сечении на ленту, то металлический каркас повторяет ее форму в уменьшенном виде. Такую схему считают оптимальной для ленточного фундамента.

На основание действуют 2 основные нагрузки: давление грунта снизу при низкой температуре и вес здания сверху. Средняя часть нагружается меньше. Для мелкозаглубленного фундамента (до 1 м) достаточно 2х армирующих поясов: верхний и нижний для компенсации нагрузки.

Чем армировать ленточный фундамент

Так как на арматуру ложится основная нагрузка здания и грунта, необходимо правильно подобрать материалы.

Для продольных рабочих элементов выбирают рифленые прутья толщиной 12-16 мм класса А3. Ребристая поверхность лучше взаимодействует с бетонным раствором. Для вертикальных соединительных частей допустимо использовать прутья толщиной 6-8 мм.

Арматуру соединяют вязальной проволокой или сваркой. Первый метод не требует сложного оборудования, но он трудоемкий и долгий. В процессе используют проволоку диаметром 1-2 мм. Сварка быстрее, но требует опыта работы со сварочным оборудованием и немного уменьшает прочность в местах крепления.

Правила устройства каркаса установлены актуальным строительными нормами. Согласно рекомендациям при монтаже выдерживают следующие интервалы:

  1. Расстояние между продольными элементами – до 10 см.
  2. Интервал между ярусами арматуры – до 50 см.
  3. Вертикальные соединительные прутья устанавливают с шагом до 30 см.
  4. Расстояние от металлических прутьев до краев опалубки – от 5 см.
  5. Между дном и нижним ярусом арматуры сохраняют расстояние от 5 см. Для этого на фундаментную подушку кладут строительные кирпичи в качестве подпорки.

[stextbox id=’info’]Обратите внимание! Для сохранения правильной дистанции строители используют пластиковые ограничители. Они упираются в стенки опалубки, не давая металлу выходить за установленные пределы.[/stextbox]

Способы армирования

Различают 2 способа установки арматуры: внешний и в самой траншее.

Первый метод подразумевает сбор конструкции снаружи и установку готовых элементов в опалубку. Затем конструкцию заливают бетоном.

При выборе второго метода укладку арматуры и вязание прутьев проводят непосредственно в траншее. Для этого выполняют такой порядок действий:

  1. Дно ямы засыпают фундаментной подушкой из крупнофракционного песка и гравия.
  2. На подушку в ключевых точках кладут строительные кирпичи с шагом до 0.5 м. Высота кирпичей позволяет соблюсти минимальное расстояние от арматуры до дна фундамента.
  3. На кирпичную подпорку укладывают нижний слой продольной арматуры. Прутья связывают между собой поперечными элементами.
  4. К нижнему поясу крепят вертикальную арматуру.
  5. Верхний пояс из продольных рабочих и поперечных монтажных прутьев крепят к вертикальным стойкам.

[stextbox id=’info’]Обратите внимание! Для фундамента шириной до 40 см используют внешнюю сборку арматуры. Небольшое расстояние не позволяет собирать конструкцию внутри ямы.[/stextbox]

Расчет материалов

На стадии проектирования проводят расчет диаметра и количества металлических прутьев и сопутствующих деталей. Точное количество поможет правильно распределить расходы и не остаться без материалов в процессе работы.

Рассмотрим, как рассчитать необходимые материалы, на примере фундамента высотой 70 см, шириной 40 см и протяженностью 50 м.

  1. Составляют конфигурацию каркаса по проведенным замерам. Конструкция состоит из 2-х армослоев, по 3 продольных прута в каждом. Соединение выполняют сваркой или проволокой с шагом армирования 30 см. Выбирают арматуру диаметром 12 мм класса А3.
  2. Проводят подсчет продольных частей. Для этого длину основания умножают на количество элементов в верхнем и нижнем поясах – 50*6 = 300 м.
  3. Определяют количество поперечных и вертикальных перемычек. Для этого длину ленты делят на шаг. На расстоянии 50 м с шагом 30 см количество составит – 50/0.3 = 167 соединений.
  4. Умножают число соединений на длину вертикальных и поперечных перемычек. Полученный результат увеличивают вдвое, так как соединение проводят с обеих сторон. В примере получаем 201 м и 101 м соответственно. Результаты округлены в большую сторону.

Если в работе используют арматуру одинакового диаметра, то для заливки железобетонного ленточного фундамента закупают 603 м прутьев класса А3 диаметром 12 мм.

[stextbox id=’info’]Обратите внимание! Профессиональные строители рекомендуют делать запас в размере 10-15% от рассчитанного количества. Дополнительные части используют для соединения продольных прутьев и армирования углов.[/stextbox]

Относительно недавно в продаже появилась стеклопластиковая арматура. Производители заверяют, что материал не уступает в прочности металлу, не подвержен коррозии и дешевле по стоимости. Однако у арматуры из полимеров есть существенный недостаток – низкая стойкость на излом. В результате этого существенно ограничены области применения.

Также отмечают низкий порог упругости стеклопластиковых изделий. При высокой нагрузке этот показатель может привести к повреждению стержней и разрушению основания. Впоследствии технология может стать заменой металлической арматуре при усилении фундамента. Но пока что профессионалы рекомендуют отказаться от стеклопластика.

Усиление углов

Угловые части фундамента испытывают максимальную нагрузку, поэтому эти участки армируют дополнительно.

Схема показывает, как правильно уложить арматуру в углах.

Помимо соединений, углы усиливают Г-образными и П-образными хомутами. Элементы выполняют из прутьев для продольной рабочей арматуры. Вертикальные и поперечные перемычки устанавливают в углах с интервалом вдвое меньше, чем для прямых частей фундамента.

От правильного расположения по углам и в подошве зависит долговечность основания.

Вязка арматурной сетки

Для соединения продольных, поперечных, вертикальных и угловых частей используют стальную отожженную проволоку толщиной 1-2 мм.

Пошаговая инструкция как связать части арматурного каркаса:

  1. От мотка проволоки отрезают кусок длиной 25-30 см.
  2. Отрез сворачивают пополам, обматывают соединение 2 прутов по диагонали. Концы соединяют вместе.
  3. Вязальным крюком для арматуры цепляют согнутый край и наматывают, захватывая противоположные концы.
  4. Продолжают вращательные движения до достижения нужной силы натягивания.
  5. Для продольных соединений процесс вязки выполняют аналогично. Единственное отличие – прутья обхватывают поперечно, а не по диагонали.

Ознакомиться с процессом подробнее можно на видео:


Как выполняют армирование

Для прямых участков фундамента выбирают длинные прутья. Идеальный участок состоит из цельных продольных частей.

В угловых соединениях не допускается перпендикулярный перехлест арматуры. Пруты сгибают буквой «Г» или «П» и соединяют продольные отрезки.

Монтаж арматурной решетки проводят рядом с траншеей или непосредственно в ней. Первый вариант удобнее, но требует максимальной точности сборки. Во втором случае удобства меньше, но проще ориентироваться по размерам.

Подготовленные куски арматуры для нижнего пояса укладывают на кирпичную подставку, соединяют поперечными перемычками с соблюдением шага армирования. Угловые части укрепляют дополнительными вертикальными и горизонтальными элементами.

После готовности нижнего пояса устанавливают вертикальную арматуру, прихватывают сваркой или связывают стальной проволокой. Верхний пояс делают аналогично нижнему. После монтажа траншею заливают бетоном. Для фундамента под дом небольших размеров или под баню используют цементную смесь марки М-200.

Заключение

  1. Армирование позволяет улучшить показатели фундамента, увеличить максимальную нагрузку.
  2. Арматурную решетку делают из стальных прутов класса А3 диаметром 12-16 мм.
  3. Прутья связывают между собой вязальной проволокой или электросваркой. Последний вариант не рекомендован, так как ухудшает защитные свойства металла.
  4. В зависимости от ширины фундамента, металлический каркас собирают снаружи или внутри канавы. Первый способ проще, но требует точных расчетов длины. Второй метод сложнее из-за ограниченного пространства.
  5. Перед началом работ рассчитывают количество используемого материала. Длину металлоизделий определяют с помощью математических формул. Дополнительно предусматривают запас в размере 10-15% от расчетных значений.
  6. Углы несут наибольшую нагрузку и нуждаются в дополнительном усилении. Прутья соединяют, исключая поперечные стыки.

Из-за высокой нагрузки армирование мелкозаглубленного ленточного фундамента шириной 40 см является обязательным действием. Пошаговая инструкция с чертежами и фото поможет усилить основание своими руками. Обязательно делитесь советами и секретами быстрого строительства.


Схема армирования ленточного фундамента — Всё про бетон

Армирование – это строительный процесс, который используется с целью усиления стойкости конструкции и повышения периода ее эксплуатации. Он представляет собой формирование сборного скелета, выступающего как защитный компонент, который противостоит воздействию почвы на стенки конструкции.

Чтобы добиться максимального результата следует четко рассчитать, сколько необходимо арматуры, а также точно провести армирование фундамента здания.

Правильное армирование ленточного фундамента своими руками

В основании фундамента первостепенным компонентом выступает бетонная смесь, сформированная из цемента, просеянного песка и чистой воды. Поскольку этот раствор не обладает достаточными физическими характеристиками, способными предоставить гарантию на отсутствие разнотипных деформаций в фундаменте конструкции, дополнительно используют металл.

Он позволяет увеличить степень противостояния сдвигам основания, резким изменениям температур и иным отрицательно воздействующим факторам. Сам по себе металл пластичен, но он способен обеспечить достойную фиксацию, поэтому армирование – важный и необходимый процесс во всем комплексе строительства.

Армирование следует проводить лишь в местах, где существует большая степень уязвимости к растяжениям. Чаще всего оно встречается на поверхности, поэтому следует в обязательном порядке армировать верхний уровень основания. В целях избежания коррозии материала, следует его защитить слоем бетонного раствора.

Допустимый показатель расстояния арматурного пояса от поверхности должен составлять около 5 см.

Зоны возможной деформации:

  • нижняя часть, когда наблюдается прогибание его середины вниз;
  • верхняя часть – выгибание каркаса вверх.

Для среднего уровня основания армирование проводить необязательно, поскольку в этой зоне практически не существует растягивания.

Учитывая возможные варианты деформации, следует обязательно выполнить армирование низа и верха, используя арматуру с ребристой поверхностью и диаметром в пределах 10–12 мм. В подобном варианте наблюдается наиболее тесный контакт с бетонным раствором. Иные элементы скелета могут быть небольшого диаметра и иметь сглаженную поверхность.

Если проводится армирование фундамента с шириной до 40 см, используются 4 прута арматуры диаметром 10–16 мм, которые соединены в каркас с диаметром 8 мм.

Ленточный тип основания большой длины имеет сравнительно незначительную ширину, из-за чего в нем могут присутствовать только продольные растяжения без поперечных. Поэтому в данной ситуации лучше всего использовать гладкие и тонкие прутья для формирования каркаса, а не для принятия на основание больших нагрузок.

Больше всего следует уделять внимание при армировании углов, поскольку во многих случаях деформации происходят именно в этой части конструкции. Армирование углов конструкции необходимо проводить так, чтобы один из концов согнутого металла уходил в одну стену, а другой – в иную. Поскольку не каждый материал арматуры поддается сварке, скреплять элементы между собой лучше, используя проволоку.

Правила верного армирования фундамента ленточного типа:

  1. Работа начинается с установления опалубки, которая с внутренней стороны обкладывается пергаментом. Данная процедура в дальнейшем позволяет быстрее разобрать созданную конструкцию.
  2. Затем следует вбить арматурные прутья в грунт траншеи на расстоянии 5 см от опалубки и с шагом в 40–60 см. Длина прутьев должна быть равной глубине фундамента.
  3. На дно траншеи укладывается подставка размером в 8–10 см, а поверх нее формируется 2 или 3 нитки ряда арматуры. Как подставку можно применить обыкновенный кирпич, уложенный на ребро.
  4. Верхний и нижний пояс из арматуры с поперечными соединениями прикрепляется к вертикальным стержням.
  5. В местах, где происходит пересечение элементов, необходимо проводить крепление проволокой или сваркой.

Обязательно соблюдайте расстояние до будущей поверхности фундамента, для этого можно использовать кирпичи.

  1. Установив арматуру, следует сделать вентиляционные отверстия и провести заливку бетона.

Наличие вентиляционных дыр и отверстий увеличивает амортизационные показатели и предотвращает возникновение гнили.

Идеальным вариантом считается использование схемы для ленточного фундамента, состоящей из примитивных геометрических фигур, таких как квадрат или прямоугольник, тогда каркас проще смонтировать правильно, а фундамент в результате получается более надежным и крепким.

Основные ошибки армирования ленточного фундамента

Самые известные и часто допускаемые ошибки:

  1. Углы. Главная проблема и ошибка уложить стержни угла крест-накрест. Из-за подобной укладки в фундаменте очень часто возникают трещины. 
  2. Гидроизоляционный материал. Очень часто при создании опалубки забывают об использовании гидроизоляции, вследствие чего вода вымывает цемент и делает бетон менее устойчивым и прочным. Также это способствует возникновению усадочных трещин. Слой гидроизоляции следует очень хорошо и тщательно прикрепить к опалубке, чтобы устранить формирование нежелательных складок и впадин в фундаменте.
  3. Заливка бетона. Заполнение ленточного фундамента бетонной смесью по высоте очень часто не доходит до краев, а долив, проводят лишь через пару дней. Технология подобного типа уже не являет собой конструкцию из монолита, она похожа на две обыкновенные балки с однослойным армированием, которые объединяет между собой скрепление слоев бетонной смеси и поперечной арматуры. Заливка бетона при создании фундамента должна быть беспрерывной, а максимально допустимый интервал для перерыва должен быть не более двух часов.
  4. Вентиляция. Огромную ошибку совершают при установке и в процессе эксплуатации продухов необходимых для вентиляции холодного подполья. Они выполняются из труб диаметром 10 см. Самая минимальная площадь, требуемая для продуха, должна быть около 0,05 м2 (приблизительно 20х25 см).

Запрещается закрывать продухи на зиму, поскольку это приводит к отсутствию вентиляции и загниванию конструкции.

Зачем нужна арматура в ленточном фундаменте?

Со временем у любого дома возникает просадка, поскольку грунт, находящийся под подошвой основания, поддается давлению сверху и уплотняется. Чем больше давления на него оказывают, тем сильнее и быстрее он уплотняется. Если возникающий напор распределен равномерно по всей площади ленточного фундамента, то в этом нет особой проблемы.

Как правило, в реальных условиях давление на основание не симметрично из-за чего здание оседает неравномерно. Чтобы избежать подобной проблемы в фундаменте применяются ленты различной ширины, но даже этот прием не всегда способствует устранению и уравнению давления на фундамент.

Неравномерному осадку фундамента способствует:

  1. Разнообразные включения грунтовой почвы.
  2. Неравномерная и непостоянная влажность.
  3. Различные достройки и пристройки.
  4. Протечка водонесущих коммуникаций.
  5. Отсутствие с какой-либо стороны отмостки и т. п.

Под влиянием указанных причин осадки, поверхность грунта под фундаментом становится кривой относительно вертикального направления здания. Больше всего подвержены воздействию углы конструкции и места с большими перепадами нагрузки.

В подобной ситуации в фундаментной ленте возникает внутренне напряжение, которое способствует возникновению изгибающихся моментов и трещин. Чтобы устранить нежелательное давление на основание, снизить количество трещин и изгибов внутрь фундамента добавляют арматуру.

Какая арматура нужна для фундамента?

Существует два варианта, используемой в строительстве арматуры:

  1. Стальная, которая подразделяется на:
    • стержневую;
    • проволочную.
  2. Композитная арматура. Она применяется сравнительно редко из-за характерных для нее минусов.

Чтобы армировать фундамент ленточного типа используют стержневую арматуру в качестве основного (рабочего) материала и гладкую как дополнительного.

Главное свойство для рабочей арматуры способность быстро и хорошо сцепляться с бетоном. Подобный тип арматуры производят с периодическим профилем, подразделяя его по показателям прочности на классы.

Согласно ГОСТу, существовавшему в период СССР, для частного типа строительства применяется арматура класса А-ΙΙΙ или аналог А400 (по современному ГОСТу). Для поперечной арматуры используется гладкий стержень класса А-Ι или А240 (современный ГОСТ).

Между арматурой старого и современного образца существует отличие в виде измененного профиля серповидной формы, в остальных аспектах отличия отсутствуют.

Чтобы правильно выбрать арматуру для фундамента в магазине следует просто обратить внимание на обозначения:

  • Индекс С указывает на то, что арматурный прокат свариваемый;
  • Индекс К свидетельствует о том, что арматура обладает стойкостью к процессам коррозийного растрескивания, возникающих в связи с давлением на фундамент.

Если эти индексы отсутствуют на упаковке лучше не покупать такой подобный материал.

Конструктивные требования к ленточным фундаментам и их армированию

В связи с отсутствием возможности провести точный расчет диаметра для ленточного фундамента были разработаны специальные конструктивные требования к его армированию:

  1. У рабочих стержней должен быть диаметр минимум 12 мм. 
  2. Количество продольных прутьев должно быть минимум 4, а лучше 6.
  3. Продольные прутья соединяются между собой в пространственный каркас при помощи вязания проволоки или сваривания.
  4. Шаг для поперечного армирования должен быть 20–60 см, а диаметр арматуры 6–8 мм.
  5. Места с наиболее высоким уровнем возможной осадки, а также Т-образные пересечения требуют усиленного армирования с помощью арматурных лапок или вутов с диаметром равным тому, который используется для продольных стержней.
  6. Толщина ленточного типа основания, как правило, составляет около 30 см.

Сколько нужно арматуры для ленточного фундамента?

Для фундамента используется арматура с небольшим диаметром, например, для малоэтажного строительства употребляется арматура с диаметром 10–12 мм, несколько реже – 14 мм.

В независимости от высоты основания для армирования понадобится сделать два пояса из ребристой арматуры класса А3 на расстоянии 5 см от нижней и верхней части фундамента. Поперечные и вертикальные прутья могут быть выполнены из гладкого типа арматуры класса А1.

Для ширины фундамента около 40 см достаточно применить 4 продольных стержня арматуры, из которых два находится внизу и два вверху. Если ширина фундамента больше 40 см или строительство ведется на подвижных грунтах, следует применить больше стержней приблизительно 3 – 4 для верхнего и столько же для нижнего пояса.

Чтобы провести расчет количества необходимой арматуры существует два метода:

Самостоятельный подсчет
Пример. Длина фундамента под здание 6 на 10 м с двумя стенами будет равна 48 метрам (6+10+6+10+6+10=48м).

Если ширина основания 60 см, а армирование состоит из 6 продольных прутьев, то их длина составит 288 метров (6*48=248м).

Шаг между поперечными и вертикальными стержнями соблюдается в 0,5 м, ширина фундамента – 60 см, высота – 1,9 м, отступы стержней от каркаса по 5 см.

В этом случае длина гладкой арматуры с диаметром 6 мм на каждое соединение составляет 640 см или 6,4 м. ((60-5-5)*2+(190-5-5)*3=640 см), а соединений будет 97 штук (48/0,5+1=97 шт.), на них потребуется 620,8 метров арматуры (97*6,4=620,8м).

Для каждого соединения необходимо 6 пересечений для вязки арматуры и приблизительно 12 частей вязальной проволоки. На одну связку требуется 30 см проволоки. Исходя из этих данных, общий расход проволоки составит 349,2 м (0,3*12*97=349,2 м).

Использование коэффициента армирования

Для зданий с небольшой этажностью существует уже выведенный строителями показатель количества арматуры, который составляет 80 кг/м3

Пример. Если для фундамента необходимо 20 м3 бетонного раствора, значит, арматуры понадобится 20*80=1600 кг. Подсчет бетона делать несложно, необходимо лишь знать периметр дома, длину внутренних стен, задать высоту ленты 30 см и помножить ее на ширину.

Чтобы расчет был более экономным лучше всего сделать более точный подсчет необходимого количества арматуры, нарисовав схему армирования. А затем, просчитав погонаж на продольную и поперечную арматуру, вут, а также добавив к этому приблизительно 10 %, которые уйдут на обрезки, умножить полученный результат на вес погонного метра для каждого из используемых диаметров арматуры.

Армирование ленточного фундамента — вязать или варить?

Прутья из металла можно соединять между собой в каркас с помощью вязания или сваривания. Каждый вариант обладает своими положительными и отрицательными качествами.

Главным недостатком сваривания выступает, отсутствие возможности провести качественное поперечное соединение, используя ручной электрод. На заводах каркасы и сетки соединяют, применяя контактный, а не дуговой тип сварки.

В связи с этим очень часто наблюдаются недостаточно прочные соединения (непровар) или ослабление продольного стержня (подрез). Также большим недостатком сваривания является то, что не все материалы поддаются сварке, например, арматура класс А3 делается из стали марки 35ГС, которая не сваривается.

Также если учесть, что для сваривания необходим сам аппарат, наличие знаний, умение им пользоваться, а также расход электричества, то больше преимущества в строительстве отдают вязанию.

Вязание проводится с использованием проволоки диаметром 0,8–3 мм, а в качестве инструмента выступает специальный вязальный крючок. Единственным недостатком такого варианта соединения является высокая трудоемкость.

Какие материалы применяются для армирования?

Для армирования необходимы следующие материалы:

  1. Стальная либо композитная арматура, стержни которой выполненные из стеклопластика или металла.
  2. Зажимной инструмент (вязальный крючок).
  3. Стальная проволока (стяжные хомуты) для вязки. Для металла с индексом С, можно использовать сварку. В этом случае необходим сварочный аппарат.
  4. Ножовка по металлу и т. д.

Правильное армирование ленточного фундамента на долгие годы укрепит здание, снизит количество трещин в основании и на стенах, а также убережет конструкцию от осадки.

Как производится армирование ленточного фундамента своими руками

О необходимости усиления

Насколько необходимо укреплять бетонный массив стальной проволокой? Ведь бетон обладает достаточно высокими прочностными характеристиками. Действительно, бетон имеет повышенную устойчивость к сжимающим нагрузкам, но требует усиления от губительного воздействия разрывных усилий.

Наибольшая вероятность растяжения – на поверхности основания, именно там следует расположить арматуру

Компенсировать эту особенность бетона позволяет укладка стальных стержней на двух уровнях основы. Такое решение повышает прочностные характеристики массива, позволяя сохранять целостность под воздействием изгибающих нагрузок, крутящих моментов и разрывных усилий.

Расчеты

Определение количества свай и их длины производится по данным расчетной документации. Для участков с достаточно устойчивым грунтом достаточно опор длиной 2500 мм. При возведении объекта на неровном рельефе высота опоры учитывает перепады высоты почвы. При строительстве на сильно подвижных грунтах высота опоры должна быть такой, чтобы она достигала твердых слоев грунта плюс 15-20 см.

Рассчитать количество столбов можно, сложив все нагрузки, приходящиеся на фундамент. Для этого следует вычислить нагрузку (вес) 1 м3 стенового материала и умножить этот показатель на количество кубов всего помещения. Этот коэффициент суммируют с весом пола, перекрытий, окон и дверей, кровли, а также внутреннего оснащения (мебели, отделочных материалов, техники, коммуникаций).

Далее коэффициент нагрузок умножается на коэффициент надежности (это постоянная величина по СНиПу). Полученное число следует разделить на значение несущей способности одной опоры.

Расстояние между столбами выдерживается в пределах 100-250 см. Чем более тяжелым является объект, тем меньшее расстояние сохраняется между опорами. Увеличивать шаг более чем на 250 см не рекомендовано, поскольку в таком случае снижается прочность готовой постройки.

Для деревянных построек рекомендуется ставить столбы с шагом 3 м, в сооружениях из пенно- и газобетона – 2 м. Для кирпичных домов этот показатель равен 1,5-1,7 м. Иначе говоря, фундамент под дом из пеноблоков размерами 9х8 м в среднем требует как минимум 16 столбов, а деревянный аналог такого же размера – 12-14 опор.

Преимущества и недостатки ленточного фундамента

Ленточный фундамент – идеальный вариант для строительства своими руками бани, гаража, летней кухни и других построек. Подойдет он и для возведения собственного загородного дома. Такое основание отличается простой конструкцией и понятной методикой изготовления. Среди его прочих преимуществ выделяют:

  1. Небольшая стоимость. Все материалы, используемые в строительстве, стоят относительно недорого. К тому же не понадобится привлечение сложной спецтехники.

  2. Высокая скорость возведения. Все работы можно провести за один день. Еще несколько недель понадобится для высыхания конструкции.

  3. Возможность самостоятельного строительства. Потребуются минимальные навыки и знание технологии.

  4. Долговечность. При условии грамотной организации тепло- и гидроизоляции конструкция прослужит несколько десятков лет.

  5. Универсальность. Такое основание подходит для грунта любого типа. Даже если на участке почва неоднородна по структуре, ленточный фундамент защитит строение от неравномерного проседания и появления трещин.

  6. Способность выдерживать большую нагрузку. На основании такого типа можно возводить многоэтажные строения.

  7. Возможность организации подвального помещения.

Недостатком оснований такого типа становится необходимость проведения точных предварительных расчетов. Ошибки проектирования в дальнейшем невозможно будет исправить.

К минусам относят и необходимость проведения всех работ за один день. Потребуется большое количество бетона. Замешивать его самостоятельно сложно. А потому при строительстве домов, скорее всего, придется покупать готовый раствор. Но при возведении гаража или бани удастся обойтись бытовой бетономешалкой.

Этапы работ по обустройству арматурного каркаса

Основание под фундамент выполняется из слоя песка не менее 10 см, песок накрывается слоем щебня фракции 2-5, затем песчано-щебёночное основание трамбуется, и только потом следует приступать к укладке и вязке арматурного каркаса.

  1. Арматурные пруты, обрезанные по длине фундаментной ленты одной стороны, раскладываются на расстоянии 20-30 см между собой по дну фундамента. По углам они прикручиваются мягкой вязальной проволокой к вертикальным стержням, а также между собой при образовании нахлёста.

  2. Для создания вертикальных угловых опор каркаса горизонтальные нижние пруты каркаса изгибаются под углом 90 градусов. Удлиняются соединением внахлёст и креплением проволокой.

  3. Для облегчения производства работ по армированию углов фундамента допускается устройство анкеров, работы аналогичны устройству ростверков или армопоясов. По всем углам фундамента в грунт вбиваются по 4 металлических прута, снизу покрытые битумной смолой для гидроизоляции. Они выполняют роль анкеров для крепления каркаса. В сечении вбитые штыри-анкера должны образовать квадрат со сторонами, параллельными фундаментной ленте.

Вбитые в землю анкера, на которые крепится каркас

  1. К анкерам прикручиваются или прихватываются для фиксации вертикальные арматурные прутья , равные высоте фундамента.Все вертикальные пруты связываются или привариваются между собой по периметру, образуя конструкцию столба.

  2. Для того, чтобы избежать соприкосновения металла и песчано-щебёночного основания, по всей длине прута под него с интервалом в 1 м подкладывают половинки кирпича.

  3. Нарезаются пруты для поперечной укладки арматуры. Их длина должна быть меньше ширины монолитной ленты на 10 см, то есть поперечины должны быть полностью укрыты заливаемым бетоном с расстоянием от наружной стенки фундамента 5 см.

  4. Шаг армирования фундамента поперечными стержнями 50 см по всей длине продольной арматуры.

  5. Все соединения арматуры скручиваются вязальной проволокой.

  6. В зависимости от длины стороны фундамента расстояние между вертикальными стержнями колеблется от 30 до 80 см.

  7. Продольных рядов может быть достаточно лишь двух:верхнего и нижнего.

  8. Каждый горизонтальный ряд параллелен нижнему и аналогичен ему.

Каркас вполне допустимо собрать вблизи от фундамента, а затем просто опустить его в траншею или опалубки.

Каркас не обязательно собирать внутри подготовленной для фундамента ямы – монтаж можно сделать и снаружи, а потом опустить всю конструкцию вниз

Конечно, такой способ возможен только при наличии ровного участка для сборки, иначе трудно добиться точного выполнения работы.

Что важно знать

Фундамент в процессе эксплуатации любого сооружения регулярно испытывается на прочность различными нагрузками – от веса дома до движения почвы. Поэтому

какая арматура нужна для двухэтажного дома

Что такое ленточный фундамент? Это железобетонная лента, проходящая под строением по всей его площади, охватывающая и стены с несущим назначением, а также перегородки. Главная особенность такого типа фундамента заключается в том, что каждая часть арматурного сечения имеет одинаковую форму. Исходя из этого, можно понять, насколько просто изготавливать такое фундаментное сооружение даже собственными руками. Что же такое арматурный каркас ленточного фундамента?

Зачем нужно армировать ленточный фундамент

Сам бетон является довольно прочным и долговечным строительным материалом, хорошо выдерживающим вертикальное давление. Однако без надлежащего армирования фундамент не выдержит нагрузок на разрыв, сжатие в горизонтальном направлении и изгиб (все это приведет к образованию трещин). Поэтому основой любого ленточного фундамента является армирующий каркас. Зная о том, как правильно армировать ленточный фундамент, а особенно углы и места примыканий, можно собственноручно построить основу любого здания, будь то небольшая дачная беседка или трехэтажный дом. Правильно рассчитанная и изготовленная монолитная железобетонная конструкция фундамента станет гарантом долговечности и прочности любого здания.

Зачем производят армирование

В основу фундамента входит бетон, который способен выдерживать сжатие, но при этом имеет низкую прочность при изгибах и растяжениях. При постройке здания на бетонном основании нагрузка по нему будет распределена неравномерно – это способствует возникновению изгибающих моментов. Данная особенность очень опасна для бетонных конструкций, поэтому установка арматуры или армирующих сеток призваны нейтрализовать негативное влияние этих сил. Сочетание бетона, который принимает на себя сжимающие нагрузки с арматурой, воспринимающей изгибы, обеспечит надежность конструкции.

На заметку! Чтобы усилить конструкцию, потребуется арматура из стали, которую необходимо объединить в жесткий каркас. Армирование стены из бетона таким способом повысит прочностные характеристики основания, увеличит эксплуатационные сроки постройки.

Строительные работы до начала процесса

Перед началом армирования необходимо сделать чертеж фундамента. Он должен подпирать внешние стены и несущие внутренние перегородки. После производится расчет арматурного каркаса.

Перед непосредственным началом строительных работ по вязке скелета необходимо:

  1. Выкопать траншею – согласно расположению и размерам чертежа.
  2. Собрать опалубку внутри траншеи из подходящих материалов.
  3. Организовать песчаную подушку в качестве подложки для равномерности распределения бетона.

Выбор

Содержание

  • 1 Выбор
  • 2 Этапы проведения работ
    • 2.1 Армирование ступеньки
    • 2.2 Армирование углов
    • 2.3 Способы соединения
  • 3 Расчет арматуры для ленточного фундамента
    • 3.1 Диаметр
    • 3.2 Вязка
    • 3.3 Укладка
  • 4 Схема
  • 5 Марка
  • 6 Стоимость
  • 7 Отзывы

Чтобы правильно выбрать арматуру, надо сначала определить, какой вид подойдёт для фундамента. Стальные стержни могут быть с гладкой поверхностью (обозначаются как А1) или с рифлёной (А2, А3, А4 и т. д.).

Арматура А1 (монтажная) имеет меньшее сцепление с бетоном, поэтому она используется в той части основания, где будут незначительные нагрузки.

Рабочая, арматура А3, имеет три вида выступов:

  • серповидный, увеличивает стойкость арматуры к разрывным нагрузкам, используется для тонких стен;
  • кольцевой, обычно отечественного производства, повышает сцепление с бетоном, предназначена для мощных бетонных конструкций;
  • смешанный, совмещает достоинства обоих типов.

стальных прутов, сварной сетки, которую изготовили на производстве или в моткахПрежде чем выбрать арматуру, определитесь со способом соединения прутов. Для сварки нужна арматура с маркировкой «С».стеклопластиковое волокновес намного меньше, чем у стали, не боится коррозий, устойчиво к влаге

Но всё-таки металлическая арматура имеет большую жёсткость и считается наиболее надёжным материалом для усиления фундамента.

Армирование и обвязка углов

Создание жесткой монолитной конструкции предполагает грамотное выполнение армирования углов и примыканий основания, которые испытывают концентрированные нагрузки. Для этого используется арматура класса АIII. При армировании углов необходимо придерживаться основных правил:

  1. стержень гнется в специальный угол так, чтобы один конец заглублялся в одну стену фундамента, другой конец — в другую стену;
  2. минимальная длина перепуска прутков на другую стену — 40 диаметров арматуры;
  3. не допускается использование простых связанных перекрестий без дополнительных поперечных и вертикальных стрежней;
  4. если длина стержня не позволяет сделать загиб на другую стену, то для соединения прутков на углу используются Г-образные профили;
  5. расстояние между хомутами каркаса должно быть в два раза меньше, чем в ленточной конструкции.

К чему приводит отсутствие Г-образных элементов по углам и соединениям

Зачастую при обустройстве углов каркаса домашние мастера попросту накладывают перпендикулярные пруты один на другой и связывают их. При этом даже если кто-то им указывает на ошибку, отмахиваются, − мол, уже строил так, 10 лет дом стоит − и никаких проблем. Здесь нужно понимать, что одноэтажный дом с массивным фундаментом, стоящий на прочном грунте − это одно, а двухэтажный, да ещё и на современном узком ленточном или свайно-ростверковом – совсем другое.

Углы арматурного каркаса, как и примыкающие к ним детали, должны армироваться с использованием Г-образных или П-образных элементов. В противном случае подвижки грунта, если они значительны, способны попросту разорвать соединение. Конечно, то, что это произойдёт, − не факт, но подобное вполне возможно. Стоит ли рисковать из-за минимальной экономии арматурных прутов?

Этапы проведения работ

Если сэкономить на арматуре – армирование фундамента будет некачественным, и зимой баня обязательно даст трещины. Причем сначала – сам «халтурный» фундамент, а затем разрыв пойдет выше. В итоге получится сквозная трещина через всю баню, снизу доверху – вот оттуда будет слышен свист, и вот что придется каждый год заделывать и замазывать. А ведь с годами она будет расширяться… Почему и в этом вопросе опытные строители строго придерживаются СНиП: армирование фундаментов, в нем прописано достаточно подробно.

Как правильно армировать ступеньки?

Далеко не каждый участок под строительство бани можно идеально выровнять и подготовить к строительству. В этом случае строятся так называемые ступеньки – и для них существует своя схема армирования фундамента с перепадом высоты.

Итак, усиление ступеньки желательно продлить от уступа на целый метр. Во-вторых, в уровне верхнего пояса и в верхней части подошвы необходимо уложить пруты арматуры длиной до двух метров – с центром над уступком. И, наконец, поставить поперечную арматуру в одном метре от уступа – с шагом 1,5 метра.

Как правильно армировать углы?

Почему это так важно? Все потому, что угол железобетонного фундамента – это всегда место концентрации напряжений. Именно здесь арматура больше всего испытывает разнонаправленные напряжения растяжения и сжатия, и, если схема армирования ленточного фундамента была неправильной, такие напряжения окажутся не под силу стальным стрежням арматуры.

Так, если в углу ленточного фундамента арматура будет разрывной или окажется соединена неправильно, то есть без передачи усилий от стержня к стержню, то ленточный монолитный фундамент уже не будет представлять собой одну жесткую раму, станет набором отдельных балок. Итог – в углах фундамента будут и трещины, и отколы, и расслоение бетона.

Связыванием или сваркой?

Самые серьезные последствия во время возведения нулевого уровня бывают как раз из-за того, что армирование ленточного фундамента было произведено с грубыми ошибками. И среди строителей даже появилось убеждение, что вязка арматуры нужна для фиксации скелета заливаемого фундамента – на его итоговую прочность она влияет мало, и некоторые строители советуют арматуру именно вязать, а не сваривать – все дело в том, что из-за пучения почвы на сам фундамент воздействуют разные силы, и арматура способна незаметно для глаза, но двигаться.

И, якобы, если она вся сварена наглухо – остается только надеяться на спокойствие почв – иначе не избежать трещин. А вот более ученые мужи считают, что если армировать только перекрестием концов арматуры и связывать их вязальной проволокой, то будут «радовать» и отколы слоев фундамента по ширине, и трещины углов.

Причем некоторые советские изобретатели также считают, что армирование монолитного фундамента можно производить одним «свободным перекрещиванием». Сегодня же опытные строители убеждены: делать все нужно только по правильным схемам. Итак, армирование углов – это анкеровка, т.е. закрепление арматуры при помощи отогнутых элементов, и связь зон разных напряжений в углу фундамента – т.е. связать наружного и внутреннего слоев бетонной ленты. Так связываются только верхние стержни арматуры и сама она выставляется только у внешних прутов, тогда как внутренние стержни в углу уже действительно свободно пересекаются. А вот в зоне угловой анкеровки поперечная арматура ставится ровно в два раза чаще, чем это рекомендовано для ленточного фундамента. Это можно вычислить по такой формуле – половина и три четверти высоты сечения фундамента, но в итоге не должно получиться более 25 см.

Вот почему стыки арматуры связывать проволокой можно – но только с целью закрепить их перед сваркой. А как только каркас готов, нужно самым тщательным образом все эти стыки проварить – но ни в коем случае не заварить вот так. Так делается и армирование столбчатого фундамента, и ленточного, и армирование плитного фундамента.

Вот и все – можно строить опалубку и заливать фундамент. Причем, если ленточный фундамент – цельный, то заливать его необходимо в один день.

Сооружение арматурного каркаса

На самом первом этапе возведения каркаса нужно по всему периметру расположить арматурные стержни, монтируя их в землю. Благодаря этим стрежням становится возможным начало создания верхнего и нижнего пояса арматурного каркаса. Это предаст требуемую прочность и жесткость. Монтировку арматуры надо производить параллельно с деревянным каркасом. Для удобства создания проволочного соединения используют вязальную проволоку и специальный крюк. Рассчитать прочность конструкции необходимо так, чтобы при заливке бетона каркас не претерпел деформацию, что сделало бы всю работу пустой и бессмысленной.

Если в проекте не указан определенный способ проведения работы, то делают все стандартно – 30 см вертикальные шаги и 2 метра горизонтальные, в обоих случаях попарно. Если армирование происходит горизонтально, важно укладывать некоторые пруты вертикально, на стыковании перемычек. Если проект оформлен правильно, то расположение каждого арматурного стержня в нем будет указано, также будут определены и параметры арматур, такие как длина, ширина и объем. В случае же отсутствия подобной информации каркас из арматуры для ленточного фундамента делается из двух вертикальных арматурных рядов. Крепление выполняется горизонтальными полосами, количество которых зависит от глубины. Для создания бетона с хорошими показателями следует выбирать цемент высокого качества. Например, М200.

Способы армирования бетонных фундаментов

Разные схемы армирования фундамента

Существует несколько способов армирования:

  1. Прутами из металлической арматуры. Наиболее распространённый способ проведения армирования. Со временем металл окисляется, и прочностные характеристики могут ухудшаться. Необходимо серьёзно отнестись к качеству самой бетонной смеси, для исключения попадания внутрь монолитного фундамента излишней влаги;
  2. Прутами арматуры на основе прочного стеклопластика. Появилась на рынке не так давно. Нет недостатков предыдущего способа по отношению к агрессивной среде, но она менее прочная и при её выборе потребуется точный расчет;
  3. Подручным материалом. Такой способ традиционно ещё применяется в частном строительстве. В качестве арматуры используется любой металлический хлам, имеющийся в наличие. Во многих случаях этого бывает достаточно для усиления. Не рекомендуется применять такой метод армирования при возведении капитальных долговременных строений. При таком способе произвести расчет не представляется возможным;
  4. Крупными каменными блоками. Несмотря на архаичность, это тоже один из методов армирования. Косвенно применяется до настоящего времени. Бутовый наполнитель частично армирует. В зависимости от размеров и материала бута. В любом случае при значительном наполнении бутом общая прочность монолитного фундамента снижается.
  5. Комбинированный способ. Различные комбинации из представленных выше способов.

Правила проведения армирование ленточного фундамента

Как согласно строительных норм правильно армировать и усиливать ленточный в строении фундамент? Так правила согласно нормам безопасного строительства фундамента состоят в следующем:

  • если применима рабочая арматура – применимы стержни класса как минимум А400;
  • не рекомендовано применять сварку – она будет просто ослабевать сечение и соответственно снижать схватку с бетоном;
  • металлический каркас на углах в обязательном порядке связывается – сваривание в данном месте также недопустимо;
  • даже при выборе хомута – запрещено выбирать модели с гладкой поверхности арматуры;
  • обязательно соблюдают защитный в бетонной конструкции слой – он составляет 4 см., и именно он защищает арматуру от коррозии и разрушения;
  • при установке стержня в продольном направлении – их соединяют обязательно с нахлестом, равный минимум 20 диаметрам выбранного прута, и не мене 25 см.;
  • если металл часто располагается в конструкции – важно вести контроль крупности заполнителя в самом бетонном составе, который не должен застревать меж прутьями;

Важно! При правильном составлении и подготовке арматурного каркаса – успех обеспечен уже наполовину. Такой каркас помогает спасти основу дома от проседания под весом внешних конструкций.

Как проводится вязка арматуры – применяется в обязательном порядке именно метод связывания, поскольку именно такой каркас приобретает большую прочность, в особенности в сравнении со сваренным. Обусловлено это высокой вероятностью ненужного прожига самого металла, хотя такое правило не распространено на заводские конструкции.

Рисунок 3. Вязка арматура

Укладка арматуры

При этом углы каркаса также вяжут – никакого сваривания при помощи вязальной, специально предусмотрено проволоки. Перед проведением всех строительных работ в процессе укладки и усилении ленточного типа фундамента – важно подготовить инструменты. На практике применяются две методы укладки:

  • используют в процессе работ специальные крюки;
  • либо же может применять более современный и портативный инструмент – вязальную машину, работающую по принципу пистолета.

Так в первом варианте крючок более подойдет для возведения небольшого по объему фундамента, но сама укладка арматуры при таком способе вязания занимает немало времени. Для соединения оптимально применять отожженного типа проволоку в диаметре от 0.8 и до 1.4 мм. Применение для связывания иных материалов попросту недопустимо, так как большинство из них не способны выдержать веса строении.

Технологические особенности армирования

Вся армирующая система ленточного фундамента представляет собой каркас из продольных, поперечных и вертикальных стержней, который непрерывным поясом охватывает весь периметр сооружения. Для обеспечения единой конструкции все стержни жестко соединяются между собой при пересечении.

В продольном направлении обеспечивается непрерывность армировка за счет соединения элементов. Как правильно армировать, читайте дальше.

Продольная укладка

Арматура, уложенная в горизонтальной плоскости, воспринимает растягивающие нагрузки. Продольные стержни укладываются рядами. Количество их определяется высотой фундамента – 1 слой при высоте до 20 см, 2 слоя – при большей высоте.

Для высокого основания может быть предусмотрено несколько рядов, при этом расстояние между ними не должно быть более 40 см. Диаметр стержней выбирается исходя из ширины бетонной ленты и длины стены.

Так при длине стены до 3 м суммарное сечение всех стержней в ряду должно составлять более 0,1% ширины ленты, причем диаметр одного стержня выбирается не менее 10 мм. Если длина стены превышает 3 м, то общее сечение подчиняется аналогичному требованию, но диаметр одного стержня должен превышать 12 мм.

Не следует применять арматуру диаметром более 35 мм. В разных рядах могут использоваться элементы различного размера, но наиболее толстые стержни укладываются в нижнем ряду.

Поперечная укладка

Между продольно уложенной арматурой укладываются перпендикулярно поперечные прутья. Они позволяют перераспределять нагрузку на все элементы одного ряда и работать его, как единое целое.

Расчет размеров этих связок не производится, т.к. они считаются вспомогательными деталями. Диаметр их обычно выбирается в пределах 6-10 мм. Шаг установки должен быть не более 20 диаметров продольной арматуры.

Вертикальная укладка

Арматура в вертикальном положении или хомуты воспринимают на себя сжимающие нагрузки, а также связывают ряды продольного армирования в единый каркас. Диаметр стержней выбирается с учетом высоты фундамента.

При высоте ленты до 75 см можно использовать арматуру диаметром 6 мм и более, а при большей высоте – не менее 8 мм, при этом диаметр стержней должен составлять не менее ¼ диаметра продольной арматуры. Как правило, для поперечного и вертикального армирования выбираются элементы одинакового размера.

Формирование углов и примыканий

Армирующие стержни должны составлять единую систему по всему периметру, а потому они связываются между собой дополнительными хомутами. Наиболее сложными участками считаются углы фундамента и места примыкания оснований внутренних стен.

Угловое соединение можно обеспечить несколькими способами:

  1. Соединение внахлест («лапкой»). Концы стержней одного направления изгибаются на 90 градусов. Эти отогнутые «лапки» привязываются к прямым стержням другого направления. Наружные арматуры соединяются между собой, а внутренние – крепятся к внешним. Длина «лапок» составляет 45-55 диаметров стержней.
  2. Использование Г-образных хомутов. Внешние стержни соединяются путем наложения такого элемента, а внутренние – привязываются к внешним арматурам. Для надежности концы основных стержней также изгибаются под прямым углом. Длина «лапки» хомута составляет не менее 50 диаметров основной арматуры.
  3. Применение П-образных хомутов. Концы основных стержней соединяются двумя хомутами, причем они располагаются перпендикулярно. В месте пересечения хомутов устанавливаются дополнительные вертикальные и поперечные связки.
  4. Тупой угол. Концы наружных стержней изгибаются под нужным углом и связываются внахлест. Внутренние прутья присоединяются к внешней арматуре. Длина нахлеста – не менее 45 диаметров стержней.

В месте примыкания внутренних стен к основной ленте фундамента осуществляется соединение продольных арматур аналогично угловой увязке. При соединении внахлест изгибаются под прямым углом концы примыкающей арматуры. «Лапки» привязываются к наружному стержню основной армировки. Кроме того могут использоваться Г-образные и П-образные хомуты.

Сколько нужно прутка

Разработав схему армирования ленточного фундамента, вы знаете, сколько продольных элементов вам необходимо. Они укладываются по всему периметру и под стенами. Длинна ленты будет длиной одного прутка для армирования. Умножив ее на количество ниток, получите необходимую длину рабочей арматуры. Затем к полученной цифре добавляете 20%  — запас на стыки и «перехлесты». Вот столько в метрах вам и нужно будет рабочей арматуры.

Считаете по схеме сколько продольных ниток, потом высчитываете сколько необходимо конструктивного прутка

Теперь нужно посчитать количество конструктивной арматуры. Считаете, сколько поперечных перемычек должно быть: длину ленты делите на шаг установки (300 мм или 0,3 м, если следовать рекомендациям СНиПа). Затем подсчитываете, сколько уходит на изготовление одной перемычки (ширину арматурного каркаса складываете с высотой и удваиваете). Полученную цифру умножаете на количество перемычек. К результату добавляете тоже 20% (на соединения). Это будет количество конструктивной арматуры для армирования ленточного фундамента.

По похожему принципу считаете количество, которое необходимо для армирования подошвы. Сложив все вместе, вы узнаете, сколько арматуры нужно на фундамент.

Как рассчитать армирование

Расчет армирования ленточного фундамента производят, учитывая возможные напряжения при строительстве и эксплуатации сооружения. Например, продольное растяжение, обусловленное данной конструкцией: вертикальные и поперечные пруты в длинных и относительно узких каналах почти не влияют на распределение нагрузок, но выступают в качестве скрепляющих элементов.

Чтобы подсчитать сколько класть арматуры в фундамент, нужно определиться с его размерами. Для узкого основания в 40 см достаточно будет четырех продольных прутов — по два сверху и снизу. Если планируется выполнение фундамента размером 6 х 6 м, то для одной стороны каркаса потребуется 4 Х 6 = 24 м. Тогда общее количество продольной арматуры составит 24 х 4 = 96 м. Его удобно считать при самостоятельном составлении чертежа раскладки арматуры.

Если не удается купить стержни нужной длины, то их можно соединять внахлест (более метра) между собой.

Стоимость фундамента складывается из цены применяемых материалов и объемов работ. При расчетах лучше использовать проект с указанными глубиной залегания и шириной основания. Также на стоимость влияет удаленность объекта строительства и сопутствующие работы, такие как:

  • гидроизоляция;
  • утепление;
  • отмостка;
  • дренаж;
  • ливневка.

Все это составляет конечную цену. Хотя для небольшого строения фундамент можно выполнить даже своими руками. Самым сложным и длительным в сооружении ленты фундамента является его армирование, но справиться можно и в одиночку. Конечно, при наличии двоих или троих помощников работать легче и безопаснее.

Видео об армировании монолитных ленточных фундаментов

Фундамент из стеклопластиковой арматуры: правила армирования

Стеклопластиковая арматура – современная альтернатива арматурной стали. Представляет собой стержни, изготовленные из термореактивных смол и стекловолокон. Стержни могут иметь поверхность периодического профиля или условно гладкую. В первом случае на основу наматываются стеклянные волокна, пропитанные смолами. Во втором – на поверхность наносится песчаная посыпка. Оба типа стеклопластиковых стержней отличаются хорошим сцеплением с бетонной смесью.

Армирование подошвы ленточного фундамента

На грунтах с не очень высокой несущей способностью, на пучнистых почвах или под тяжелые дома, часто ленточные фундаменты делают с подошвой. Она передает нагрузку на большую площадь, что придает большую стабильность фундаменту и уменьшает величину просадок.

Чтобы подошва от давления не развалилась, ее также необходимо армировать. На рисунке представлены два варианта: один и два пояса продольной арматуры. Если грунты сложные, с сильной склонностью к зимнему печению, то можно укладывать два пояса. При нормальных и среднепучнистых грунтах — достаточно одного.

Уложенные в длину пруты арматуры являются рабочими. Их, как и для ленты, берут второго или третьего класса. Располагаются друг от друга они на расстоянии 200-300 мм. Соединяются при помощи коротких отрезков прутка.

Два способа армирования подошвы ленточного фундамента: слева для оснований с нормальной несущей способностью, справа — для не очень надежных грунтов

Если подошва неширокая (жесткая схема), то поперечные отрезки — конструктивные, в распределении нагрузки не участвуют. Тогда их делают диаметром 6-8 мм, загибают на концах так, чтобы они охватывали крайние прутки. Привязывают ко всем при помощи вязальной проволоки.

Ели подошва широкая (гибкая схема), поперечная арматура в подошве тоже является рабочей. Она сопротивляется попыткам грунта «схлопнуть» ее. Потому в этом варианте подошвы используют ребристую арматуру того же диаметра и класса, что и продольную.

Как правильно выбрать диаметр арматуры

Существует достаточно точный способ определения сечения арматуры. Вычисляется площадь сечения ленты (произведение ширины на высоту), результат умножается на 0,001. Полученное значение является суммарной площадью сечения арматурного каркаса.

Остается по таблицам подобрать нужный диаметр прутков с учетом конструкции решеток.

Согласно требованиям СНиП, расстояние между крайними горизонтальными прутками не должно быть более 40 см. Поэтому для ленты шириной в 30, 40 или 50 см горизонтальные решетки будут состоять из двух стержней.

Обычно строители не производят сложных расчетов, используя для данных размеров соответственно 10, 12 и 14-мм стержни. Ширина ленты 30-50 см является наиболее распространенным вариантом, поэтому поведение материала изучено достаточно хорошо, и такой выбор имеет немалый запас прочности.

Выбор поперечной (вспомогательной) арматуры производится по принципу достаточности — диаметр тонких стержней не должен быть менее половины диаметра рабочей арматуры. Обычно руководствуются этим требованием.

Инструкция по армированию монолита

Перекрывать пролеты между этажами необходимо при помощи монолитных платформ. Чтобы они были максимально прочными, их необходимо армировать. Технология проведения данных работ включает в себя определенную последовательность действий:

  1. Монтаж опалубки. Первым делом изготавливает короб, для которого могут использоваться доски, а также листы фанеры. Чтобы опалубка держалась, под нее устанавливаются треноги. Нужно понимать, что бетон – это очень тяжелый материал, а потому важно обеспечить хорошую опору для него. Для того, чтобы бетон не прилипал к фанере или доскам, а короб потом можно было убрать, следует выбирать материалы с ламинированной или обработанной маслом поверхностью.
  2. Установка каркаса. Для этого прутья из стали укладываются в короб и связываются между собой. Ячейки должны иметь длину и ширину примерно по 15-20 сантиметров. Если вдруг длины какого-либо из прутьев будет недостаточно, нужно наложить еще один, но с большим нахлестом.
  3. Заливка короба. На данном этапе рекомендуется использовать бетонный раствор заводского производства. Во-первых, в нем четко соблюдаются все необходимые стандарты качества, а также пропорции нужных компонентов. Часто в состав материала также включаются дополнительные компоненты, улучшающие прочностные свойства бетона. При доставлении бетонного раствора на строительную площадку производится заливка опалубки при помощи бетононасоса. Специальный строительный вибратор уплотняет раствор по всей площади платформы и равномерно распределяет его, устраняя из раствора пузырьки. По окончании проведения данных работ поверхность еще раз выравнивается вручную, а затем посыпается сверху сухим цементом.

Стоит учитывать, при осуществлении заливки платформы температура воздуха должна составлять не менее 5-ти градусов. Низкая температура может негативно отразиться на качестве платформы. В пример можно привести появление трещин, вызванное замерзанием влаги в бетонном растворе. Любые трещины и повреждения бетонных конструкций влекут за собой сокращение сроков службы плиты, а также ухудшение прочностных характеристик. При наличии благоприятных условий бетонная платформа полностью высыхает в течение одного месяца.

Таким образом, без дополнительного армирования в строительстве перекрытий просто не обойтись. Сетка из арматуры придает конструкции прочность и надежность, установка такой сетки не займет много времени.

Строительство частного и многоэтажного типа не обходится без плит перекрытия, которые могут быть условно разделены на следующие виды: балочные, сборные железобетонные и монолитные.

Чаще всего для армирования используют стандартные сварные сетки из прутьев диаметром более 6 мм (в основном, от 8 до 14 мм). Расстояние между такими прутьями не должно быть более 60 см.

Чаще всего практикуется применение процедуры собственноручного армирования плит перекрытий. Ввиду закрепленного тандема «бетон и арматура» они обеспечивают достойный уровень прочности. Более того, таким образом, создают множество различных лестничных пролетов, арочных и армированных перемычек.

Армирующий материал

Выбор материала является достаточно важным этапом. Для армирования ленточного фундамента своими руками применяют стальные стержни разного сечения или стеклопластиковую арматуру. Но чаще всего используют металл.

Основная горизонтальная арматура имеет сечение прутов от 12 до 24 мм. Стержни, которые будут располагаться вертикально, являющиеся вспомогательными. Поэтому обычно сечение вертикальных прутов от 4 до 12 мм. Такая большая разница обусловлена разбросом в нагрузках на основание и находится в прямой зависимости от вида почвы и веса конструкции.

Вспомогательные вертикальные пруты устанавливают, если высота фундамента превышает 15 см. При этом используют арматуру сечением 6-8 мм класса А1. Каркас собирают из стержней и хомутов, очищая их от ржавчины. Если необходимо, пруты выпрямляют и режут. В качестве соединения прутов используют вязальную проволоку и крючок. Сварочные работы можно выполнять, если на прутах присутствует маркировка «С».

На выбор диаметра оказывает влияние число горизонтальных уровней и схема армирования ленточного фундамента.

Армирование ленточного фундамента

Армирование ленточного фундамента значительно увеличивает его характеристики по прочности, позволяет создавать устойчивые конструкции при одновременном уменьшении веса.

Армирование ленточного фундамента

Расчеты арматуры и схемы армирования выполняются согласно положениям действующего СНиПа 52-01-2003. Документ имеет подробные требования к расчетам, дает сноски на нормативные документы и своды правил.

СП Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003. Файл для скачивания

Ленточный фундамент должен отвечать выдвигаемым требованиям по долговечности, надежности, устойчивости к различным климатическим факторам и механическим нагрузкам.

Технология армирования ленточного фундамента от А до Я

Любое бетонное изделие имеет высокую прочность на сжатие, однако в случае применения бетонных оснований для зданий и любых построек, где преобладают нагрузки на разрыв, бетон является достаточно хрупким. Чтобы сделать качественное основание необходимо выполнить армирование ленточного фундамента, которое даст возможность значительно повысить прочность бетона.

Особенности армирования фундамента

Первым делом, прежде чем приступать к армированию, нужно правильно произвести расчет материалов в зависимости от нагрузки на фундамент и подготовить их для дальнейшего использования. Этот этап является достаточно важным, и лучше всего, если все необходимые расчеты сделают профессионалы своего дела.

Очень важно чтобы во время выполнения армирования, была подобрана правильная по диаметру арматура, которая будет связана определенным шагом. К примеру, для хозяйственных построек или гаража, для фундамента можно использовать арматуру диаметром 12 мм, однако в случае с жилым домом диаметр арматуры должен быть совсем другим. Поэтому крайне важно правильно подбирать арматуру согласно нагрузок от каждого конкретного здания.

В большинстве случаев для армирования фундамента используется горячекатаный стальной прут марки А-ІІІ. Такой прут имеет диаметр от 10 до 22 мм, а также периодический профиль и используется как основной прут. Для вспомогательных прутьев чаще всего используют арматуру диаметром 4-10 мм.

Также необходимо учитывать и то, что вертикальные прутья влияют только на прочность основания на срез и поэтому являются скорее вспомогательными, нежели основными. Кроме того, они являются своеобразными стойками, чтобы нижний и верхний ярусы были на определенном расстоянии друг от друга, которое, как правило, составляет 50-80 см.

Следует также помнить несколько правил:

  • Арматурный каркас необходимо опускать в бетонную смесь не менее чем на 5-6 см от верхнего края фундамента и поднимать от низа фундамента на 7 см и выше.
  • Горизонтальные пруты арматурного каркаса в нижнем и верхнем ярусе должны быть расположены между собой на расстоянии не более 30 см, поэтому если ширина фундамента составляет, к примеру, 70 см, то нужно укладывать 3 горизонтальных прута на расстоянии друг от друга в 30 см.

Расчет необходимых материалов

Приведем пример расчета материалов для фундамента шириной в 40 см. Для него вполне достаточно будет уложить 4 продольных прута арматуры, то есть два в нижнем ярусе и 2 в верхнем. Если фундамент будет иметь размеры 6 на 6 м, в таком случае длина одного продольного прута будет составлять 6х4=24 м. Чтобы уложить 4 продольных ряда, понадобиться 24*4=96 м арматуры.

Для вспомогательной арматуры фундамента шириной 30 см и высотой 190 см, которая будет использоваться в качестве поперечной и вертикальной, понадобиться следующее количество гладкой арматуры: (30-5-5)*2+(190-5-5)=400 см или 4 м. Рассчитывать ее необходимо учитывая отступы с обеих сторон по 5 см.

Шаг установки хомутов составляет 0,5 м, в таком случае число соединений будет: 24/0,5+1=49 шт. Из этого следует, что общее количество вспомогательной арматуры при использовании 4-х продольных прутов (2 снизу и 2 сверху) будет составлять 4*49=196 м.

Также немаловажно просчитать необходимое количество вязальной проволоки: исходя из того, что каждое пересечение арматуры имеет 4 пересечения, тогда для этого понадобиться 8 кусков вязальной проволоки. Учитывая, что длина каждого отрезка составляет в среднем 30 см, тогда длина необходимой проволоки составляет 0,3*8*49=117,6 м.

Таким образом, если подвести итоги, то для ленточного основания размерами 6 на 6 м, шириной 40 см и глубиной около 190 см, необходимо:

  • 96 м основной арматуры диаметром 10-22 мм.
  • 196 м вспомогательной арматуры 4-10 мм.
  • 117,6 м вязальной проволоки для соединений.

Технология армирования ленточного фундамента

Как известно всем, любое строительство начинается с расчистки территории под строение и фундамент. После чего уже приступают к рытью траншеи по заранее подготовленной схеме будущего фундамента. Траншею обычно роют либо вручную, либо используя специальную технику.

После того как траншея вырыта, устанавливают опалубку. Она выполняется для придания стенам ровной поверхности, после чего можно приступать к установке металлического каркаса для придания прочности будущему фундаменту. Затем выполняется заливка бетона, желательно в один заход, после чего делают гидроизоляцию фундамента, используя битумную мастику или рубероид.

Когда весь фундамент готов, необходимо засыпать пазухи песком, а в случае использования основания в климатических зонах, фундамент лучше утеплить при помощи пенополистерола.

Чертежи и схемы армирования ленточного фундамента

При выполнении арматурного каркаса для фундамента, необходимо предварительно определиться со схемой каркаса. В большинстве случаев используется армирование в виде простых геометрических форм: прямоугольника или квадрата.

На схемах показаны самые распространенные чертежи армирования:

Этапы проведения правильного армирования ленточного фундамента

Изготовление любого фундамента требует соблюдения определенной последовательности:

  1. Первое что нужно сделать, после того как траншея для фундамента была вырыта, это сделать песчано-гравийную подушку, после чего уложить куски кирпича, создав своеобразную опору для арматурного каркаса. Это позволит углубить арматуру вовнутрь бетона, чтобы не происходила ее деформация, при этом прочность фундамента будет значительно выше. Помимо этого арматура также должна отступать и по 5 см от каждого края стенок фундамента.
  2. Важно знать, что для повышения прочности лучше для продольных прутьев использовать целые куски арматуры.
  3. Далее нужно вбить в землю вертикальные пруты по всему периметру ленты так, чтобы впоследствии образовались ячейки размером около 20х30 см.
  4. Затем после установки всех вертикальных прутов по периметру фундамента, нужно прикрутить нижний ярус арматуры из продольных прутов, после чего приступить к верхнему ярусу. Лучше всего для этого использовать вязальную проволоку и специальный вязальный крючок или пистолет. Их можно приобрести в специальных строительных магазинах или же сделать самостоятельно.
  5. Особое внимание необходимо уделить углам ленточного фундамента, ведь на них действует нагрузка значительно больше. Чаще всего укрепление углов ленты происходит при помощи Г-образных элементов арматуры. Их необходимо заранее выгнуть под углом 90 градусов, после чего соединить их согласно схеме:
  6. Закончив формирование ленточного фундамента в результате должен получиться единый металлический каркас, который имеет хорошую устойчивость.
  7. В завершение фундамент заливается бетоном одномоментно и оставляется накрытым на 2-3 недели.

Советы и рекомендации по армированию от экспертов

Для того чтобы фундамент обрел необходимую прочность эксперты рекомендуют придерживаться некоторых правил:

  • Вертикальные и горизонтальные пруты должны располагаться под углом 90 градусов друг к другу.
  • Не рекомендуется использовать для соединения арматуры электросварку, поскольку она негативно влияет на свойства арматуры, которая в точках швов становиться значительно хрупче, чем в других местах, что, безусловно, повлияет на прочность всей конструкции.
  • Вместо кирпичей, для создания опоры под каркас из арматуры можно воспользоваться специальными промышленными пластиковыми держателями.
  • Углы лучше всего укреплять при помощи загнутых прутов, которые укладываются внахлест и находятся на расстоянии 60-70 см от угла.

В завершение необходимо отметить, что правильное армирование ленточного фундамента можно сделать своими руками без привлечения специалистов, однако очень важно соблюдать технологию создания арматурного каркаса, предварительно сделав необходимые чертежи и подобрав схемы армирования ленточного фундамента.

 

Монолитный ленточный фундамент, изготовление арматурного каркаса

В этой статье, уважаемые читатели блога «Как построить дом» , мы продолжим тему «Ленточный фундамент для дома из газосиликатных блоков. Армирование ленточного фундамента Изготовление своими руками » . Впрочем, монолитный железобетонный ленточный фундамент может быть изготовлен и для дома из других материалов.

Мы расскажем, как правильно разметить участок под траншею, как правильно выполнить армирование ленточного фундамента (в т.ч. — как правильно вязать арматуру для фундамента): своими руками изготовить арматурный каркас (арматуру) для монолитного ленточного фундамента,  правильно его укрепить в траншее, чтобы при заливке каркас не сместился в сторону.

Для тех, кто предпочитает тексту аудиозапись, мы предлагаем прослушать в формате mp3  аудио, посвященное этой теме. И все же, после прослушивания аудио, мы предлагаем вам дочитать статью до конца — вы найдете еще много полезного и интересного из того, что не вошло в запись.

Ленточный монолитный фундамент-подготовка траншеи, изготовление арматурного каркаса, закрепление его в траншее и заливка фундамента.mp3


 Разметка для траншеи под  ленточный фундамент

Все начинается с разметки. Перед началом работ по изготовлению ленточного фундамента необходимо на участке сделать разметку для траншеи. Разметку удобно делать с помощью колышков, забитых в землю, и натянутого шнура. В качестве колышков удобнее всего использовать обрезки арматуры (8-10мм), забитыми в землю на глубину около 15 см.  Разметку делаем строго в соответствии с планом будущего дома.

Затем при помощи длинной рулетки (можно использовать нетянущуюся нить) очень тщательно вымеряем длины сторон и, что очень важно!, диагонали. Длины противоположных сторон и диагоналей должны соответственно совпадать. Если длины сторон или диагоналей не совпадают, значит не все углы равны 90 град. В этом случае необходимо повторить разметку заново.

Если же размеры соответственно совпадают, то это означает, что разметка траншеи выполнена верно, каждый угол по 90 град и можно приступать к рытью траншеи. Перед рытьем траншеи необходимо еще с помощью колышков и нити разметить ширину будущей траншеи.

Траншея под монолитный ленточный фундамент без опалубки

Напомним, что в нашем доме не предусмотрено подвальное помещение (цокольный этаж). Подвал значительно увеличивает стоимость строительства, поэтому в целях экономии мы отказались от подвала. Кроме того, бетон для фундамента мы будем заливать в траншею без опалубки.

Исходя из этого, для нашего дома ширина траншеи под фундамент составила — 50 см., а глубина — 110см. Конечно, траншею под фундамент можно рыть и с помощью экскаватора — это будет быстрее. Но рытье траншеи вручную имеет ряд преимуществ:

  • меньше объем вынутой земли;
  • стены траншеи более ровные;
  • объем бетона при заливке фундамента — оптимальный, нет перерасхода бетона, следовательно, нет перерасхода денег.

Для рытья траншеи мы привлекали подсобных рабочих: двое ребят вырыли траншею за 5 дней.

На высоте 30 см от дна, стену траншеи необходимо сформировать в виде расширяющего к дну траншеи конуса. При заливке бетоном образуется так называемая «пятка» фундамента. Иначе говоря, фундамент в нижней части будет иметь расширение, т. е. увеличится площадь подошвы (опоры) фундамента.

Дно траншеи необходимо заполнить слоем песка 10 см. Песок можно утрамбовать, но лучше всего обильно пролить водой. Проливка песка водой дает максимальную усадку песка.

Армирование ленточного фундамента  Изготовление арматурного каркаса для монолитного ленточного фундамента

Траншея готова, пора приступать к изготовления арматурного каркаса. Как же правильно армировать ленточный фундамент? Армированию подлежит любой фундамент, независимо от типа грунта. О типах арматуры, применямой в загородном строительстве, и о способах соединения арматурных стержней мы подробно рассказали в статье  »Арматура для строительства, вязка и сварка арматуры и иные соединения стержней» . Для каркаса мы использовали 12мм и 8 мм арматуру. Для начала берем 8 мм арматуру и делаем из нее «кольца».

Изготовление прямоугольных колец для пространственного арматурного каркаса

Техника изготовления «колец» для арматурного каркаса такая же, как и для изготовления арматурного каркаса и «колец» для армопояса (армированного пояса) по окончании кладки стен первого этажа.

Как это делается? В этой статье мы кратко повторим описание технологии изготовления прямоугольных колец для пространственного арматурного каркаса. Более подробно и с большим количеством качественных фото вы можете ознакомиться в статье «Арматурные каркасы:виды каркасов, изготовление арматурных каркасов. Монтажные кольца» .

Сначала берем швеллер, крепим его к чему-нибудь устойчивому. Затем болгаркой выпиливаем на двух ребрах швеллера канавки. Арматура вставляется в канавки, на арматуру надевается труба несколько большего диаметра (получается что-то вроде «рычага»). С помощью этих несложных устройств арматуру очень легко гнуть в прямоугольное «кольцо». «Кольца» получаются одинаковыми по размеру — это очень важно!

Глубина вырытой траншеи для нашего монолитного ленточного фундамента, а точнее — высота будущего фундамента составляет 1м (первоначальная глубина траншеи — 1,1м, затем на дно насыпали песок толщиной 0,1 м (10 см), в результате получилась глубина — 1м), ширина — 50 см. Для фундамента с такими размерами размер «колец» для арматурного каркаса должен быть: 0,7 м по высоте и 0,3 м. по ширине.

Для «колец» мы предварительно заготовили арматурные стержни толщиной 8 мм и длиной по 2,30 м. Затем на стержне ставим метки: первая метка на расстоянии 30 см от начала стержня, затем — 70 см, затем — 30 и 70 см. До конца стержня у вас должно остаться еще 30 см. Затем арматуру вставляем в пропиленные канавки на швеллере и по меткам начинаем гнуть арматуру при помощи трубы — рычага. Получаем прямоугольное «кольцо».

Инструмент для вязки арматуры

Далее вязальной проволокой  мы связываем полученные «кольца». Как это делать? Вязать арматуру вязальной проволокой можно при помощи клещей для вязки или при помощи крючка для вязки арматуры. Можно использовать и шуруповерт на малой скорости. Мы использовали крючок. Вязальный крючок можно приобрести в торговых точках, а можно и изготовить из обрезка электрода (для удобства в качестве ручки можно использовать обрезок резинового шланга)  или сломанного мастерка с изогнутым и заточенным концом.

Для вязки арматуры используют специальную вязальную проволоку. Для арматуры 10-14 мм используется проволока 1,2 — 1.,4. Более тонкую проволоку необходимо будет складывать в несколько раз, более толстая проволока также не годится: она неудобна в работе, т.к. будет плохо гнуться. Проволока должна быть мягкой на изгиб — для этого годится проволока из отожженной низкоуглеродистой стали. Если она плохо гнется — ее нужно подержать в огне на костре не менее 30 минут, затем проволока должна остыть на воздухе.

Готовые «кольца» связываем проволокой для вязания (см. рис.1). Кольца готовы, приступаем к дальнейшему изготовлению арматурного каркаса.

Армирование ленточного фундамента  Продолжаем вязать арматурный каркас для монолитного железобетонного ленточного фундамента

Теперь нам нужно подготовить арматурные прутья для каркаса из 12мм арматуры. Длина арматурных прутьев должна быть равна длине стороны дома. Если длина приобретенных арматурных прутьев больше — необходимо отрезать лишнюю длину, если меньше — длину нужно увеличить, связав вязальной проволокой два или несколько прутов.  В этом случае «нахлест» прутьев при связывании должен быть не менее 1 метра. Можно немного и меньше, но так мы не рекомендуем.

Теперь пора приступать непосредственно к сборке арматурного каркаса. Длинные прутья из 12мм арматуры нужно продеть внутрь подготовленных «колец», привязав их вязальной проволокой к «кольцам». Каркас должен в готовом виде состоять из 4 арматур, привязанным по углам «кольца» и одного арматурного стержня, расположенного в верхней части арматурного «кольца». Пятую арматуру не обязательно продевать внутрь арматурного кольца, можно привязать сверху.

Продеваем 4 хлыста 12мм арматуры сквозь кольцо. Отступаем 1 м от конца 12мм хлыста и привязываем хлыст к одному из углов. И так все четыре  хлыста. Следующее кольцо должно находиться через 90 см от первого (см. рис.3). И так до конца хлыста — кольца крепятся через каждые 90 см.

У вас должно получиться 4 каркаса: 2 длинных каркаса, равных  длине дома и 2 более коротких каркаса, равных ширине дома. Если фундамент более сложной конструкции, то каркасы вяжутся в соответствии с планом дома.

Четыре полученных каркаса опускаем в траншею. Теперь нужно эти каркасы связать между собой. Постарайтесь хотя бы внутренние углы готовых каркасов связать между собой вязальной проволокой. Внешние углы каркасов крепятся с помощью дополнительной арматуры — уголков. Для этого нарезаем 2-метровые отрезки 12мм арматуры и гнем их под углом в 90 градусов со стороной 1 м. (тем же способом, что и при изготовлении «колец» для каркаса). С помощью этих уголков и вязальной проволоки скрепляем внешние углы арматурных каркасов: верхний и нижний. Таким образом скрепляем (вяжем) весь каркас.

Армирование ленточного фундамента Установка арматурного каркаса в траншею 

Каркас полностью готов и находится в траншее. Как же правильно должен размещаться каркас из арматуры в траншее, чтобы впоследствии готовый фундамент полностью соответствовал своему назначению? Для этого необходимо выполнить ряд требований:

  • каркас не должен лежать на дне траншеи. Для этого под арматурный каркас необходимо подложить кирпичи (камни). Каркас должен быть приподнят над дном траншеи минимум на 10 см, т.е. нижняя часть каркаса должна быть «утоплена» в готовом фундаменте минимум на 10 см. Для этого удобно использовать обломки кирпичей;
  • каркас необходимо уложить по уровню — обязательное условие!! Из-за неровностей грунта высота готового фундамента может разниться, но каркас в любом случае должен быть установлен по уровню;
  • каркас нужно закрепить в траншее относительно боковых стенок траншеи. В противном случае, когда будем лить бетон, каркас может сбиться, прижаться к стенкам траншеи, наклониться — качество фундамента при этом резко упадет. Чтобы это не произошло — каркас закрепляем при помощи штырей длиной около 30 см. Штыри забиваем через каждые 2 метра в стенки траншеи и привязываем к каркасу. И так по всему периметру траншеи.

Теперь арматурный каркас закреплен: нижняя часть каркаса находится над землей на расстоянии 10 см, боковые стенки каркаса находятся на расстоянии от стен траншеи 10 см каждая, от верхней части  каркаса до уровня земли — 20 см. Получается, что после заливки бетона арматура будет «утоплена» в фундаменте снизу — 10 см, с боковых сторон — 10  см, сверху — 20 см. Это мы и хотели получить, когда выполняли армирование ленточного фундамента: изготавливали арматурный каркас для нашего монолитного железобетонного фундамента.

ВАЖНО! Для более «тяжелых» домов, например в 2 полноценных этажа, фундамент необходимо сделать глубже. Например, при строительстве одного из предыдущих домов, мы траншею для фундамента выкапывали на глубину 1,30 м. Затем дно засыпали песком толщиной 0,1м.

Глубина готового фундамента составляла 1,2 м. Для такого фундамента мы изготавливали арматурный каркас следующей конфигурации: 2 нити арматуры снизу, 2 нити арматуры сверху каркаса и 2 нити арматуры между ними (по центру арматурных рамок). Рамки для каркаса тоже должны быть иного, чем мы рассказывали выше, размера.

Как выглядит такой каркас, как он установлен и закреплен в траншее, вы можете рассмотреть на приведенных ниже фото, кликнув по ним мышкой.

Таким образом, конфигурация арматурного каркаса может быть разной, но основные принципы его изготовления, установки и крепления в траншее  (без опалубки) сохраняются.

Заливка фундамента 

ВАЖНО! Прежде, чем заливать фундамент, проверьте — не забыли ли вы оставить в будущем фундаменте «место» для прокладки в дальнейшем канализации — выпуск канализации из дома? Для чего это нужно и как это сделать с минимальными затратами мы подробно рассказали в статье «Внешняя канализация для нашего дома — трубопровод, уклон трубы, двухкамерный септик» .

Теперь у вас все готово к заливке фундамента. Для гидроизоляции фундамента можно между стенами траншеи и заливаемым бетоном проложить рубероид. Но мы этого не делали. Решайте сами, нужно ли это вам.

Мы заказывали бетон марки М200. Можно самостоятельно готовить бетон — это несколько удешевит строительство, но когда важно время и качество бетона — лучше заказать. Предварительно необходимо рассчитать, сколько бетона понадобится для заливки фундамента.

Итак, считаем: сколько кубов бетона необходимо на фундамент:

  1. исходные данные: глубина траншеи — 1м, ширина траншеи — 0,5 м. Длину траншеи берем с плана дома или измеряем по факту — 69,6м.;
  2. перемножаем исходные данные и получаем необходимый объем бетона:       0,5 м Х 1 м Х 69,9 м = 34,8 куб.м;
  3. таким образом, для нашего дома нам необходимо 35 кубов бетона для заливки фундамента.

Как мы уже рассказывали, бетон мы сами не готовили, а заказали. Поэтому залить бетон за один раз для нас не составило труда. Если вы не можете залить фундамент за один раз, без перерыва, необходимо свежий бетон «отсекать» от ранее залитого. Отсечка обязательно !! должна быть вертикальной. Для этого траншею необходимо временно перекрыть ТОЛЬКО вертикально, например, досками или изготовить опалубку.

Затем, при дальнейшей заливке, временную отсечку нужно удалить, место стыка свежего бетона  и бетона, уложенного ранее (рабочий шов), обильно смочить водой, желательно под давлением (это позволит удалить цементную пленку на рабочем шве)  для лучшей сцепки бетона и продолжить заливку фундамента.

Как правильно залить фундамент для дома, соблюдая технологию (в соответствии с нормативными документами) вы можете прочитать  в статье, посвященной теме «Как правильно залить фундамент» .

Вот и все — ваш фундамент готов. Следующее, что вам нужно сделать — выложить цоколь. Но об этом уже в следующей статье.

Это точно Вас заинтересует:

Строительство опор стен — материалы и размеры

🕑 Время чтения: 1 минута

Стеновые опоры представляют собой подкладные или раздвижные и ленточные опоры, которые используются для поддержки структурных или неструктурных стен для передачи и распределения нагрузок на почву таким образом, чтобы не превышалась несущая способность почвы. Помимо предотвращения чрезмерной осадки и вращения, а также обеспечения достаточной защиты от скольжения и опрокидывания.

Стеновой фундамент проходит по направлению стены.Размер фундамента и толщина фундаментной стены уточняются в зависимости от типа грунта на участке. Ширина основания стены обычно в 2–3 раза больше ширины стены.

Основание стены может быть выполнено из камня, кирпича, простого бетона или железобетона. Экономичное основание стены может быть построено при условии, что прилагаемая нагрузка, которую необходимо передать, имеет небольшую величину, а нижележащий слой почвы состоит из плотного песка и гравия. Поэтому настенный фундамент лучше всего подходит для небольших зданий.

Строительство настенных опор

1. Фундамент в кирпичной стене

  • В случае кирпичных стен основание состоит из нескольких рядов кирпичей, причем самый нижний ряд обычно в два раза больше ширины стены, расположенной выше.
  • Увеличенная ширина основания фундамента стены достигается за счет отступов по 5 см с каждой стороны стены.
  • Глубина каждого ряда может составлять один кирпич или кратную толщине кирпича.
  • Основание опорной стены опирается на простой бетонный фундамент, выступающий на 10-15 см за пределы последнего кирпичного смещения, как показано на рис.1.
  • Ширина у основания не должна быть меньше ширины опорной стены плюс 30 см.
Рис.1: Фундамент в каменной кладке

2. Фундамент для каменной кладки

  • В случае стен из каменной кладки отступы могут составлять 15 см при высоте ряда 30 см. Поэтому размер отступов немного больше, чем у фундаментов кирпичной стены.
  • Глубина бетонирования должна быть не менее 15 см.
  • В целом пропорции тощей бетонной смеси составляют 1: 4: 8 (1 Цемент: 4 Мелкий заполнитель: 8 Крупный заполнитель) или 1: 5: 10 (1 Цемент: 5 Мелкий заполнитель: 10 Крупный заполнитель) смесь
  • Угловой разброс нагрузки от стены не должен превышать 1 вертикаль на 112 горизонталей в кирпичной кладке и 1 вертикаль на 1 горизонталь для цементного бетона.
Рис.2: Фундамент в каменную стену

3. Опоры железобетонных стен

Если нагрузка на стену велика или грунт имеет низкую несущую способность, можно использовать ленточный железобетонный фундамент.

Толщина полосы может быть уменьшена по направлению к краю для экономии.

Рис.3: Фундамент в железобетонной стене

(PDF) Поведение ленточного фундамента на армированном песке с пустотами при многократном нагружении

Номенклатура

Ссылки

Baus, R.L .; Wang, M.C., 1983. Несущая способность полосы

фута над пустотой. Журнал геотехнической инженерии, 109

(1), 1-14.

Badie, A .; Ван М. С., 1984. Устойчивость раздвинутых опор

над пустотами в глине. Журнал геотехнической инженерии, 110

(11), 1591-1605.

Ван, М. К., Се, К. В., 1987. Нагрузка от обрушения ленточного фундамента

над круговой пустотой. Журнал геотехнической инженерии, 113

(5), 511-515.

Ван М. С., Ю С. С., Се К. В., 1991. Влияние пустоты на поведение стопы

при эксцентрических и наклонных нагрузках.

Foundation Eng. Журнал, ASCE, 1226-1239.

Шин E.C., Дас Б.М., 2000. Экспериментальное исследование несущей способности

ленточного фундамента на песке, армированном георешеткой.

Geosynthetics International, 7 (1), 59-71.

Даш, С.К., Раджагопал, К., Кришнасвами, Н.Р., 2004.

Характеристики различных геосинтетических арматурных материалов

в песчаных фундаментах.Geosynthetics International, 11

(1), 35-42.

Юн Ю.В., Чхон С.Х., Канг Д.С., 2004. Несущая способность

и оседание песков, армированных шинами. Геотекстиль и

Геомембраны, 22 (5), 439-453.

Деб, К., Чандра, С., Басудхар, П.К., 2005. Поселение

— реакция многослойной геосинтетической системы

из гранулированного наполнителя — мягкий грунт. Geosynthetics International, 12

(6), 288-298.

Гош, А., Гош, А., Бера, А.К., 2005. Несущая способность

квадратных футов

квадратных футов по пруду, армированному джут-геотекстилем.

Геотекстиль и геомембраны, 23 (2), 144-173.

Патра, К.Р., Дас, Б.М., Аталар, К., 2005. Несущая способность

закладных ленточных фундаментов на песке, армированном георешеткой.

Геотекстиль и геомембраны, 23 (5), 454-462.

Патра, К.Р., Дас, Б.М., Бохи, М., Шин, Э.С., 2006.

Ленточный фундамент с эксцентрической нагрузкой на песке, армированном георешеткой

.Геотекстиль и геомембраны, 24 (4), 254-259.

Raymond, G.P., 2002. Поведение усиленного балласта подвергало

повторяющейся нагрузке. Геотекстиль и геомембраны, 20 (1),

39-61.

Hufenus, R., Rueegger, R., Banjac, R., Mayor, P., Springman,

SM, Bronnimann, R., 2006. Полномасштабные полевые испытания на

геосинтетическом армированном грунте на мягком грунте. .

Геотекстиль и геомембраны, 24 (1), 21-37.

Эль-Савваф, М.А., 2007. Поведение ленточного фундамента на георешетке-

армированном песке

на мягком глиняном откосе. Геотекстиль

и геомембраны

, 25 (1), 50-60.

Аламшахи, С., Хатаф, Н., 2009. Несущая способность

ленточных опор

на песчаных склонах, армированных георешеткой и

сеткой-анкером. Геотекстиль и геомембраны, 27 (3), 217-226.

Батерст, Р.Дж., Нернхейм, А., Уолтерс, Д.Л., Аллен, Т.М.,

Берджесс, П., Сондерс, Д.Д., 2009. Влияние армирования

Жесткость и уплотнение

на характеристики четырех геосинтетических материалов

-армированные грунтовые стены.Geosynthetics International,

16 (1), 43-49.

Шарма Р., Чен К., Абу Фарсах М., Юн С., 2009.

Аналитическое моделирование фундамента, укрепленного георешеткой.

Геотекстиль и геомембраны, 27 (1), 63-72.

Газави, М., Алимардани Лавасан, А., 2008. Влияние помех

фундаментов мелкого заложения, построенных на песке, армированном геосинтетическими материалами

. Геотекстиль и геомембраны, 26 (5),

404-415.

Найери, А., Фахарян, К., 2009. Исследование поведения на вырыв геосеток из

одноосных геосеток HDPE при монотонных и циклических нагрузках.

Международный журнал гражданского строительства. Vol. 7, No. 4, pp.

211-223.

Абди, М.Р., Садрнежад, С.А., и Арджоманд, М.А., 2009. Глина

Армирование с использованием георешетки, встроенной в тонкие слои песка

. Международный журнал гражданского строительства. Vol. 7, No. 4,

pp. 224-235.

Могхаддас Тафреши, С.Н., Доусон, А.Р., 2010а. Сравнение

несущей способности ленточного фундамента на песке с геоячейкой и

с плоскими формами геотекстильного армирования. Геотекстиль

и геомембраны

, 28 (1), 72-84.

Могхаддас Тафреши, С.Н., Доусон, А.Р., 2010b. Поведение

опор на армированном песке при многократном нагружении —

Сравнение использования трехмерного и плоского геотекстиля. Геотекстиль и геомембраны

, 28 (5), 434-447.

Кунни, Р.W., Sloan, R.C., 1961. Машина с динамической нагрузкой и результаты предварительного маломасштабного испытания на опору

. Симпозиум по динамике почвы

. Специальная техническая публикация ASTM. № 305,

65-77.

Raymond, G.P., Komos, F.E., 1978. Повторные испытания под нагрузкой на плоском деформационном основании модели

. Канадский геотехнический журнал, 15

(2), 190-201.

Das, B.M., Shin, E.C., 1996. Лабораторные испытания модели для осадки

под действием циклической нагрузки ленточного фундамента на глинистом грунте

.Геотехническая и геологическая инженерия, 14 (3), 213-

225.

Das, B.M., Shin, E.C., 1994. Ленточный фундамент на георешетке —

армированная глина: поведение при циклических нагрузках. Геотекстиль и

Геомембраны, 13 (10), 657-667.

Raymond, G.P., 2002. Поведение усиленного балласта подвергало

повторяющейся нагрузке. Геотекстиль и геомембраны, 20 (1), 39-

61.

Шин, E.C., Ким, Д.Х., Дас, Б.М., 2002. Усиленное георешеткой оседание железнодорожного полотна

из-за циклической нагрузки.Геотехнический и

Инженерно-геологический, 20 (3), 261-271.

Могхаддас Тафреши, С.Н., Халадж, О., 2008. Лабораторные испытания

труб ПНД малого диаметра, заглубленных в армированный песок под

повторной нагрузкой. Геотекстиль и геомембраны, 26 (2),

145-163.

Могхаддас Тафреши, С.Н., Таваколи Мехрджарди, Г., Могхаддас

Тафреши, С.М., 2007. Анализ заглубленных пластиковых труб в армированном песке

при повторяющейся нагрузке с использованием нейронной сети

и модели регрессии.Международный журнал гражданского строительства

Engineerig. Vol. 5, No. 2, pp. 118-133.

Das, B.M., Maji, A., 1994. Переходные нагрузки, связанные с

Осадка квадратного фундамента на песке

, армированном георешеткой. Геотехническая и геологическая инженерия, 12 (4),

241-251.

151 Международный журнал гражданского строительства, Vol. 10, No. 2, июнь 2012 г.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

) [19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

) [29]

[30]

B

b

u

h

N

Nopt

n

ncr

H

D

d q

000

qd

∆qs

∆ss

sd

ширина основания

ширина арматуры

глубина первого слоя арматуры

расстояние между слоями по вертикали арматуры

количество слоев армирования

оптимальное количество слоев армирования

количество циклов нагружения

максимальное количество циклов нагружения

глубина заделки пустот

диаметр пустот

толщина армированной зоны

относительная плотность грунта

предельное опорное давление основания на неармированном

песке

интенсивность заданной статической нагрузки

амплитуда повторной нагрузки

интенсивность статической нагрузки равна амплитуде повторной

нагрузки (∆qs = qd)

разница между осадкой при qs + qd и осадкой при

qs во время статического испытания

максимальное значение осадки основания при повторяющихся

нагрузках

(PDF) Правило эффективной ширины при анализе основания на армированном песчаном откосе

Studia Geotechnica et al. Механика, 2019; 41 (1): 4255

Исследовательская статья Открытый доступ

Абдельмаджид Абди *, Хелифа Аббеш, Джамель Атмания, Мунир Буассида

Правило эффективной ширины при анализе основания

на усиленном песчаном склоне

https: // doi.org / 10.2478 / sgem-2019-0005

получено 25 сентября 2018 г .; принята 28 января 2019 года.

Аннотация: В статье представлены результаты, полученные в результате экспериментальной программы

и численных исследований

, проведенных при модельных испытаниях ленточного фундамента, опирающегося на

армированных и неармированных песчаных откосов. Исследование

было сосредоточено на определении предельной несущей способности

ленточного фундамента, подверженного эксцентрической нагрузке, расположенной либо

по направлению к облицовке склона, либо напротив нее.Ленточный фундамент

Модели

были испытаны при различных эксцентриситетах

вертикальной нагрузки. Полученные результаты испытаний, проведенных

на неармированном песчаном откосе, показали, что увеличение эксцентриситета

приложенной нагрузки по отношению к облицовке склона

снижает предельную несущую способность основания.

Прогнозы предельной несущей способности, полученные с помощью правила

эффективной ширины, хорошо согласуются с теми

, которые были предложены с учетом общей ширины опоры

, подверженной эксцентрической нагрузке.Предел несущей способности

эксцентрично нагруженной опоры на армированном песке

склона может быть получен из осевой нагрузки опоры

, опирающейся на горизонтальный песчаный грунт, при принятии правила эффективной ширины

и коэффициента уменьшения, причитающегося

к склону. При увеличении расстояния между границей опоры

и гребнем склона для неармированного и

откоса грунта, усиленного георешетками, на предельную несущую способность опоры

больше не влияет наклонный грунт.

Ключевые слова: несущая способность; эксцентриситет; опора;

георешетка; модельный тест; склон.

1 Введение

Многие типы фундаментов мелкого заложения могут быть спроектированы, когда

подвергаются эксцентрической нагрузке, которая зависит от их геометрической формы

или других влияющих факторов, как для фундаментов

, расположенных на наклонной поверхности. В этом контексте многие исследователи

обнаружили, что предельная несущая способность

опор, подвергающихся эксцентрической нагрузке на наклонном грунте

, значительно снижается по сравнению с

горизонтальной поверхностью грунта.Это значительное уменьшение на

, скорее всего, связано с эксцентриситетом нагрузки и расположением

основания относительно гребня склона [1, 2]. Снижение предельной несущей способности

из-за эксцентриситета

и / или угла наклона

было изучено несколькими исследователями

. Мейерхоф [3] предложил аналогичное уравнение для

, которое предложил Терзаги [4], введя эффективную ширину опоры

. Согласно этому методу, предельная нагрузка

ленточного фундамента может быть определена, если предположить, что осевая нагрузка

приложена к эффективной ширине основания.

Пракаш и Саран [5] исследовали несущую способность эксцентрично нагруженной опоры

на плотном песке, а также на рыхлом песке

. Опоры шириной B испытывались с нулевой глубиной заделки

, Df, т.е. на поверхности земли и при

заделке

, равной ширине опоры: Df / B = 1. Эксцентриситет нагрузки

изменялся от 0,1B до 0,4. Б. Разумное согласие

было обнаружено между аналитическими результатами

и результатами испытаний модели.Пуркаястха и Чар

[6] подробно изучили проблему опоры на опору, подвергшую

эксцентрическим нагрузкам. Эффективная ширина, введенная

Meyerhof, широко использовалась для определения

несущей способности опор с внецентренной нагрузкой.

Михаловски и Вы [7] исследовали применимость этого метода

для оценки несущей способности фундаментов мелкого заложения

. Правило эффективной ширины приводит к подходящим результатам

для оценки несущей способности

эксцентрично нагруженных опор и для любого типа поверхности раздела между

опорой и грунтовым фундаментом, когда эксцентриситет

мал, e.грамм. менее 0,15В. Лукидис и др. [8] выполнил

метод конечных элементов для прогнозирования предельной несущей способности

основания, опирающегося на чисто фрикционный грунт

, подверженный эксцентрической нагрузке. Это исследование привело к такому же выводу

при рассмотрении эффективной ширины; the

* Автор, ответственный за переписку: Абдельмаджид Абди, Департамент гражданского строительства

Инженерный факультет, Технологический факультет Университета Батны 2, Батна,

Алжир, Эл. почта: [email protected]

Khelifa Abbeche: Департамент гражданского строительства, факультет

Технологический университет Батны 2, Батна, Алжир

Джамель Атмания: Департамент гражданского строительства, Университет

Тебесса, Route de Constantine, 12002 Tébessa, Algeria

Mounir Bouassida: Université de Tunis El Manar, Ecole Nationale

d’ingénieurs de Tunis, Ingénierie Géotechnique, LR14ES03, BP 37,

Le Belvédèzre 2017; 1 (2): 122–135

Первое десятилетие (1964-1972)

Исследовательская статья

Макс Мустерман, Пол Плейсхолдер

Чем отличается

Нейроусиление?

Это так и есть нейроусиление?

Фармакологическая и психическая самотрансформация в этике

Сравнение

Pharmakologische und mentale Selbstveränderung im

ethischen Vergleich

https: // doi.org / 10.1515 / xyz-2017-0010

получено 9 февраля 2013 г .; принято 25 марта 2013 г .; опубликовано в Интернете 12 июля 2014 г.

Аннотация: В концепции эстетического формирования знания и его как можно скорее

и ориентированного на успех применения, идеи и выгоды без

ссылки на аргументы, разработанные около 1900 года. расследование также

включает период между вступлением в силу и представлением в его текущей версии

.Их функция как часть литературного изображения и повествовательной техники.

Ключевые слова: Функция, передача, расследование, принципал, период

Посвящается Полю Placeholder

1 Исследования и расследования

Основное расследование также включает период между вступлением в силу и

презентации в текущей версии. Их функция как часть литературного портрета и повествовательной техники.

* Макс Мустерман: Институт морской биологии, Тайваньский национальный океанский университет, 2Pei-Ning

Road Keelung 20224, Тайвань (R.OC), e-mail: [email protected]

Paul Placeholder: Институт морской биологии, Национальный Тайваньский океанский университет, 2Pei-Ning

Road Keelung 20224, Тайвань (ROC), e-mail: email @ mail .com

Открытый доступ. ©  Mustermann and Placeholder, опубликовано De Gruyter. Это произведение

под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives . License.

Открытый доступ. © 2019 Абдельмаджид Абди и др., Опубликовано Sciendo. Эта работа находится под лицензией Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 Лицензия.

Численный анализ несущей способности многополосного фундамента на неармированных и армированных песчаных пластах

Модель конечных элементов используется для обнаружения влияния угла расширения, угла внутреннего трения и расстояния между опорами на характеристики полосового фундамента, поддерживаемого неармированным и армированный песок. Кроме того, также представлено изменение распределения напряжения и осадки в различных случаях.

Влияние угла расширения (ψ) на значение N

γ для одиночной опоры на армированном и неармированном песке

В этом разделе представлены результаты исследования влияния угла дилатансии на предельную несущую способность одиночного опора на неармированные и армированные песчаные пласты.Хорошо известно, что во время сдвига положительный угол расширения относится к расширению почвы, а отрицательный — к тому, что почва, в которой чистое движение частиц вызывает сжатие [42]. Определение дилатансии почвы обычно извлекается из существующих соотношений напряжение-сдвиг. Пиковая прочность почвы обычно связана с максимальной скоростью расширения. Большое внимание было уделено взаимосвязи между углом трения (ϕ) и углом расширения (ψ) [38, 39, 43].Различное понимание относительно определения дилатансии почвы было зарегистрировано из-за нескольких влияющих факторов. Большинство соотношений показали значительное влияние напряженного состояния, плотности почвы, формы частиц и содержания мелких частиц на дилатансию почвы. Кроме того, взаимодействие между арматурой грунта и прилегающим грунтом изменяет поведение дилатансии грунта, при котором увеличивается объем грунта в плоскости разрушения, что приводит к увеличению угла расширения [44]. Поэтому в этом разделе исследуется диапазон угла расширения, чтобы оценить его влияние на реакцию опоры.Значения коэффициента несущей способности N γ представлены на рис. 5 для различных значений ϕ из-за изменения угла дилатансии. Хотя во многих исследованиях угол расширения принимался равным нулю, отрицательный угол расширения, как показано на рис. 5d, приемлем для довольно рыхлого песка из-за его сжимающего поведения при сдвиге. На рис. 5 показано значительное увеличение N γ с увеличением угла дилатансии для случая армированного песка. Это может быть связано с увеличением дилатансии из-за увеличения ограничивающего эффекта армирования.Очевидно, что влияние изменения угла дилатансии в случае армированного песка больше, чем в случае неармированных песчаных пластов. Тщательный анализ данных, представленных на рис. 5, показывает, что более высокие значения N γ наблюдались с увеличением количества слоев усиления. Кроме того, взаимосвязь между N γ и углом расширения имеет три стадии. На первом и третьем этапах наблюдалось небольшое увеличение N γ по мере увеличения дилатансии.Третья стадия, по-видимому, начинается при угле расширения около 20 °, 15 °, 10 ° и 5 ° для ϕ = 40 °, 35 °, 30 ° и 25 ° соответственно. В то время как вторая стадия, по-видимому, является переходной зоной, которая характеризовалась значительным увеличением N γ с увеличением угла расширения, но это зависело от угла трения грунта и количества слоев армирования. Резкое увеличение N γ в переходной зоне могло быть связано с увеличением объема почвы при сдвиге, что привело к уменьшению эффекта провисания [45].Следовательно, будут минимальные значения для угла расширения для преодоления эффекта провисания в различных армированных грунтах в зависимости от состояния уплотнения грунта и количества слоев армирования.

Рис. 5

Влияние угла внутреннего трения и угла расширения на коэффициент несущей способности, N γ , для одиночной опоры на армированном и неармированном песке

Коэффициент полезного действия (

ζ ) для многополосного фундамента на армированном песке

На рисунке 6 показано влияние натяга между опорами на предельную несущую способность, которая оценивается с использованием коэффициента эффективности ( ζ ).Коэффициент полезного действия ( ζ ) является безразмерным коэффициентом и определяется как отношение предельной несущей способности одного фундамента в группе ленточных фундаментов над армированными песчаными слоями к той, которая наблюдается для одиночного фундамента в тех же условиях. Следует отметить, что коэффициент полезного действия был выражен как функция отношения расстояний, которое часто принимается как отношение расстояния в свету к ширине основания. На рисунке 6 показана величина ( ζ ) для различных значений угла трения с изменяющимся отношением зазоров (S / B).Можно заметить, что для всех случаев значение ( ζ ) больше 1 и увеличивается с уменьшением значения (S / B). Очень ограниченное взаимодействие между соседними опорами наблюдалось на расстоянии, которое было вдвое или более ширины опоры. Результаты показывают, что угол трения играет важную роль во взаимодействии между опорами и, следовательно, в коэффициенте эффективности. Коэффициент полезного действия всегда увеличивается с увеличением угла трения. В случае песчаного пласта с углом трения 40 ° коэффициент полезного действия варьировался от 204 до 1 для случая N = 1 и от 232 до 1 для песчаных пластов с двумя слоями армирования.С другой стороны, для других значений угла трения (ϕ) было обнаружено, что значения коэффициента полезного действия находятся в диапазоне от 1 до 6,8 для случая N = 1 и от 1 до 18 для случая N = 2. Можно заметить, что увеличение количества армирующих слоев не помогло в рыхлом песках, тогда как оно хорошо работало в песках средней и плотной с ϕ> 30 °. Те же результаты проиллюстрированы в другой форме на рис. 7, тогда как коэффициент полезного действия связан с углом внутреннего трения, и можно наблюдать ту же тенденцию.Понятно, что коэффициент полезного действия увеличивается с уменьшением расстояния между несколькими опорами, количества слоев усиления и угла трения.

Рис. 6

Коэффициент эффективности для армированного песка с изменением угла внутреннего трения и расстояния между опорами (S / B)

Рис.7

Коэффициент эффективности для неармированного и армированного в зависимости от угла внутреннего трения

Рисунок 8 иллюстрирует пример распределения касательного напряжения в неармированных и армированных песчаных пластах.Можно отметить, что напряжение сдвига t xy вдоль вертикальных плоскостей при граничном условии (ось симметрии) становится равным нулю.

Рис.8

Распределение касательного напряжения для группы ленточных фундаментов

Распределение нормального напряжения (σ y ) под близко расположенными ленточными фундаментами как для армированных, так и для неармированных грунтовых пластов представлено на рис. 9 и 10. Можно заметить, что армирующие слои играют важную роль в перераспределении напряжения.На том же уровне приложенной нагрузки на рис. 9 показано сравнение неармированного и армированного песка (N = 1, 2) с точки зрения σ y для случая ϕ = 30 ° и S / B = 0,3. Все три корпуса нагружены предельным опорным давлением, которое было определено на неармированном песчаном слое. Как показано в, максимальное значение σ y для армированного грунта уменьшилось на 39,7% и 42,6% для случаев песчаных пластов с одним и двумя слоями армирования соответственно по сравнению с таковыми на неармированных песчаных пластах.Это может быть связано с влиянием армирования на поперечное распространение индуцированного напряжения, чем это происходит на неармированном грунте, то есть объем грунта, который выдерживает нагрузку на опору, больше из-за кажущейся когезии, вызванной армированием. Другими словами, для неармированного песка прилагаемое давление на опору распределяется по относительно небольшой площади, которая зависит от угла трения и глубины от нижней части опоры. С другой стороны, в случае армированного песка на механизм передачи нагрузки сильно влияет наличие армирующих слоев.Создание касательных напряжений на обеих сторонах армирующих слоев приводит к перераспределению напряжений по большей зоне. Кроме того, введение армирующих слоев увеличивает ограничивающее напряжение вокруг нагруженной области по сравнению с неармированным песком при том же уровне нагрузки и глубине.

Рис. 9

Распределение нормальных напряжений для армированного и неармированного песка при одинаковом уровне нагрузки для случая ϕ = 30 °, S / B = 0,3

Рис. 10

Распределение нормальных напряжений для армированного и неармированного песка при предельной несущей способности для случая ϕ = 30 °, S / B = 0.3

На рис. 11 показано распределение горизонтального движения грунта Ux для тех же случаев при тех же условиях, чтобы подчеркнуть сдерживающий эффект, вызванный арматурой. Это ясно показывает, что горизонтальное движение под ленточным фундаментом сильно зависит от армирования грунта. При этом горизонтальное смещение по сравнению с неармированным песчаным пластом уменьшилось на 57,6% и 61,8% на усиленном песчаном пласте с одним и двумя слоями армирования соответственно. Можно сделать вывод, что наличие армирующих слоев увеличивает взаимодействие между близко расположенными основаниями и вызывает заметное ограничение, которое, в свою очередь, значительно увеличивает сопротивление грунта приложенному опорному давлению.

Рис. 11

Распределение горизонтального смещения (Ux) для армированного и неармированного песка при одинаковом уровне нагрузки для случая ϕ = 30 °, S / B = 0,3

С другой стороны, на рис. 10 показано распределение σ yu внутри массива грунта при предельной несущей способности для каждого случая. Можно заметить, что отношения между максимальным нормальным напряжением на армированном песчаном слое и неармированном песчаном слое составляют 1,57 и 2,74 для одного и двух слоев армирования соответственно.Кроме того, из-за армирующих материалов сцепление между частицами грунта увеличивается, что приводит к более глубокому распределению напряжений в случае укрепленных слоев, чем это наблюдается на неармированном песчаном грунте.

Эквивалентное сцепление для армированного песка

В этом разделе представлен эквивалентный подход для оценки предельной несущей способности ленточного основания на армированном песке, чтобы избежать моделирования сложных взаимодействий между грунтом и слоями арматуры.Улучшение предельной несущей способности за счет армирования достигается за счет предположения очевидного сцепления. При этом глубина армирования (d) заменяется эквивалентным слоем с однородными свойствами. Прочностные характеристики определяются как углом трения (ϕ), так и сцеплением (c). Параметр сцепления был назван некоторыми исследователями как очевидное сцепление, чтобы учесть дополнительное ограничение, вызванное включением армирующих слоев [46]. Следовательно, прочность на сдвиг из-за армирования гранулированного материала может быть выражена следующим образом:

$$ \ uptau _ {\ text {r}} = {\ text {c}} _ {\ text {r}} + \ upsigma ^ {\ prime} \ tan \ upphi ^ {\ prime} $$

(4)

, где r обозначает армированный состав, τ r = прочность на сдвиг; c r = кажущееся сцепление, σ ′ = эффективное нормальное напряжение.Несколько исследований были выполнены для изучения характеристик прочности на сдвиг армированного грунта путем проведения испытаний на сдвиг и трехосных испытаний [47, 48].

В этом численном анализе была добавлена ​​кажущаяся когезия наряду с углом внутреннего трения песка для моделирования преимуществ армирования в попытке упростить моделирование и затраты на вычисления взаимодействий между слоями арматуры и прилегающими грунтами.

Основано на результатах, полученных Das et al. [20], которые обсуждались в разд.4.2 оценивается применимость подхода эквивалентной сплоченности. Их экспериментальное исследование моделируется путем выполнения настоящей численной модели без армирования для прогнозирования эквивалентного сцепления, которое представляет собой повышение предельной несущей способности, вызванное армированием. В таблице 2 приведены значения эквивалентного сцепления (c re ) при изменении количества армирующих слоев для армированного песка (ϕ = 41 °, u = h = 25,4 мм). На рисунке 12 показано хорошее согласие между результатами, предсказанными с помощью аналогичного подхода.Поэтому он предположил, что подход эквивалентности кажется многообещающим и может значительно сократить время вычислений. Дальнейшие исследования проводятся для полной оценки с использованием экспериментальных данных.

В таблице 2 приведены значения эквивалентной когезии (c re ) при изменении количества армирующих слоев Рис. 12

Эквивалентный подход по сравнению с Das et al. [20]

Microsoft Word — 10301016.doc

% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj > эндобдж 2 0 obj > транслировать PScript5.dll Версия 5.22007-11-16T16: 51: 20 + 05: 302007-11-16T16: 51: 20 + 05: 30application / pdf

  • Microsoft Word — 10301016.doc
  • Технический
  • Acrobat Distiller 8.0.0 (Windows) uuid: 27264771-17b3-460e-9001-9b33b512a020uuid: a3887f9a-2541-47cc-baa0-840ff0b8ee2e конечный поток эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект > эндобдж 27 0 объект > эндобдж 28 0 объект > эндобдж 29 0 объект > эндобдж 30 0 объект > эндобдж 31 0 объект > эндобдж 32 0 объект > эндобдж 33 0 объект > эндобдж 34 0 объект > эндобдж 35 0 объект > эндобдж 36 0 объект > эндобдж 37 0 объект > эндобдж 38 0 объект > эндобдж 39 0 объект > эндобдж 40 0 объект > эндобдж 41 0 объект > эндобдж 42 0 объект > эндобдж 43 0 объект > эндобдж 44 0 объект > эндобдж 45 0 объект > эндобдж 46 0 объект > эндобдж 47 0 объект > эндобдж 48 0 объект > эндобдж 49 0 объект > эндобдж 50 0 объект > эндобдж 51 0 объект > эндобдж 52 0 объект > эндобдж 53 0 объект > эндобдж 54 0 объект > эндобдж 55 0 объект > эндобдж 56 0 объект > эндобдж 57 0 объект > эндобдж 58 0 объект > эндобдж 59 0 объект > эндобдж 60 0 объект > эндобдж 61 0 объект > эндобдж 62 0 объект > эндобдж 63 0 объект > эндобдж 64 0 объект > эндобдж 65 0 объект > эндобдж 66 0 объект > эндобдж 67 0 объект > эндобдж 68 0 объект > эндобдж 69 0 объект > эндобдж 70 0 объект > эндобдж 71 0 объект > транслировать h ބ T] o0} ϯ $ \ c (f  (cQ ~ v4!% & => S} 13X = & C \ 8ǁ {HX xc \ S0 nPX% R ‘~’ ^ fsV0nWhjN]

    AR362 — Структурные системы в архитектуре IV Лекция: Основы

    Презентация на тему: «AR362 — Структурные системы в архитектуре IV Лекция: Основы» — стенограмма презентации:

    ins [data-ad-slot = «4502451947»] {display: none! important;}} @media (max-width: 800px) {# place_14> ins: not ([data-ad-slot = «4502451947»]) {display: none! important;}} @media (max-width: 800px) {# place_14 {width: 250px;}} @media (max-width: 500 пикселей) {# place_14 {width: 120px;}} ]]>

    1 Лекция 11 — 12: Основы
    AR362 — Структурные системы в архитектуре IV Лекция: Основы Рез.Asst. Эркан ДУРМАЗГЕЗЕР Департамент гражданского строительства Измир, ТУРЦИЯ

    2 ФУНДАМЕНТЫ В конструкции внутренние силы передаются от элементов колонны к фундаменту. Передача усилия необходима для безопасной работы. Прочность грунта намного меньше прочности колонны, следовательно, элементы стенок колонн и сдвиговых стенок не входят в грунт напрямую. Напряжение, создаваемое колоннами, плитами (или балками) первого этажа, располагается между грунтом и колоннами первого этажа.В противном случае вертикальные элементы (колонна или стена сдвига) оседают в грунте, что приводит к структурному повреждению конструкции. Независимо от типа надстройки, железобетонные фундаменты предпочтительнее из-за соображений долговечности и почвенных условий.

    3 Стеновые опоры (Duvar Altı Temel)
    ВИДЫ ФУНДАМЕНТОВ Стеновые опоры (Duvar Altı Temel) Индивидуальные опоры (Tekil — Münferit Temel) Комбинированные опоры (Birleşik Temel) Ленточный фундамент (Sürekli Temel) a) Односторонний ленточный фундамент b) Двусторонний ленточный фундамент 5) Фундамент с матом (или плотом) (Radye Temel) a) С балкой b) Без балки 6) Фундамент на сваях (Kazıklı Temel)

    4 Стеновые опоры (Duvar Altı Temel)
    ВИДЫ ФУНДАМЕНТОВ Стеновые опоры (Duvar Altı Temel) Обычно используются в 1-2-этажных каменных конструкциях.Общие размеры Ширина железобетонной фундаментной балки 50 — 70 см Высота железобетонной балки 30 — 40 см.

    5 ВИДЫ ФУНДАМЕНТОВ 2) Индивидуальные опоры (Текил Темель)

    6 2) Отдельные опоры (Tekil Temel)
    ВИДЫ ФУНДАМЕНТОВ 2) Отдельные опоры (Tekil Temel) Поперечные балочные элементы используются для связывания отдельных опор, что позволяет эффективно передавать силы землетрясения через систему фундамента.Ширина поперечных балок не менее 15 см. Размер основания выбирается таким образом, чтобы передача напряжения между фундаментом и почвой происходила безопасно. Напряжение, создаваемое опорой, должно быть меньше несущей способности грунта. Не подходит для жилых домов из-за склонности к разной осадке элементов колонн.

    7 3) Комбинированная опора (Birleşik Temel)
    ВИДЫ ФУНДАМЕНТОВ 3) Комбинированная опора (Birleşik Temel) Если расстояние между двумя колоннами близкое, используется комбинированная опора.Ступеньку можно постепенно расширять там, где уровень осевой нагрузки выше.

    8 ВИДЫ ФУНДАМЕНТОВ 4a) Фундамент с односторонней лентой (Bir Yönde Sürekli Temel)

    9 4a) Односторонний ленточный фундамент (Bir Yönde Sürekli Temel)
    ВИДЫ ФУНДАМЕНТОВ 4a) Односторонний ленточный фундамент (Bir Yönde Sürekli Temel) Высота фундамента составляет не менее 30 см; тогда как ширина 100 см.Ширина опоры определяется таким образом, чтобы напряжение, создаваемое опорой, было меньше несущей способности почвы. Не подходит для жилых домов, так как этот тип фундамента подходит только для конструкций, у которых направления колонн в плане одинаковы.

    10 ВИДЫ ФУНДАМЕНТОВ 4b) Двухсторонний ленточный фундамент (İki Yönde Sürekli Temel)

    11 4b) Двухсторонний ленточный фундамент (İki Yönde Sürekli Temel)
    ВИДЫ ФУНДАМЕНТОВ 4b) Двухсторонний ленточный фундамент (İki Yönde Sürekli Temel) Высота фундамента не менее 30 см; тогда как ширина 100 см.Ширина опоры определяется таким образом, чтобы напряжение, создаваемое опорой, было меньше несущей способности почвы. Подходит для жилого типа дома. Риск различного оседания в столбцах относительно невелик, так как элементы привязаны в обоих направлениях.

    12 5) Фундамент с матом или плотом (Radye Temel)
    ТИПЫ ФУНДАМЕНТА 5) Фундамент с матом или плотом (Radye Temel) Фундамент с матом без балки: под элементами колонны формируется одна пластина большого размера.Такой тип фундамента требуется при низком допустимом давлении грунта. Подходит для предотвращения разного оседания колонн. Толщина фундаментной плиты должна быть не менее 30 см; тогда как высоту перекрытия в жилых домах можно оценить как 10-кратное число этажей в см.

    13 ВИДЫ ФУНДАМЕНТОВ 5) Фундамент для матов или плотов (Radye Temel)

    14 6) Свайный фундамент (Kazıklı Temel)
    ТИПЫ ФУНДАМЕНТОВ 6) Свайный фундамент (Kazıklı Temel) Свая представляет собой длинный цилиндр из прочного материала, такого как бетон, который вдавливается в землю и служит устойчивой опорой для конструкций. построен поверх него.Когда на поверхности есть слой рыхлой почвы. Этот слой не может выдержать вес здания, поэтому нагрузки здания должны обходить этот слой и переноситься на более прочный слой почвы или породы, находящийся под слабым слоем. Когда здание имеет очень тяжелые сосредоточенные нагрузки, например, в многоэтажном сооружении, мосту или резервуаре для воды. Свайные фундаменты используются в следующих ситуациях:

    15 Свойства поперечной балки (Bağ Kirişlerin Özellikleri)
    Минимальный размер поперечного сечения не может быть меньше, чем пролет между двумя колоннами / 30.Значения, указанные для расчетной осевой нагрузки в поперечной балке в первой строке, представляют собой% сжимающей нагрузки на колонну. Пример конструкции поперечной балки. Материал C25 — S420. Тип почвы D.

    16 Свойства поперечной балки (Bağ Kirişlerin Özellikleri)
    Решение N = 0,12×2000 = 240 кН Размер поперечного сечения должен быть не менее 300 мм x 300 мм. Продольная арматура 4ϕ18. Площадь продольной арматуры = 1018 мм2 По требованию = Н / 365 МПа = 657 мм2.ДОВОЛЕН !!!

    17 МОДЕЛЬ НАПРЯЖЕНИЯ ПОЧВЫ — ОПРЕДЕЛЕНИЯ
    Nd = Расчетная нагрузка на колонну, включая схемы нагрузки G + Q. h = Глубина фундамента. σz = напряжение грунта, образовавшееся под фундаментом из-за расчетной нагрузки. σzem = нагрузка на грунт. fzn = допустимая нагрузка на грунт. γz = плотность грунта γb = плотность бетона = 25 кН / м3 Напряжение грунта = напряжение от сил колонны + напряжение от бетона фундамента — напряжение, создаваемое выемкой грунта

    18 МОДЕЛЬ НАПРЯЖЕНИЯ ПОЧВЫ — ОПРЕДЕЛЕНИЯ
    Напряжение грунта = напряжение от сил колонны + напряжение от бетона фундамента — напряжение, создаваемое выемкой грунта σz γb h γz h <1.5 σzem σz (γb - γz) h <1,5 σzem, где γb - γz = γ σz <1,5 σzem - γh γ = 18-20 кН / м3 fzn = 1,5 σzem - γh (чистая прочность грунта) Решите h и определите fzn так, чтобы до σz

    19 РАСЧЕТНАЯ МОДЕЛЬ Nd2, Nd5, Nd8 = Расчетные нагрузки на колонну (кН)
    σz1, σz2, σz3 = Напряжение, создаваемое в грунте силами колонны (кН / м2) q1 = σz1b, q2 = σz2b, q3 = σz3b = Эквивалентное линейное напряжение производятся расчетными нагрузками на колонну (кН / м).Чтобы уменьшить напряжение, создаваемое силами колонны, можно удлинить фундаментную балку (a1 и a2). Линейные напряжения, создаваемые расчетными нагрузками, находятся в равновесии с линейными напряжениями q1, q2, q3.

    20 РАСЧЕТНАЯ МОДЕЛЬ Расчетные силы колонны определяются путем анализа надстройки. Линейные напряжения q1, q2, q3 вычисляются численно. 2) Для каждого пролета значения напряжения грунта усредняются для простоты.

    21 год РАСЧЕТНАЯ МОДЕЛЬ

    22 РАСЧЕТНАЯ МОДЕЛЬ Определение ширины опоры b:
    Внутренний сдвиг и влияние момента в консоли опоры:

    23 МОМЕНТЫ И ДИАГРАММЫ СДВИГА ФУНДАМЕНТАЛЬНОЙ БАЛКИ
    Фундаментная балка может иметь такую ​​длину, чтобы уменьшить нагрузку на грунт, но длина консоли не может быть превышена 1.5м. Высота фундаментной балки определяется таким образом, чтобы выдерживать не менее 80% сдвига, создаваемого надстройкой. Оставшийся эффект сдвига может быть обеспечен сдвиговой арматурой. При расчетах арматуры на изгиб сечение в области пролета является Т, а сечение в опоре — прямоугольным. В большинстве случаев достаточно минимального количества продольной арматуры, так как высота сечения задана щедро. Арматура As1 и As2 рассчитывается по диаграмме моментов, показанной выше.

    24 ЭТАП РАСЧЕТА Выбрана длина консоли a1 и a2.
    Выбрана ширина фундаментной балки bw. Выбирается высота фундамента. Выбрана прозрачная крышка. Высота фундамента оценивается исходя из того, что фундамент без поперечной арматуры должен выдерживать не менее 80% сдвига. Оценивается ширина фундамента. При необходимости оценивается усиление сдвига фундамента. Определяется напряжение почвы. Оцениваются продольные арматуры. Дополнительные подкрепления назначаются в районе поддержки, если это необходимо. Толщина покрытия «t» регулируется.Оценивается подкрепление опор. Нарисовано усиление балки.

    25 ПОЛОСНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННЕМ направлении
    ПРИМЕР Односторонний фундамент будет сформирован под колоннами 30 см x 60 см. Расчетные усилия колонны показаны на рисунке. Выполните необходимый анализ фундамента, чтобы безопасно выдержать расчетные усилия. Контур земли указан на расстоянии 1,4 м слева от колонны и 3 метра справа от колонны.Допустимая нагрузка на грунт σзем = 150 кН / м2. Использованные материалы C25 — S420. fcd = МПа fctd = 1,2 МПа, fyd = fywd = 365 МПа min ρ = 0,8 fctd / fyd = max ρ = 0,02 max (ρ — ρ ’) = 0,85 ρb =

    26 ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННИЕ
    ПРИМЕР Ширина балки фундамента bw выбрана равной 50 см. Высота фундамента t = 30 см. Бетонное покрытие 5см. Определение высоты фундаментной балки h: Сдвиг должен переноситься фундаментной балкой, но в этом случае размер фундамента не является экономичным.Высота фундамента оценивается исходя из того, что фундамент без поперечной арматуры должен выдерживать не менее 80% сдвига.

    27 ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННЕМ направлении
    ПРИМЕР Определение ширины фундамента b:

    28 год ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННЕМ направлении
    ПРИМЕР

    29 ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННИЙ КАНАЛ
    Продольное армирование: В большинстве случаев достаточно минимального количества продольного армирования, так как высота секции назначается щедро.Расчет будет производиться по максимальному изгибающему моменту. Пролет B — C: Md = кНм, d = 100 — 5 = 95 см = 950 мм Табличное решение (для Т-образной балки, поскольку она имеет дело с областью пролета).

    30 ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННИЙ КАНАЛ
    Продольное армирование: В большинстве случаев достаточно минимального количества продольного армирования, так как высота секции назначается щедро. Расчет будет производиться по максимальному изгибающему моменту.Пролет B — C: Md = кНм, d = 100 — 5 = 95 см = 950 мм Табличное решение (для Т-образной балки, поскольку она имеет дело с областью пролета). b / bw = 3 (но таблица формируется только для конкретного соотношения — используется 4 t / d = 30/95 = ~ 0,3 Kfcd = 1500 x 9502 / [178,1 (106)] x 16,67] = (намного больше из приведенного выше запись вверху) Означает, что минимального количества арматуры достаточно.

    31 год ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННИЙ КАНАЛ
    Продольное армирование: В большинстве случаев достаточно минимального количества продольного армирования, так как высота секции назначается щедро.Расчет будет производиться по максимальному изгибающему моменту. Пролет A — B: Md = 99,8 кНм, d = 100 — 5 = 95 см = 950 мм Достаточно минимального количества арматуры.

    32 ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННИЙ КАНАЛ
    Продольное армирование: В большинстве случаев достаточно минимального количества продольного армирования, так как высота секции назначается щедро. Расчет будет производиться по максимальному изгибающему моменту.Опора C и опора A: Максимальный момент составляет кНм Md = кНм, d = 100 — 5 = 95 см = 950 мм Табличное решение (для прямоугольной балки, поскольку она имеет дело с областью опоры — таблица на следующем слайде). Означает, что минимального количества арматуры достаточно (не видно по таблице). Как мин. = X500x950 = 1235 мм2 В наличии = = 1055 мм2 По мере необходимости = 1235 — 1055 = 180 мм2 (добавлено 1ϕ16). Опора B Дополнительного усиления не требуется. Поскольку min = x500x950 = 1235 мм2

    33 ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННЕМ направлении
    Продольная арматура:

    34 ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНУ СТОРОНУ
    Чертеж:


    Инженер-строитель: Ленточный или подушечный фундамент

    Для средних нагрузок могут быть предусмотрены ленточный фундамент (для стен) и подушечный фундамент (для колонн), а также особые конструктивные особенности, рассмотренные выше. Рис. 3.31 показывает некоторые типичные участки неглубоких подошв, подшиваемых для черного хлопчатника и других обширных почв.

    РИС. 3.31 ПОЛОСНАЯ ЛАПКА СО СПЕЦИАЛЬНОЙ ОБРАБОТКОЙ.

    Сечение Рис. 3.31 (a) подходит, когда почва, хотя и расширяющаяся, испытывает небольшое давление набухания. Слой несвязного песка толщиной 60 см укладывается под бетонный фундамент и уплотняется. Песок также насыпается вокруг основания. Когда почва набухает, песчинки сдвигаются, поднимаясь вверх, тем самым уменьшая давление набухания
    .Когда почва сжимается, слой песка расширяется, но в почвенной опоре не будет разрывов. Песок также следует использовать под полом. Секция Рис. 3.31 (b) подходит для случаев, когда давление набухания относительно высокое. Чередующиеся слои мурама (или балласта) и песка действуют как пружина, которая может сжиматься или расширяться вместе с движениями недр. Таким образом, он будет поглощать все движения, тем самым защищая опору от этих ударов. Если почва мягкая и имеет плохую несущую способность, сначала следует утрамбовать слой балласта и мурама толщиной 30 см.Сверху мин. возможна укладка крупнозернистого песка толщиной 30 см. Во всех трех случаях бетонный фундамент может быть выполнен из жесткого цементного бетона и, если возможно, может содержать номинальную арматуру. На рис. 3.31 (d) показан участок, который можно использовать для грунтов с высоким давлением набухания и с высокими усадочными свойствами. После уплотнения основания траншеи сначала можно уложить и утрамбовать полосы бетона шириной от 25 до 30 см и толщиной от 25 до 30 см. После затвердевания полосового бетона пространство между ними заполняется песком.Пространство между двумя полосами бетона (т. Е. Ширину песчаной засыпки) можно сохранить равной ширине нижнего каркаса кладки. Поверх этого укладывается фундаментный бетонный слой, желательно из железобетона. Боковые стороны кладки фундамента засыпают обычным песком. В дополнение к этому, диаметр 80 мм. трубы, расположенные на расстоянии от 1,5 до 2 м и т. д., прокладываются через кирпичную кладку и бетонное основание так, чтобы достичь нижнего слоя песка, показанного на рисунке, и засыпать песок в трубу. Сверху трубы может быть установлена ​​заглушка, чтобы время от времени облегчить осмотр и при необходимости засыпать свежий песок.

    РИС. 3.32 ФУНДАМЕНТЫ ПИРА С АРКАМИ.

    РИС. 3.33 ФУНДАМЕНТ ПОД СВАЙНЫЙ ФУНДАМЕНТ.

    .

    Добавить комментарий