Как связывать арматуру для фундамента: Как правильно вязать арматуру для фундамента + схема

Содержание

аналитика, советы, помощь с выбором материалов.

[Error] 
Maximum function nesting level of '256' reached, aborting! (0)
/home/bitrix/www/bitrix/modules/main/lib/config/option.php:430
#0: Bitrix\Main\Config\Option::getDefaultSite()
	/home/bitrix/www/bitrix/modules/main/lib/config/option.php:43
#1: Bitrix\Main\Config\Option::get(string, string, string, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/option.php:30
#2: CAllOption::GetOptionString(string, string, string)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:2699
#3: CAllMain->get_cookie(string)
	/home/bitrix/www/bitrix/modules/main/lib/composite/engine.php:1321
#4: Bitrix\Main\Composite\Engine::onEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:480
#5: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/tools.php:3880
#6: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#7: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.
php:465 #8: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #9: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #10: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #11: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #12: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #13: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #14: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #15: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #16: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #17: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.
php:3885 #18: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #19: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #20: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #21: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #22: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #23: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #24: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #25: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #26: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #27: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.
php:187 #28: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #29: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #30: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #31: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #32: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #33: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #34: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #35: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #36: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #37: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.
php:465 #38: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #39: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #40: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #41: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #42: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #43: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #44: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #45: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #46: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #47: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.
php:3885 #48: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #49: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #50: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #51: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #52: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #53: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #54: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #55: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #56: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #57: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.
php:187 #58: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #59: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #60: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #61: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #62: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #63: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #64: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #65: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #66: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #67: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.
php:465 #68: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #69: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #70: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #71: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #72: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #73: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #74: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #75: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #76: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #77: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.
php:3885 #78: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #79: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #80: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #81: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #82: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #83: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #84: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #85: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #86: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #87: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.
php:187 #88: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #89: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #90: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #91: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #92: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #93: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #94: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #95: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #96: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #97: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.
php:465 #98: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #99: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #100: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #101: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #102: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #103: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #104: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #105: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #106: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #107: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools. php:3885 #108: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #109: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #110: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #111: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #112: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #113: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #114: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #115: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #116: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #117: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application. php:187 #118: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #119: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #120: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #121: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #122: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #123: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #124: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #125: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #126: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #127: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module. php:465 #128: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #129: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #130: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #131: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #132: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #133: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #134: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #135: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #136: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #137: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools. php:3885 #138: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #139: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #140: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #141: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #142: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #143: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #144: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #145: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #146: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #147: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application. php:187 #148: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #149: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #150: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #151: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #152: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #153: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #154: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #155: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #156: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #157: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module. php:465 #158: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #159: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #160: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #161: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #162: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #163: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #164: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #165: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #166: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #167: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools. php:3885 #168: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #169: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #170: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #171: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #172: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #173: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #174: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #175: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #176: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #177: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application. php:187 #178: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #179: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #180: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #181: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #182: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #183: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #184: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #185: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #186: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #187: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module. php:465 #188: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #189: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #190: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #191: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #192: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #193: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #194: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #195: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #196: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #197: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools. php:3885 #198: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #199: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #200: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #201: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #202: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #203: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #204: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #205: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #206: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #207: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application. php:187 #208: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #209: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #210: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #211: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #212: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #213: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #214: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #215: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #216: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #217: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module. php:465 #218: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #219: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #220: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #221: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #222: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #223: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #224: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #225: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #226: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #227: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools. php:3885 #228: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #229: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #230: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #231: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #232: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #233: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #234: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #235: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #236: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #237: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application. php:187 #238: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #239: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #240: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:644 #241: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #242: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #243: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3465 #244: CAllMain::FinalActions(string) /home/bitrix/www/bitrix/modules/main/include/epilog_after.php:54 #245: require(string) /home/bitrix/www/bitrix/modules/main/include/epilog.php:3 #246: require_once(string) /home/bitrix/www/bitrix/footer.php:4 #247: require(string) /home/bitrix/www/404.php:53 #248: require(string) /home/bitrix/www/bitrix/modules/iblock/lib/component/tools. php:66 #249: Bitrix\Iblock\Component\Tools::process404(string, boolean, boolean, boolean, string) /home/bitrix/www/bitrix/components/bitrix/news/component.php:145 #250: include(string) /home/bitrix/www/bitrix/modules/main/classes/general/component.php:605 #251: CBitrixComponent->__includeComponent() /home/bitrix/www/bitrix/modules/main/classes/general/component.php:680 #252: CBitrixComponent->includeComponent(string, array, boolean, boolean) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:1039 #253: CAllMain->IncludeComponent(string, string, array, boolean) /home/bitrix/www/articles/index.php:133 #254: include_once(string) /home/bitrix/www/bitrix/modules/main/include/urlrewrite.php:159 #255: include_once(string) /home/bitrix/www/bitrix/urlrewrite.php:2

Как вязать арматуру на фундамент

Очень много факторов влияет на прочность фундамента, но наиболее важную роль играет армирующий металлический каркас. Именно он является составной частью железобетонного каркаса. Рабочая арматура предназначена, чтобы усилить зоны сжатия, а также увеличить сопротивления нагрузкам на растяжение. Монтажная арматура используется по требованию технологии, например для крепления рабочей арматуры. Правда, если ее вязка выполнена с нарушениями, то с нагрузками может не справиться даже мощная арматура. Ознакомившись с этой статьей, вы сможете узнать, как вязать арматуру на фундамент.

Выбор арматуры

Арматурный каркас предотвращает появление трещин в бетоне от воздействия сил пучения, а также массы строения, что может в дальнейшем привести к разрушению фундамента. Поэтому прежде чем приступить к сборке каркаса, необходимо подготовить подходящую арматуру.

  1. Для свайного и столбчатого фундамента нужно использовать ребристую арматуру.
  2. Для армирования плиточного фундамента потребуются пруты с периодическим сечением.
  3. Продольное армирование ленточного фундамента выполняется при помощи ребристой арматуры, для поперечного, используются гладкие стержни.

Способы вязки арматуры

Чтобы между арматурными стержнями не изменялся шаг, и не происходило смещение от расчетных расстояний, необходима обвязка арматуры. Существует несколько способов, как вязать арматуру на фундамент.

Вязка пластиковыми хомутамиС помощью пластиковых хомутов, можно довольно просто произвести вязку арматурных стержней. Процесс не займет много времени и сил. Только этот метод недостаточно надежный, так как при заливке бетона можно повредить геометрию каркаса.
Вязка при помощи сваркиСварочные работы способны ускорить процесс, но в этом случае необходимы навыки. Причем данный способ желательно применять только с использованием арматуры из специальной стали, маркированной буквой »C», иначе сварка снизит технические характеристики металла, и прочность конструкции уменьшиться. Также арматурный каркас получается жестким и не имеет ни малейшего люфта, поэтому при применении вибрационных уплотнителей, места фиксации могут быть повреждены.
Вязка с помощью вязальной проволокиТакой способ вязки считается наиболее трудоемким, хотя по надежности имеет преимущества по отношению к другим. Для вязки в основном используется проволока d-1,2 мм.

Вязка арматуры вязальной проволокой

Как вы уже поняли, что вязать арматуру на фундамент можно различными способами, но лучше свое предпочтение отдать вязке проволокой. Это повлияет и на последующую легкость отделочных работ. Хотя и данный способ имеет несколько вариантов.

При помощи плоскогубцев

Наиболее простой и доступный вариант, но самый трудоемкий. Для вязки понадобится взять необходимой длины куски проволоки, все зависит от диаметра арматуры и сложить их вдвое. Затем обернуть в месте пересечения арматуры и закрутить с помощью плоскогубцев.

При помощи крючка

Используя этот вариант, вязать арматуру на фундамент придется при помощи специального крючка, правда, рабочий процесс также требует применения силы. На сложенной вдвое проволоке образуется петля, за нее необходимо зацепить крючок, концы обматываются вокруг стержней арматуры и также закладываются в крючок. Остается лишь его вращать по часовой стрелке.

При помощи вязального пистолета

При больших объемах работ использовать первые два варианта будет проблематично, ведь на это уходит много сил и времени. В этом случае лучше применить автоматический пистолет для вязки арматуры. Весь рабочий процесс полностью автоматизирован, необходимо лишь насадку пистолета установить в месте соединения стержней и нажать кнопку. В результате получается плотная вязка арматурного каркаса для фундамента.

Изучив все способы и варианты, теперь вы сможете разобраться, как вязать арматуру на фундамент, а он в свою очередь прослужит долгие годы.

для чего нужна вязка арматуры для фундамента и как ее сделать своими руками

Фундамент является устойчивой опорой и основанием любого сооружения, поэтому к его изготовлению нужно подойти со всей ответственностью. Усиливающий каркас из металла делает фундамент зданий более долговечным, надежным и качественным.

Он обеспечит основание любой постройки высокими эксплуатационными характеристиками.

Что значит «вязать» арматуру?

Каркас из арматуры — это неотъемлемая часть фундамента, которая помогает создать надежное и прочное основание дома или любого другого сооружения. Чтобы готовый металлический каркас прослужил не один десяток лет и выдержал серьезные нагрузки, вязать арматуру необходимо с использованием специальной проволоки и, соблюдая определенные технологические требования.

Прочная и качественно выполненная вязка из арматуры необходима, чтобы сохранить пространственную форму фундаментальной основы строения при ее заливке. Арматура для фундамента представляет собой металлические стержни длиной от 6 метров и диаметром от 6 мм. Прочностные характеристики такого вида стержней напрямую зависят от их толщины: чем больше диаметр металлического стержня, тем будет выше надежность каркаса.

Металлический профиль стержня может быть гладким, с периодическими гранями, рифленым, с насечками или ребрами. Наличие вышеперечисленных особенностей способствует лучшему сцеплению металла с бетонным раствором. Сцепляемость гладкого стержня с бетоном в 2 раза ниже показателя сцепляемости рифленого стержня. Для создания фундамента высокой прочности могут использоваться для армирования швеллера или металлические уголки.

Схема вязки может быть двух типов:

  1. Плоская. В этом случае металлические стержни скрепляются между собой в одной плоскости, чаще всего в горизонтальной.
  2. Пространственная. Это наиболее распространенный метод вязки, он используется для ленточного фундамента для любых грунтов. Пространственная схема позволяет создать каркас объемной формы, который будет противостоять продольным и поперечным нагрузкам, благодаря своей эластичности и гибкости.

Зачем вязать арматуру?

Основным элементом в фундаменте строения является продольная арматура. Поперечные стержни поддерживают положение продольных. Основная задача их состоит в том, чтобы, когда начнется процесс заливки бетона, вся конструкция оставалась в неизменном положении. Так как при сдвиге армирующей сетки произойдет уменьшение защитного слоя бетона, что впоследствии приведет к уменьшению прочности сооружения, коррозии арматуры, появлению неровностей, трещин и т. д.

Для того чтобы сделать арматурный каркас, необходимо установить опалубку вокруг котлована под фундамент. Опалубка изготавливается из обрезных досок и гвоздей. Стыки можно дополнительно скрепить металлическими уголками для обеспечения готового короба жесткостью и прочностью.

Снаружи и внутри опалубки накручивается стальная проволока диаметром до 8 мм. Полиэтиленовой пленкой устилается дно котлована и стены опалубки для предотвращения быстрого обезвоживания бетонного раствора.

Затем в дно котлована вбиваются металлические стержни на расстоянии 20−30 см друг от друга и на 5−10 см от края траншеи. Для обеспечения ровной поверхности на дно котлована укладываются кирпичи. Желательно перед выкладкой кирпича сделать «подушку» из песка для максимального снижения силы пучения на фундамент.

После выкладки кирпичей можно выкладывать арматуру и при помощи проволоки связывать места их соединения и пересечения.

Для ручного связывания арматуры проволокой используется самый простой способ: когда проволока стягивается при закручивании, а ее концы фиксируются кусачками. Проволока должна быть сложена вдвое, а кусачки должны иметь притупленные зубцы, чтобы не перекусывать проволоку. Для этих целей можно использовать плоскогубцы.

Как связать арматуру для фундамента: способы вязки

Для того чтобы соединить арматурные стержни в пространственный каркас или сетку, армирование выполняют с помощью сварки или вязки. Это делается проволокой или хомутиками из пластика.

В последнее время вязка арматуры для фундамента остается наиболее популярной по сравнению со сваркой.

Недостатки сварных соединений:

  • во время сварки происходит уменьшение прочности стали в местах крепления, и при заливке бетоном может произойти разрушение сварных соединений;
  • прочность и надежность сварного соединения напрямую зависит от опыта и квалификации работника, поэтому некачественно выполненные швы при укладке бетона от динамичной нагрузки попросту могут разрушиться;
  • к недостаткам можно отнести и то, что расценки на сварочные работы, которые может сделать только квалифицированный специалист — сварщик, достаточно высоки.

К сварочному процессу для соединения арматуры прибегают достаточно редко, несмотря на такие преимущественные показатели, как простота монтажа и высокая скорость производимых работ.

В нахлест выполняется плоская вязка арматуры фундамента из плит. Специальные инструменты для такой вязки не нужны. Недостаток такого метода состоит в том, что он имеет низкую производительность.

Вязальные работы выполняются там, где была установлена опалубка арматуры. Для этого:

  1. Не нужно тратить время на доставку и транспортировку материалов.
  2. Не нужно переносить их с места на место.
  3. Сокращается время подготовки арматурной сетки к заливке бетонным раствором.

К недостаткам вязки арматуры проволокой можно отнести и то, что качество вязки непостоянно, возможно смещение узла вязки.

Существуют несколько способов вязки арматуры фундамента, вот основные из них:

  • при помощи плоскогубцев;
  • с использованием специального крючка;
  • с применением винтового крючка;
  • при помощи шуруповерта;
  • при использовании специальных скрепок;
  • при помощи вязального пистолета.

Материалы и инструменты для вязки арматуры

Для вязки арматуры используется стальная обожженная проволока диаметром 1−1,4 мм в зависимости от диаметральных размеров арматурных стержней. Данная проволока поставляется в бухтах, поэтому перед использованием ее необходимо разрезать на кусочки длиной 150−200 см для удобства применения и, в зависимости от того, каким инструментом будут пользоваться при вязке.

Обожженная проволока имеет ряд преимуществ, которые необходимы для производства вязки арматуры, а именно:

  • проволока отлично гнется;
  • очень плотно прилегает к арматуре;
  • при вязке практически не рвется.

В качестве альтернативы стальной проволоке строительный рынок предлагает пластиковые хомутики, появившиеся совсем недавно. Их основное преимущество заключается в удобстве использования, высокой скорости исполнения работы. К тому же цена на хомуты достаточно низкая.

Необходимый инструмент для вязки арматуры:

  1. Арматура (швеллер, уголок).
  2. Арматурные кусачки.
  3. Шуруповерт.
  4. Плоскогубцы.
  5. Вязальный пистолет (механический или электрический).
  6. Специальный крючок.
  7. Сварочный аппарат.
  8. Стальная проволока.
  9. Скрепки (скобы, фиксаторы).

Как правильно вязать арматуру для ленточного фундамента

Фундамент является опорой любой конструкции, но и у него есть свои элементы придающие прочность. Речь идет об арматурном каркасе, который проходит внутри любого сооружения из бетона. Построить бетонное основание своими руками довольно просто, но вот о том, как правильно вязать арматуру для ленточного фундамента, знают далеко не все.

Стоит отметить, что существует довольно много различных типов фундамента, для постройки которого используется заливка бетоном. Но если бетонный раствор примерно одинаков для всех типов, то арматурный каркас и его обвязка могут принципиально отличаться друг от друга.

Наиболее простым для изготовления является ленточный фундамент. Помимо надежной основы для дома, этот фундамент требует минимум времени, сил, а также финансовых вложений для его создания. Единственным существенным недостатком такой конструкции, считается ее проседание в процессе эксплуатации. Чтобы избежать деформации или максимально оттянуть сроки ее проявления необходим создать максимально качественный каркас из арматуры.

Особенности армирования ленточного фундамента

В отличие от любого другого типа, в ленточном фундаменте максимальные перегрузки приходятся не на бетонную основу, а на арматурный каркас. Это обусловлено тем, что деформация фундамента идет по типу продавливания. Соответственно вязка арматуры для ленточного фундамента наиболее актуально в верхнем и нижнем слое. В середине при продавливании бетон сжимается, а показатели по сжатию у бетона более чем хороши.

Немаловажную роль в этом процессе играет правильно подобранная арматура. Все типы арматуры маркируются специальным обозначением и помогают определиться с выбором, так маркировка большой буквой «К» говорит о том, что арматура покрыта специальным антикоррозийным составом. Это не особо важный аспект для арматуры, которая используется в каркасе фундамента, так как она полностью заливается бетонном. Более актуальная маркировка буквой «С», говорящая о том, что арматуру можно сваривать, а не только обвязывать проволокой.

Низкокачественная арматура не маркируется в принципе, но для фундамента на этом элементе не стоит экономить, так как именно от него зависит прочность и эластичность всей конструкции в целом, а также эксплуатационные сроки будущей постройки.

Вернуться к содержанию

Элементы необходимые для армирования фундамента

Отвечая на вопрос, как правильно вязать арматуру для ленточного фундамента, важно определиться со списком необходимых материалов и инструментов для проведения этого процесса.

  1. Самое важное это арматура, обычно она продается длиной в 3 и 6 метров. Размеры сечения, впрочем, как и длина арматурного прутка определяется индивидуальными особенностями будущего фундамента. Минимальный диаметр арматуры 10-12 мм, такой материал используют для создания небольших построек типа гаражей, сараев.
  2. Обвязочная проволока. Ее выбирают из металла с низким содержанием углерода, кроме того, для придания большей эластичности такая проволока прокаливается на огне. Она не должна быть слишком толстой, так как гнуть ее будет тяжело. В то же время, слишком тонкая проволока не даст достаточной прочности и ее придется складывать в несколько слоев, что существенно усложнит работу. Если проволока плохо поддается сгибанию ее можно еще раз прокалить над огнем в течение 20-30 минут.
  3. Обвязочный крюк. Это нехитрое устройство можно купить практически в любом строительном магазине, кроме того его можно изготовить самостоятельно из прочной, негнущейся проволоки или из рукоятки от старого мастерка, шпателя.
  4. Болгарка с набором отрезных дисков для нарезания арматуры.

Чтобы качественно подготовить каркас для заливки фундамента, сил и стараний одного человека будет недостаточно, нужен как минимум еще один помощник, который будет придерживать всю конструкцию пока обвязываются отдельные элементы. В идеале вязка арматуры под ленточный фундамент проводится силами трех людей. Третий помощник будет особенно необходим в момент переноски готовых конструкций в короба опалубки.

Вернуться к содержанию

Основные этапы, методы и правила армирования

Для того, чтобы понять как правильно вязать арматуру для фундамента, необходимо определиться с нагрузками, которые он будет испытывать. От этого напрямую зависит толщина и размеры всего фундамента.

Арматуру можно обвязывать тремя способами:

  1. Сварка. При наличии сварочного аппарата и некоторого опыта процесс обвязки арматуры упрощается, но качество такого каркаса на порядок хуже, так как в местах сварки метал утончается, а значит становится более хрупким. Такое соединение не способно выдерживать длительные механические и физические нагрузки, особенно если они связаны с вибрацией.
  2. Внахлест. Отдельные элементы арматуры стыкуются не поперек, а вдоль, с выпуском отдельных концов не менее чем на 10-15 см, которые впоследствии обматываются проволокой.
  3. Вязка проволокой -это самый эффективный способ создания надежного каркаса. Такой метод позволяет создавать практически любые фигуры с неограниченным количеством углов. Важно соблюдать геометрию углов при стыковке всех элементов и стараться делать их максимально прямыми (под 90 градусов).

При строительстве небольших зданий вместо проволоки можно использовать пластиковые хомуты, которыми стягивают соединения арматуры. Этот вариант не хуже проволочного соединения, единственное он менее устойчив к нагрузкам и хуже переносит критические перепады температуры. От мороза пластик становится ломким, а также может лопнуть.

Вернуться к содержанию

Процесс обвязки

Чтобы собрать каркас необходимо рассчитать размеры опалубки. В идеале каркас плетется так, чтобы на 5 см сверху и снизу не доходил до края опалубки. В короб он укладывается на кирпичные обломки, а верхний край заливки отмечается на опалубке. Современные строительные магазины предлагают специальные пластмассовые компенсаторы, на которые также можно уложить готовую конструкцию.

Схема вязки арматуры, зависит от опалубки, которую необходимо заливать. В процессе соединения отдельных элементов, прутки арматуры ставятся под углом 90 градусов и связываются отрезком проволоки. На одну обвязку берут примерно 20-30 см проволоки, которая складывается, пополам образуя на конце петлю. Свободные концы пропускают через петлю и затягивают, тем самым образуя узел. Оставшуюся проволоку обматывают вокруг стыка, или хорошо зафиксировав узел, обрезают лишнее.

Вязальный крючок необходим для вытягивания проволоки из петли, без него руки быстро устают, а кроме того есть риск получить травму. Помимо крючка можно использовать более современное автоматическое оборудование, правда, пистолет для вязки стоит достаточно дорого, и покупать его на один раз не рентабельно, зато можно поискать магазины, где дают оборудование напрокат.

Прочность фундамента зависит от целостности арматуры при вязке каркаса. Поэтому важно рассчитать максимальную прямую протяженность фундамента и исходя из этого, подбирать отдельные прутья. По необходимости от основного каркаса для фундамента вертикально вверх выводят ответвления, чтобы в будущем к ним привязать стены дома.

Вертикальные ответвления вяжутся по той же технологии что и каркас для фундамента, а затем выводятся как минимум в каждом из углов будущего здания. В идеале вертикальные части конструкции выводят под оконными проемами, а также в середине глухих стен.

Вернуться к содержанию

Советы

Помимо знаний о том, как правильно вязать арматуру для ленточного фундамента, может пригодиться еще несколько секретов, о которых распространяются далеко не все профессиональные мастера. В частности это:

Укладывая каркас из арматуры ее необходимо тщательно очистить при помощи металлической щетки от загрязнений и возможного налета ржавчина. В противном случае не гарантируется сцепка металлического каркаса с бетонным раствором.

При необходимости согнуть длинный арматурный прут использовать нужно только молоток, а также прямоугольную форму по которой будет сгибаться прут.

Для создания горизонтального каркаса используют арматуру с ребристой поверхностью, а для вертикальных конструкций лучше подходят гладкие прутки, по которым заливаемый бетон без проблем стекает вниз не оставляя пустот с небольшими пузырьками воздуха.

Вернуться к содержанию

Заключение

В целом, обвязка арматуры для создания каркаса бетонного ленточного фундамента совсем несложный процесс, который сможет выполнить каждый, особенно если изготовить нужно простой, в плане геометрии каркас. Стоит отметить, что и стоимость подобных работ у профессионалов оценивается совсем в небольшие деньги. Порой, даже целесообразнее заплатить за обвязку арматуры для фундамента, чем тратить собственное время, учитывая необходимость помощи нескольких человек.

Не нашли ответов в статье? Больше информации по теме:

Как вязать арматуру для фундамента

Как вязать арматуру для фундамента.

Как известно, от качества изготовления фундамента во многом зависит устойчивость будущего дома или сооружения, ведь фундамент дома – это его основа. А основа должна быть надежной и долговечной. Процесс вязки арматуры рассмотрим на примере арматуры для ленточного фундамента, который чаще всего применяется в строительстве. Строительная арматура для фундамента всегда есть в наличии в нашей компании.

 

 

При армировании строительных конструкций сетками и каркасами с диаметром арматуры до 32 мм их соединение осуществляется при помощи сварки, вязки и нахлестки. Ручная сварка по-прежнему является основным видом соединения арматуры. Но этот способ имеет ряд недостатков. Во-первых, большие объемы работ требуют значительного количества сварщиков. Во-вторых, электрическая сварка при ее высокой температуре «отпускает» закаленный стержень арматуры и снижает его прочность. Контактная сварка также неприменима при диаметре арматуры больше 20 мм. В-третьих, при уплотнении бетона с помощью вибраторов возможно нарушение целостности сварных соединений. Поэтому все чаще в настоящее время применяется метод вязки проволокой при формировании каркасов из арматуры.

Эта тенденция появилась и на отечественных стройплощадках, особенно при строительстве индивидуальных жилых домов. Во многих случаях пока еще вязку выполняют вручную – при помощи специальных крюков или обычных пассатижей. При этом рабочий должен иметь хорошие сноровку и навыки работы. При ручной вязке стержни сращивают внахлест и перевязывают стык в трех местах (по краям и в середине) стальной проволокой диаметром 0,8-1,0 мм. При вязке стержней гладкого профиля требуется отгибание крюков, что значительно увеличивает трудоемкость. Процесс вязки арматуры с помощью подручных инструментов достаточно трудоемкий. Поэтому вполне резонно, что строители пытаются усовершенствовать ручную вязку арматуры.

Революционный прогресс в вязке арматуры достижим при применении автоматического инструмента. Иностранные, преимущественно японские компании – производители инструмента для строительных работ создали специальные пистолеты, которые осуществляют весь процесс вязки арматуры. Применение пистолетов для вязки позволяет исключить ручной труд практически полностью и одновременно уменьшить количество занятых работников. При этом реализуется высокое качество соединений (постоянный момент затяжки проволоки). Работать с такими пистолетами удобно и просто. Насадка пистолета устанавливается на связываемое место и рабочему необходимо лишь только нажать на кнопку инструмента. Механизм пистолета, приводимый в действие от аккумулятора, осуществляет надежную вязку арматуры. Время одного соединения – от 0,8 до 2 секунд. Для вязки использется проволока из сменных катушек, которые поставляются как в комплекте с пистолетом, так и под заказ.

Вязка арматуры на стройплощадке осуществляется аналогично вязке в условиях заводского цеха. Одновременно с монтажом опалубки, для ленточного фундамента, монтируется арматура. Сечение, количество и расположение арматуры указано в проекте строительства. Обычно это два ряда арматуры, как видно на нижеприведенном снимке.

Чтобы добиться высокой производительности труда, необходима также четкая организация всего технологического процесса арматурной вязки. Это возможно при разделении труда внутри бригады арматурщиков, обеспечения их качественным инструментом и приспособлениями. Вязаные каркасы и сетки при монтаже соединяются внахлестку. Длина перепуска соединения зависит от типа арматуры, условия работы стыка, марки бетона. Обычная длина перехлеста – минимум 250 мм.

Арматуру вертикально расположенных конструкций с высотой от 3 м монтируют с применением лесов, подмостей или с помощью подъемно-переставных площадок, которые можно поднимать или опускать.

Арматурные изделия монтируют в строго определенной последовательности: подготовка элемента к монтажу; строповка; подача элемента на устанавливаемое место; выравнивание его в проектное положение; вязка стыков. Подготовка монтажу состоит в его осмотре, очистке от грязи стальной щеткой, а при необходимости в выпрямлении молотком.

Укладка арматуры в фундамент – особо ответственный этап. Подготовку и строповку изделия выполняют два человека. Установку изделий в требуемое положение, их фиксацию и соединение с ранее установленными элементами выполняют три человека. Один из которых дает сигнал о начале подъема изделия, а затем о начале опускания его на место. Два других рабочих держат его за оттяжки при подъеме, затем устанавливают его на место и уже втроем соединяют стыки с помощи вязальной проволоки. При сборке изделий из арматуры в котлованах или траншеях арматурные элементы подаются при помощи траверсы или лотков.

Расход арматуры на фундамент зависит от многих факторов – типа фундамента, его габаритов, числа ниток и диаметра арматуры, параметров опалубки. Ответить на вопрос «Сколько нужно арматуры для фундамента?» вы сможете, сделав соответствующий расчет, воспользовавшись специальными формулами и таблицами.

На нашей металлобазе Вы можете купить самые разнообразные виды металлопроката по оптовым ценам: арматуру, катанку, круг, листы г/к, листы х/к, листы рифленые, листы оцинкованные (оцинковка), листы с полимерным покрытием (полимер), проволоку Вр, проволоку ОК, проволоку оцинкованную, проволоку колючую, гвозди, канаты, метизы, угловой прокат, швеллер, двутавры, электроды, трубы профильные квадратные, трубы профильные прямоугольные, трубы круглые водогазопроводные и др.

www.pm.kg

Как правильно вязать арматуру для фундамента ленточного

Фундамент является основой любого строения, поэтому от его прочности зависит вся конструкция дома, его прочность и долговечность. Лучше всего делать фундамент сплошной, когда бетон заливается на готовую арматуру. Но при этом обязательным условием является правильная вязка арматуры в фундаменте и качественный бетон. Вязка арматуры требует от тех, кто ее монтирует, навыков производства этих работ, опыта и умения. Поэтому лучше, если процессом формирования арматуры для фундамента на этапе строительства деревянного дома будут делать профессиональные строители.

Методы соединения

Вязка арматуры до 32 мм осуществляется с помощью стальной проволоки в местах соединения. Можно соединять арматуру и с помощью сварки, но это более длительный процесс, требующий больших усилий. При этом сварка снижает прочность и повышает жесткость.

Вязка арматуры пользуется большей популярностью у застройщиков, чем сварка. Проволока для вязки бывает в мотках или готовыми кусками. Для установки каркаса фундамента требуется два человека, а для вязки минимум три. Можно вязать вручную с помощью специальных крюков или обычных пассатижей. В последнее время появились новые приспособления для вязки, при которых сокращается расход проволоки и улучшается качество работы.

Вязка высокого фундамента

Если фундамент деревянного дома высокий, то нужно применять леса для удобства вязки арматуры. Укладка арматуры требует особой ответственности от мастеров, производящих эту работу. Подготовку и строповку  делают два человека. А устанавливают в нужном положении и фиксируют втроем.

Инструмент для работы

Соединение стыков стальной проволокой лучше проводить качественным инструментом, который имеется в каждой строительной фирме и значительно облегчает задачу рабочих. Каждый стык должен быть связан проволокой прочно, нельзя делать пропуски. Арматура — основа всей конструкции фундамента, от ее правильной вязки слишком многое зависит. Но когда за дело берутся профессионалы, волноваться не стоит.

Если понадобится резать прут определенных размеров, рабочие фирмы выполнят и эту работу. В их быстрых и ловких руках работа спорится. Та работа, которая у новичка потребует длительных  сроков и больших усилий, в руках специалистов будет сделана качественно и в короткий срок. Хозяину дома останется только заказать бетон, и рабочие доведут строительство фундамента до конца. С такой надежной конструкцией дом простоит многие годы, опираясь на мощную монолитную основу.

Вам будет интересно посмотреть…

способы и схемы вязки арматуры для фундамента


Соединять арматуру для дальнейшего укрепления фундамента можно несколькими способами. Сегодня достаточно часто можно увидеть пластиковые хомутики в качестве соединительных элементов. Здесь ничего сложного: только хорошенько их затяните. Также встречается фиксация с помощью пистолета для вязки арматуры: это быстрый и удобный способ. Больше всего времени и сил занимает вязка с помощью специального крючка и проволоки: нужно знать особые приемы, чтобы эффективно загнуть проволоку. Выбор одного из методов – вопрос удобства, про прочности они идентичны (при правильном выполнении).

Схемы и способы вязки арматуры для фундамента

Вариант №1

  • Нужно сложить проволоку вдвое.
  • В месте, где соединяются 2 стержня, провести пр-ку под прут.
  • В петлю из проволоки продевается крючок, а свободный конец пр-ки подтягивается и накладывается на крючок (нужно немного согнуть).
  • Вы вращаете крючок (3-5 оборота), и оба конца проволоки скручиваются.
  • Достаньте крючок из петли.

Вариант №2

  • Проволока складывается вдвое, заводится под прутья (в место, где нужно осуществить фиксацию).
  • Петля поддевается крючком.
  • Делаем овальную петлю (второй конец проволоки перегибается через крючок).
  • 0-образная петля крутится, когда вы не почувствуете, что фиксация надежна.

Вариант №3

  • Проволока заводится под арматуру.
  • Крючок вставляется в петлю, поддевается второй конец пр-ки, она загибается вниз.
  • Нужно потянуть крюк на себя, покрутить его. Сделано!

Вариант №4

  • Начало стандартное: сгибы пополам и заведение под прут.
  • Надежно прижать проволоку к стержню и загнуть концы на себя.
  • Вставляется крючок, производится несколько оборотов. Готово!

Общие советы для всех схем вязки арматуры: подгибайте пр-ку перед скруткой (тогда вам нужно прокрутить меньшее количество оборотов). Для хорошей фиксации нужно совершить от 3 до 5 оборотов.

Качественная арматура – прочный фундамент

У нас вы можете заказать арматуру с доставкой на ваш строительный объект! Качество – гарантируем. Также мы выполняем резку арматуры под ваши размеры. Звоните!

Страница не найдена для 1_minimum_concrete_cover

Имя пользователя*

Электронное письмо*

Пароль*

Подтвердить Пароль*

Имя*

Фамилия*

Страна Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Территория нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве

Captcha *

Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности.*

Страница не найдена для 3_reinforcement_supports

Имя пользователя*

Электронное письмо*

Пароль*

Подтвердить Пароль*

Имя*

Фамилия*

Страна Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Территория нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве

Captcha *

Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности.*

Размещение арматуры в опорах

Размещение арматуры в опорах

Укладка арматуры в основание требует таких действий, как проверка бетонного покрытия, местоположения, привязки арматуры и опор и т. Д.

  1. Минимальное бетонное покрытие

Бетонное покрытие — это толщина или количество бетона, помещенного между арматурной сталью и поверхностью бетонного элемента. Покрытие является самым важным фактором защиты арматурной стали от коррозии.Покрытие также необходимо для обеспечения того, чтобы сталь достаточно хорошо сцеплялась с бетоном, чтобы развивать его прочность.

Минимальное покрытие для монолитного бетона указано Строительными нормами ACI 318.

Для бетонной заливки и постоянного контакта с землей (например, опор) — 3 дюйма

Для бетона, подверженного воздействию погодных условий или земли (например, стены подвала)

# 6 стержней и больше — 2 дюйма

# 5 стержней или меньше — 1½ дюйма

Для бетона, не подверженного атмосферным воздействиям или контактирующего с землей:

плиты, стены и балки — стержни № 14 и № 18 — ½ дюйма

Перекрытия, стены и балки —

# 11 стержней и меньше — ¾ дюйма

Балки и колонны — 1½ дюйма

  1. Размещение стержней

По общему правилу арматура должна располагаться на стороне растяжения в нижней части основания.В квадратном фундаменте арматура укладывается равномерно в обоих направлениях. Кодекс ACI требует, чтобы арматурные стержни располагались на расстоянии не более 18 дюймов друг от друга.

В прямоугольном основании арматурные стержни в длинном направлении размещаются равномерно, но не в коротком направлении. Код ACI (15.4.4.2) требует, чтобы определенная часть арматуры в коротком направлении была размещена внутри полосы, равной ширине основания в короткое направление.

Соотношение распределения длины к короткой стороне рассчитывается на основе соотношения сторон основания как —

Размещение арматуры в фундаменте сильно влияет на несущую способность фундамента.Любое неправильное размещение может вызвать серьезные структурные разрушения. Например, опускание верхних стержней или подъем нижних стержней на ½ дюйма больше, чем указано для плиты глубиной 6 дюймов, может снизить ее грузоподъемность на 20%.

  1. Арматурные опоры

Арматуру основания нельзя укладывать в почву или твердый грунт, так как она подвержена коррозии. Даже размещение арматуры над слоем свежего бетона с последующей заливкой бетона также недопустимо, так как положение арматуры может измениться при заливке бетона.

Опоры для стержней используются для удержания арматурных стержней на месте для достижения необходимой глубины покрытия.

Для правильного размещения используются опоры арматуры, которые бывают разных размеров и из различных материалов, таких как стальная проволока, сборный бетон или пластик.

Стулья и опоры доступны разной высоты для поддержки определенных размеров и положений арматурных стержней.

  1. Крепление арматуры

Хотя стальная стяжка не влияет на прочность арматуры, она используется для фиксации и предотвращения смещения арматуры во время строительных работ и укладки бетона.

Для связывания арматурных стержней используется стяжная проволока, которая обычно представляет собой черную мягкую отожженную проволоку калибра 16½ или 16, хотя для более тяжелой арматуры может потребоваться проволока калибра 15 или 14, чтобы удерживать арматуру в правильном положении.

Обвязка всех перекрестков не требуется, обычно достаточно каждого четвертого или пятого. Необходимо следить за тем, чтобы концы стяжной проволоки находились подальше от поверхности бетона, где они могут заржаветь.

При связывании стержней нет необходимости связывать каждое пересечение — обычно достаточно каждого четвертого или пятого.Убедитесь, что концы стяжной проволоки не касаются поверхности бетона, где они могут заржаветь.

Типы крепления арматуры

Существуют разные способы привязки анкерного стержня к арматурному стержню в зависимости от ситуации и места, где они привязаны.

Деталь A: «Защелкивающаяся стяжка» является самой простой и обычно используется для арматурного стержня в плоском горизонтальном положении.

Деталь B: «Обвязка и защелкивающаяся стяжка» обычно используется при связывании вертикальной арматуры стены, чтобы надежно удерживать стержни на месте.

Деталь C: «Седельный галстук» сложнее, чем карабины или карабины и карабины. Они обычно используются для крепления стяжек к угловым стержням колонн и хомутов к угловым стержням балок.

Деталь D: «Обертка и седельная стяжка») похожа на седельную стяжку, за исключением того, что проволока оборачивается 1-1 / 2 раза вокруг первой планки, а затем завершается, как Деталь C.

Деталь E: «Галстук в виде восьмерки» можно использовать на стенах вместо седла или бинта и карабина. Этот тип стяжки используется для закрепления тяжелых матов.

Как связать арматуру под ленточный фундамент

  • Другие способы соединения фурнитуры
  • Как связать пластиковую арматуру
  • Ленточный фундамент часто используется как основа для строительства. Замкнутый контур, напоминает железобетонную ленту, которая устанавливается по периметру несущих стен здания. Такой фундамент оптимизирует нагрузку на основание, распределяя ее по всей площади дома, что повышает устойчивость здания к просадкам и предотвращает его перекос.

    Такая конструкция позволяет создавать самые разные постройки, в том числе деревянные дома и монолитные конструкции из бетона. Кроме того, требуется гораздо меньше материала и подготовительных работ, что позволяет сэкономить на строительстве, но по соображениям качества вам нужны хорошие полосы армирования, которые производятся за счет когерентного армирования.

    Для создания и укрепления ленточного фундамента используется обычная арматура, скрепленная в одну конструкцию. На нее ложится основная нагрузка, увеличивающая срок службы фонда.

    Чтобы убедиться, что вы выбрали правильную фурнитуру. Подходящий материал с показателем К — коррозионностойкий. Используйте индикатор C, но он предназначен для соединения сваркой.

    Внимание! Клапан без индикатора лучше не брать.

    Перед тем, как привязать арматуру для фундамента, следует выбрать способ соединения. Часто используют вязание крючком, которое позволяет скреплять детали обычной проволокой. Для этого используются три разъема:

    • провод;
    • пластиковая клипса;
    • пластиковые зажимы с металлическим сердечником.

    Часто используют проволоку, это надежный и проверенный вариант. Но пластиковые зажимы удобнее, быстрее монтируются и не требуют инструментов. Единственный их недостаток — плохая фиксация, но проявляется он только при нагрузке на фрейм перед заливкой. Пластиковые хомуты после затвердевания бетона не уступают по свойствам проволоке.

    Совет! Можно использовать ремни с металлическим сердечником. Они сочетают в себе преимущества обоих вариантов, обеспечивая прочное соединение для армирования.

    Так как связать арматуру для фундамента вручную довольно сложно, для этого воспользуйтесь инструментами. Они позволяют ускорить процесс и значительно улучшить качество светильников. Хороший инструмент обеспечит быстрое армирование ленточного фундамента.

    Среди основных инструментов для стыковки фитингов используются:

    • крючок для вязания;
    • дрель с насадкой;
    • вязальный пистолет;
    • самодельный крючок.

    Иногда используют пластиковые зажимы (проушины), но с ними неудобно работать и требуется готовая основа.Все инструменты работают по одному принципу, с их помощью «наматывают» проволоку после ее вязания. Отличается только вязанием пистолета, который сам запечатлел дизайн, и ее завязкой.

    Однако ленточный фундамент неудобно вязать им, так как рабочая зона мала.

    Практичный и универсальный вариант — крючок для вязания крючком. Это профессиональный инструмент для компаундов, который можно использовать где угодно. Он компактен и может использоваться для армирования бетона ленточных фундаментов.Самодельный крючок скопируйте его, как обычный крючок на ручку.

    Для ускорения процесса используйте дрель с насадкой. Она быстро выполняет откат соединений, пока не перестанет надежно фиксировать конструкцию. Однако, если инструмент крупный, при связывании рамки из ленты будет неудобно.

    Совет! Это упражнение можно делать самостоятельно. Для этого подойдет насадка в виде обычного крючка и отвертки.

    Принцип работы всех приборов аналогичный — намотка проволоки на раму.Поэтому выбор зависит от личных предпочтений и не влияет на результат.

    Схема армирования ленточного фундамента ↑

    Вязать армирование фундамента вручную довольно просто. Перед этим нужно правильно установить каркас. Для этого подхода следующая схема ременной рамы:

    Количество зон армирования зависит от длины и высоты ленточного фундамента. Если конструкция простая, дополнительных стержней в той же зоне не существует, схема преобразуется в куб с восемью креплениями в сегменте.N и L отвечают за расстояние, на котором крепится арматура для фундамента. Часто это 100-300 мм, в зависимости от нагрузки на конструкцию. По высоте сегмент у них такой же, а ширина около 300 миллиметров. При необходимости можно добавить дополнительные линии армирования, как это сделано на картинке.

    Схема армирования простая и состоит из нескольких этапов:

    • возьмите кусок проволоки длиной 25-30 см;
    • сложен пополам;
    • подводятся под шатуны неразъемные боковые;
    • Петля
    • цепляется за крючок и полностью охватывает арматуру;
    • , затем свободный конец надевается на крючок, начинается намотка;
    • крючок нужно повернуть по часовой стрелке до упора;
    • после снятия крючка соединение готово.

    Важно! Не стоит сильно затягивать провод, так как он может лопнуть.

    Путь петель для стыковки планки фундамента можно увидеть на этой схеме, где отмечен блок ступеней на 5 ступеней, а на оставшиеся две.

    Наличие отвертки с насадкой упрощает намотку проволоки, а вязание самого пистолета выполняет весь процесс. С практикой скорости ручного завода повышается по мере надёжности таких соединений.

    Для соединения каркаса в ленточный фундамент используются другие способы, кроме стыковки.Хомуты из пластика, о которых упоминалось ранее, а также сварочные. Их использование имеет ряд преимуществ, но многие предпочитают обычный провод. И этому есть причина.

    Хомуты из пластика — удобный и простой способ подключения. Быстро схватывается, не требует инструментов и не уступает по надежности после затвердевания бетона. Но у него есть недостатки: Цена

    • ;
    • слабость соединений перед заливкой бетона;
    • нестабильность температуры.

    Это соединение дорогое, и его надежность перед заливкой бетона вызывает сомнения. При небольшой нагрузке клапан может просто вести, испортив всю работу раньше. Низкая температура зажима разрушительна, соединение разрывается при небольшом морозе. Поэтому лучше использовать для быстрых и простых дизайнов.

    Нужно ли привязывать арматуру к фундаменту при сварке? Это надежное соединение, для которого требуется только опыт и сварочный аппарат. Он обеспечивает хорошую монтажную раму и требует минимум ресурсов для самостоятельной работы.

    Но недостатком этого метода является потеря прочности арматуры. Металл под термическим воздействием теряет свои свойства, что особенно сказывается на его устойчивости к низким температурам. Так что готовая конструкция может просто треснуть при первых морозах. И времени на него потратил очень много. Поэтому на вопрос «вязать или варить арматуру» многие отдают предпочтение первому варианту.

    Стекловолокно — альтернатива металлу при создании фундамента. Он имеет меньшую стоимость и вес, а срок его службы намного выше.Но процедура вязки такого каркаса несколько отличается от обычной.

    Перед тем, как вязать пластиковую арматуру для фундамента, нужно провести точные расчеты — это не тот металл, который выдержит небольшие погрешности по весу и нагрузке, ему нужен просчет и точное распределение веса. Расстояние между стержнями при привязке колеблется от 15 до 35 сантиметров, в легких конструкциях иногда достигает 60.

    Для создания основания всегда используются пластиковые поддоны (проушины), которые позволяют конструкции не проседать при заливке бетона.Для армирования стекловолокном используется просто проволока или зажимы. Не допускается работа без замеров, все соединения должны быть равномерно распределены по периметру.

    Важно! Для устойчивости конструкции из стеклопластика используются специальные металлические элементы, предотвращающие деформацию и провисание каркаса.

    Обвязка фундамента из арматурной ленты — процесс несложный, но требует внимания к каждому элементу. Зависит от прочности конструкции и надежности готового фундамента.Для этого используются разные инструменты и схемы, но процесс довольно простой. Более подробное объяснение того, как связать арматурный стержень ленточным фундаментом, смотрите в видео:

    Связанные с контентом

    Что такое поперечная балка | Детали стяжной балки | Преимущества использования поперечной балки | Арматура поперечной балки

    Самый важный момент в этой статье

    Что такое поперечная балка?

    Балка, которая соединяет две или более колонны или стропила в крыше или стропильной ферме или на любой высоте над уровнем пола , чтобы сделать всю конструкцию более жесткой и устойчивой на уровне фундамента, называется анкерной балкой .

    Анкерные балки в основном устанавливаются на стропильной ферме , уровне пола и цоколе . Они не могут выдерживать вертикальную нагрузку , например стены и т. Д.

    Стяжные балки

    иногда работают как стропильная балка , принимая на себя все напряжения, возникающие из-за эксцентриситета колонны на опоре . Связующие балки работают как фиксирующие элементы , чтобы уменьшить неподдерживаемую длину колонны .

    Анкерные балки также могут использоваться для поддержки стен или любых других перегородок между ними.Анкерные балки также работают как связующий элемент для защиты дифференциальной осадки между опорами в зависимости от слоев.

    Также читайте: Что такое кирпичная летучая мышь Coba | Гидроизоляция кирпича Bat Coba | Преимущества и недостатки гидроизоляции Brick Bat Coba

    Детали поперечной балки

    Если высота крыши выше нормальной высоты конструкции, то предусмотрены балки типов .

    Они действуют как разрыватель длины в колоннах . Балка соединяет две или более колонны, чтобы уменьшить их эффективную длину и уменьшить их коэффициент гибкости.

    Преимущества использования поперечной балки

    • Эти балки не переносят нагрузок на пол и действуют как разрыватель длины для колонн , где пол необычно высокий.
    • Несут осевое сжатие .
    • Передают стропильную нагрузку на колонну.
    • Они предотвращают выпучивание сильно напряженных тонких продольных колонн наружу .
    • Соединяют опор колонн или свайных зажимов .
    • Они удерживают продольные стержни в положении во время укладки бетона.
    • Они удерживают опор в своих положениях во время сейсмических событий .
    • Они служат в качестве балок уклона с по , перераспределяют вертикальные нагрузки через момент и сдвиг в случае дифференциальной осадки .
    • Они служат в качестве ленточных опор для поддержки внутренних или внешних стен .
    • Они служат в качестве балок уклона над свайным фундаментом, чтобы связать свайные заглушки и поддержать вышележащую конструкцию.

    Также прочтите; Формулы графика изгиба стержня согласно IS: 2502-1963 | Удельный вес стальных прутков

    График гибки стержней для поперечных балок

    Кредит изображения: www.civilread.com
    • Целью графика гибки стержней является определение количества арматуры, необходимой для здания.
    • График изгиба стержней для опор жизненно важен для r сбора информации об армировании анкерных балок / стяжных балок в опорной конструкции.
    • Анкерная балка обозначает балку, которая прикрепляет две опоры к основанию . Если две опоры остаются на идентичной линии , следует установить анкерную балку.
    • Наклонная балка, псевдоним наклонной балки, похожа на анкерную балку, но она прикрепляет две опоры под определенным углом. Строповая балка размещается, если две опоры остаются на разных уровнях.
    • Анкерная балка / Стропильная балка особенно расположена среди свайных заглушек и фундаментов мелкого заложения . Их основная цель — заставить все мелкие фундаменты или заглушки свай получить примерно одинаковые осадки .
    • Горизонтальные стержни, которые соединяют одну опору с другой опорой, относятся к основным стержням , а вертикальные стержни известны как хомуты. Стремена облегчают установку основных стержней в точном положении .

    Также читайте: Калькулятор кирпичной кладки | Калькулятор кирпичной кладки | Размер кирпича | Расчет работы кирпича

    Арматура поперечной балки

    При армировании анкерных балок следует помнить следующие моменты: —

    • Основные балки (верхняя, нижняя, боковая) прикреплены к центру одной опоры к центру другой опоры.
    • Стремена предусмотрены от одной стороны опоры до другой передней части опоры .

    Связи в колонне

    Правильное использование стяжек колонн для создания идеального конструктивного решения

    • Сначала необходимо выпрямить стержни для изготовления стяжек с сохранением точного диаметра. Минимальная длина анкерных стержней не должна быть меньше 10 мм.
    • На основании размеров, указанных на чертеже, стержни должны быть обрезаны с соответствующей опорой и осторожно согнуты; в противном случае он получит повреждения.
    • Для обеспечения надлежащей спецификации, а также расстояния между стяжками, нам необходимо следовать указаниям инженеров-проектировщиков и кодам BNBC, ACI и ASTM.

    Также Reaad: Что такое сантехника | Сантехнические системы | Разница между однотрубным, двухтрубным, одинарным и одинарным стеками с частичной вентиляцией | Как выбрать сантехническую систему.

    Для того, чтобы выдержать землетрясение, необходимо сохранить следующие детали для анкеров: —

    • Крючки для стяжек следует согнуть, соблюдая углы 135 ° .Головную часть стяжек следует расширить до 6 дБ. Для стержня 10 мм это должно быть 3 дюйма.
    • Детализация землетрясения также важна для стяжек , расположенных в средней части.
    • Перед установкой стяжек в стержни колонн нам необходимо как следует очистить первичные стержни.
    • После этого, исходя из конструкции и шага стяжек, в стержнях колонн предусматривается необходимое количество стяжек.За это время крючки стяжек следует согнуть и расположить соответствующим образом.
    • После установки всех стяжек плотно закрепите их первичными стержнями колонн с проволокой GI . Мы должны следить за тем, чтобы стяжки не смещались после закрепления проволокой .
    • Для детализации землетрясений установите связи также в стыки балок и колонн . Требуется достаточное количество шпал в стыках балок и колонн.

    Также прочтите: Как рассчитать длину резки хомутов в балке и колонне

    Конструкция поперечной балки
    • Связующая балка, поперечная балка, грунтовая балка и балка цоколя не отличаются друг от друга. Связанная балка — это балка, используемая для связи двух колонн для сопротивления двум движениям по вертикали и горизонтали.
    • Анкерные балки могут быть любого уровня. Если они находятся на уровне цоколя, они называются балками цоколя, где они также помогают в почве, удерживают внутреннюю площадь дома, а также служат опорой для стен.
    • Конструкция анкерной балки будет определяться величиной дифференциальной осадки фундамента, выбранного для данной работы.
    • Если дельта — это дифференциальное оседание , то он распределяет этот момент между элементами соединения балка-колонна в соответствии с их жесткостью на изгиб.

    Это способ подбора анкерной балки. Учет дифференциальной осадки анкерной балки является хорошей конструкцией.

    Также читайте: Что такое кирпичи из летучей золы? | Преимущества и недостатки кирпичей из летучей золы | Стоимость Зольного Кирпича | Как сделать кирпичи из летучей золы | Прочность на сжатие зольного кирпича

    Зачем нужна бетонная анкерная балка?

    • Колонны стальной скрепленной рамы опираются на раздвижную опору с помощью стяжной балки между колоннами .
    • Чтобы противостоять вертикальной и горизонтальной реакции рамы, проектируя анкерную балку, необходимо учесть, что имеет обычную бетонную балку с осевой нагрузкой.
    • Эта осевая нагрузка действует как сжатие или растяжение, поэтому для осевого сжатия она аналогична силе осевой стойки . Для осевого натяжения требуется , также следует проверить Steel Area.
    • Это элемент растяжения, а не сжатия, поэтому единственная функция бетона — защищать сталь .
    • После проверки арматуры на прочность , убедившись, что у вас достаточно нахлеста на требуемых стыках, определите величину деформации в стяжке и ее влияние на характеристики рамы .
    • Галстуки не нужно заливать бетоном, но их нужно защищать. Бетон, всегда предпочитаю использовать соединители, а не стержни внахлест.

    Две дополнительные мысли

    • Анкерная балка ограничит боковое смещение фундаментов из-за сейсмической активности или смещения земляного полотна.
    • Если балка продлена до других соседних опор, она может стать поперечной балкой, где при необходимости она может принять дополнительную статическую нагрузку, чтобы противостоять опрокидыванию из скрепленной рамы.

    Также читайте: Что такое сантехническое соединение | Типы сантехнических соединений | Различные типы трубных соединений и их применение

    №1. Детали усиления поперечной балки

    • Железобетон (ЖБИ) широко используется в строительстве во всем мире. Колонны передают нагрузки от балок и плит на фундамент.Колонны выдерживают высоких сжимающих усилий в мегаконструкциях, таких как длиннопролетных конструкций и высокие здания .
    • Колонны
    • могут быть повреждены из-за перегрузок и стихийных бедствий, таких как землетрясения и пожары, из-за ограниченной прочности и пластичности бетона .
    • Отказ одной или нескольких колонн может привести к обрушению конструкции.
    • Для колонн RC необходимы как продольное, так и поперечное усиление.В то время как бетонный стержень подвергается радиальному сжатию, в горизонтальном направлении, ограничивающий объем подвергается растяжению.
    • Однако либо большой интервал, либо близкий интервал между стяжками приводит к недостаточному ограничению бетонного ядра.
    • В то время как низкий объемный коэффициент связей уменьшает удержание бетонного ядра, высокий объемный коэффициент связи нарушает целостность бетона. Это создает слабую плоскость между ядром и бетонным покрытием, а также создает проблемы при строительстве из-за перегруженности каркаса колонны арматурой.
    • Нехватка ограничения, обеспечиваемого стяжками, была причиной использования таких материалов, как Expanded Metal Mesh (EMM), Welded Wire Mesh (WMM) и Fiber Reinforced Polymer (FRP) для ограничения бетона. основной.

    №2. Количество арматуры в поперечной балке (расчет)

    • Рассчитайте общую длину анкерной балки.
    • Рассчитайте общую статическую и временную нагрузки в соответствии с данным чертежом сечения.
    • В зависимости от нагрузки рассчитайте максимальный изгибающий момент и поперечную силу, действующие на балку.
    • Вес 1 м стали = d 2 /162 (где d — диаметр ) кг . По этой формуле можно рассчитать необходимый вес армирования в соответствии с требуемой площадью.

    Также прочтите: Разница между уровнем цоколя, уровнем подоконника и уровнем перемычки.

    Краткая записка

    Что такое поперечная балка

    Балка , которая соединяет две или более колонны / стропила в ферме крыши / крыши или на любой высоте над уровнем пола, называется анкерной балкой . Анкерные балки в основном используются в стропильных фермах и на уровне цоколя.

    Связи в колонне

    В железобетонной конструкции стяжки используются в колоннах . Для удержания продольных стержней в опалубках во время укладки бетона.

    Для предотвращения прогиба сильно нагруженных тонких продольных стержней наружу из-за разрыва тонкого бетонного покрытия.

    Конструкция поперечной балки

    В зданиях с каркасной конструкцией цоколь Beam связывает всю колонну конструкции, чтобы уменьшить коэффициент гибкости колонн.Армирование применяют по конструкции по проекту .

    Может быть и без армирования. Его высота может варьироваться. Его высоту следует выбирать в соответствии с конструктивными требованиями.

    Назначение анкерных балок.
    • Балка используется для осевого сжатия.
    • Для уменьшения эффективной длины колонны.
    • Они предотвращают коробление колонны.
    • Анкерные балки уменьшают коэффициент гибкости.

    Зачем нужна бетонная анкерная балка

    Анкерные балки — это балки , функция которых не состоит в том, чтобы нести нагрузку на плиту, а просто действовать как элемент жесткости для колонн и тем самым уменьшать эффект длинной колонны.

    Иногда он также действует как влагозащитный слой на уровне цоколя и как разделитель для вентиляторов и дверей при размещении на уровне перемычки.

    Также прочтите: Как рассчитать количество стальной плиты по чертежу | BBS плиты

    Количество арматуры в поперечной балке

    Расчет армирования анкерных балок разделен на две части: Основные стержни и хомуты.Проверьте длину основных полос в верхней, нижней и боковых панелях.

    Рассчитайте общую длину основных стержней в верхнем, нижнем и боковом направлениях. Найдите общий вес основных стержней

    Понравился этот пост? Поделитесь этим с вашими друзьями!

    Рекомендуемое чтение —

    Требуется ли сталь, арматура или волокнистая сетка в столбах и опорах строительных компонентов?

    ВВЕДЕНИЕ

    Основное назначение фундаментов — распределение и сопротивление силам или нагрузкам, испытываемым несущей конструкцией из-за ветра, дождя, снега, сейсмических и других нагрузок.Когда дело доходит до строительных компонентов, таких как генераторы, знаки и ограждения, код оставляет серую зону для проектирования фундамента. Это происходит потому, что большинство компонентов здания непригодны для проживания и, следовательно, не находятся на переднем крае при установлении требований кода. В этой статье подводятся итоги нашего исследования относительно того, в каких ситуациях опор стальная арматура не требуется при проектировании компонентов здания, и предлагаются некоторые альтернативные методы армирования для проектирования.

    ЗАДНЯТЬ ИЛИ НЕ ЗАПРАВИТЬ?

    Руководство ACI 318-14 является ведущим стандартом при проектировании бетона.Глава 2 ACI 318-14 дает нам определение простого бетона: «бетон, простой — бетон без армирования или с армированием меньше минимального количества, указанного для железобетона».

    Как уже упоминалось, определение простого бетона не обязательно означает, что в нем нет арматуры, это просто означает, что в нем меньше арматуры, чем указано для выбранного использования. Для целей этой статьи мы предположим, что в обычном бетоне отсутствует всякое армирование.Продолжая главу 14 ACI 318-14, мы, наконец, получаем наши возможности для «простого бетона» и то, в каких случаях допускается использование обычного бетона:

    · «14.1 — Область действия

    Данная глава применяется к проектированию простых бетонных элементов, включая (a) и (b):

    (а) Элементы строительных конструкций

    (b) Элементы в не строительных конструкциях, таких как арки, подземные инженерные сооружения, гравитационные стены и защитные стены »

    · «14.1.3 — Обычный бетон разрешается только в случаях (a) — (d):

    (a) Элементы, которые постоянно поддерживаются грунтом или другими конструктивными элементами, способными обеспечивать непрерывную вертикальную поддержку

    (б) Стержни, для которых действие дуги обеспечивает сжатие при всех условиях нагружения

    (в) Стены

    (г) Пьедесталы »

    · «14.1.4 Обычный бетон разрешается для конструкции, отнесенной к категории сейсмостойкости (SDC) D, E или F, только в случаях (a) и (b):

    (a) Опоры, поддерживающие монолитные железобетонные или каменные стены, при условии, что опоры армированы в продольном направлении как минимум двумя сплошными арматурными стержнями.Слитки должны быть не ниже 4 и иметь

    балла.

    общей площадью не менее 0,002-кратной общей площади поперечного сечения фундамента. На углах и перекрестках должна быть обеспечена непрерывность арматуры.

    (b) Элементы фундамента (i) — (iii) для отдельно стоящих одно- и двухквартирных жилых домов, не превышающих трех этажей и построенных с несущими стенами на шпильках:

    (i) Опоры опорных стен

    (ii) Изолированные опоры, поддерживающие колонны или постаменты

    (iii) Фундамент или стены подвала не менее 7-1 / 2 дюйма.толщиной и не более 4 футов несбалансированного заполнения ».

    Прочитав разрешенные случаи для неармированного бетона, выделенные жирным шрифтом наиболее применимы к компонентам здания. Начиная с самого широкого случая; «14.1 — Объем:… (b)», этот случай охватывает большинство компонентов здания, но ограничивается только в зависимости от конкретного случая. ACI 318-14 затем продолжает давать нам другие ситуации, в которых допускается использование обычного бетона «14.1.3- (a)». Эти определения могут применяться ко многим компонентам здания, таким как навесы, выступы, внешние украшения здания, прикрепленные к зданию (в эстетических целях), столбы и т. Д.Кроме того, он закладывает основу для изолированных опор, не связанных с семейными жилищами или любыми жилыми помещениями, фраза, которая охватывает это, звучит так: «(а) Члены, которые постоянно поддерживаются почвой…». Таким образом, в соответствии с ACI, если основание постоянно поддерживается почвой, его можно спроектировать как простой бетон, подробнее об этом позже в статье. Последний применимый допустимый случай, указанный ACI, — «14.1.4-… (b)». Этот случай может быть применен к любым основам, используемым для больших или малых заборов, навесов, генераторов или любых других не строительных конструкций, которым могут потребоваться опоры.Комментарии к этому разделу объясняют, почему в таких ограниченных случаях допускается использование обычного бетона. Подводя итог комментариям, поскольку емкость простого бетона напрямую связана с прочностью на сжатие, размером и другими свойствами, простой бетон следует использовать только для тех применений, в которых бетон будет в основном находиться: на сжатие, необходимое для того, чтобы допускать случайные трещины без ущерба для его структурная прочность и, как ожидается, низкая пластичность, поскольку это не является важной конструктивной особенностью.

    В целом, вы должны рассчитать наихудшую комбинацию нагрузок, испытываемую предлагаемым стержнем. ASCE 7 дает нам наши основные сочетания нагрузок, которые также соответствуют Строительным нормам Флориды, семьдесят редакции (2020), раздел 1605.3. Бетонный фундамент должен выдерживать осевые силы, собственный вес, подъемные силы и силы скольжения, а также опрокидывающие моменты с коэффициентом безопасности 1,5, если наихудшая комбинация нагрузок не равна 0,6 Вт + 0,6D. Если наихудшая комбинация нагрузок равна 0.6W + 0,6D, то бетонный фундамент должен выдерживать указанные выше силы с запасом прочности 1,67. Имейте в виду, что это применимо только в том случае, если ветер является вашим основным вариантом нагрузки, в противном случае этот коэффициент безопасности может быть изменен в соответствии с основной нагрузкой. Фундамент также должен соответствовать критериям ACI 318-14, разделы 14.1, 14.1.3, и категории сейсмостойкости, согласно которой плита относится к категориям, указанным в разделе 14.1.4. Если вы считаете, что ваша плита будет воспринимать высокие усилия сдвига из-за температуры или усадки, рекомендуется армирование волокном, или если основание будет испытывать какие-либо нагрузки высокого напряжения, рекомендуется использовать арматуру.Это должно быть проверено специалистом по МУН или проектировщиком.

    ФУНДАМЕНТЫ БЕТОННЫЕ

    Краткое примечание относительно простых бетонных оснований столбов и их ограничений. Согласно Международным строительным нормам (2018), если основание географически расположено в области, где линия замерзания составляет ноль дюймов, покрытие внутреннего дворика должно быть разрешено опираться на бетонную плиту на уровне без опор при условии, что плита соответствует положениям в Глава 19 Международного Строительного кодекса (2018) и что плита не менее 3.5 дюймов толщиной. Колонны не могут выдерживать нагрузки, превышающие 750 фунтов (3,36 кН) на колонну.

    БЕТОН, АРМИРОВАННЫЙ ВОЛОКНОМ

    Это подводит нас к следующему разделу, что такое фибробетон (FRC)? ACI определяет его в своем руководстве ACI318-14 как в основном бетон, армированный стальной фиброй, но фибробетон (FRC) — это бетон, содержащий волокнистый материал, который увеличивает его структурную целостность. Волокна обычно короткие, дискретные, равномерно распределены и ориентированы случайным образом.Материал волокна может варьироваться от стали до стекла и даже синтетических или натуральных волокон. ACI318-14 рассматривает это в CH 7. Таблица 7.6.1.1 дает нам минимальную требуемую площадь стали или «проволочной арматуры» для не предварительно напряженных плит. Как показано ниже, он дает нам формулу необходимой арматуры на основе общей площади поперечного сечения бетонной плиты и ее предела текучести.

    Зачем использовать FRC? Армирование бетона волокнами дешевле, чем арматура, связанная вручную, при этом прочность на разрыв увеличивается во много раз.Волокна могут быть круглыми или плоскими, и их часто описывают удобным параметром, называемым «соотношение сторон». Соотношение сторон — это отношение длины к диаметру. Типичное соотношение сторон колеблется от 30 до 150. Волокна помогают бетону в том же вопросе, что и арматура. Поскольку модуль упругости волокон выше, чем у бетона, они помогают выдерживать силы, испытываемые элементом конструкции, за счет увеличения прочности элемента на растяжение. Увеличение соотношения сторон волокон обычно приводит к увеличению прочности на изгиб и ударной вязкости элемента, но если волокна слишком длинные, они могут сжиматься и создавать эффект «комкования» в бетонной смеси и создавать проблемы с удобоукладываемостью.У армирования волокном есть еще одно преимущество, которое еще не решено, а именно то, что оно может улучшить устойчивость бетона к замерзанию и оттаиванию. Соотношение волоконной сетки 0,1% / куб. Ярд обычно используется в промышленности для небольших строительных компонентов.

    FRC & FORST / THAW СОПРОТИВЛЕНИЕ

    Раздел 1809.5 Строительного кодекса Флориды 7-е издание (2020 г.) и Международный строительный кодекс 2015 г. — 2018 указывают, что опоры должны быть защищены от мороза, чтобы предотвратить явление, известное как «вспучивание».Пучка возникает в регионах, где почва подвержена сезонному промерзанию грунта, когда замерзшая вода в верхнем слое почвы тает и вытесняет окружающую почву. Это, в свою очередь, приводит к оседанию основания. Со временем цикл замораживания-оттаивания вызывает перекос конструкции и увеличивает вероятность разрушения. Промерзшая часть верхнего слоя почвы называется линией промерзания. Один из способов защиты от этого — спроектировать вашу опору так, чтобы она проходила не менее чем на 5 дюймов за линией замерзания, или в соответствии с ASCE 32 вы можете установить изоляционный слой и нечувствительный к замерзанию слой, который ограничивает теплопередачу.Вы можете прочитать больше по этой теме на нашем сайте здесь: https://www.engineeringexpress.com/wiki/frost-protection-concrete-footings-grade/

    Было исследование, проведенное Cantin and Pigeon и Pigeon et al. Исследование пришло к выводу, что включение стальных волокон длиной от 54 мм до 60 мм (2-2,5 дюйма) не оказывает значительного влияния на бетон, устойчивый к образованию отложений на поверхности. Напротив, использование коротких волокон длиной 3 мм уменьшило степень разрушения бетона.Хотя это исследование показывает эти результаты, есть и другие исследования, на которые оно ссылается, которые показывают обратное. В целом это преимущество, по нашему мнению, пока неубедительно. Для получения дополнительной информации о требованиях к арматуре посетите ACI-360 и ASCE 7

    .

    Источники:

    https://www.asce.org/uploadedFiles/Newsroom/Content_Pieces/asce-fact-sheet.pdf

    https://alleghenydesign.com/fiber-reinforcing-in-concrete-slabs/ https: // theconstructor.орг / из бетона / из бетона, армированного волокнами / 150/

    https://www.britannica.com/biography/Joseph-Monier https://www.giatecscientific.com/education/the-history-of-concrete/

    https://csengineermag.com/article/clearing-the-confusion-on-plain-concrete/

    https://www.engineeringexpress.com/wiki/frost-protection-concrete-footings-grade/

    https://www.sciencedirect.com/science/article/pii/S1877705815013144

    https://en.wikipedia.org/wiki/American_Concrete_Institute

    https: // en.wikipedia.org/wiki/Fiber-reinforced_concrete

    Статья написана Франсиско Сармиенто из Engineering Express 5/2019

    Руководство по просверленным валам: арматурные сепараторы

    Сварщики стоят рядом с элементом Cage-Rite ™ диаметром 13 дюймов на заводе Dimension Fabricators в Скотии, штат Нью-Йорк. Некоторые из этих конструкций были использованы для строительства просверленных каркасов стволов для линий электропередачи в Северном Нью-Джерси. Фотография предоставлена: Dimension Fabricators, Inc.

    Полный текст статьи можно найти здесь.

    В конструкции с просверленным валом арматурные сепараторы обычно используются для усиления вала во время выемки грунта. Конструкция этой клетки критически важна для устойчивости клетки и успеха всего строительного проекта.

    Как правило, арматурный сепаратор для просверленного вала состоит из продольных стержней, которые распределены с равным шагом по периметру цилиндра.

    Чтобы усилить эти стержни, сталь кладут поперек стержней и прикрепляют стяжками, зажимами или сварными швами.Другие компоненты арматурных каркасов могут включать в себя обручи для определения размеров, направляющие для центрирования каркасов в стволе скважины и внутренней части клетки, а также элементы жесткости и захватывающие устройства, которые могут использоваться для помощи в подъеме клеток.

    Кейджи большего размера должны иметь временные или постоянные укрепляющие элементы, чтобы предотвратить остаточную деформацию от нагрузок при подъеме и размещении.

    Поскольку арматурные сепараторы играют такую ​​важную роль в конструкции просверленных стволов, очень важно, чтобы эти сепараторы были сконструированы должным образом, исходя из расчета нагрузок, которые они будут выдерживать.

    Количество арматурной стали в клетке арматуры должно удовлетворять конструктивным требованиям с учетом комбинированных напряжений осевой нагрузки, поперечной нагрузки и момента. Следование рекомендациям, изложенным в этой статье, может помочь в проведении соответствующих расчетов при строительстве арматурных каркасов.

    Свойства стали, используемой для каркасов арматуры

    Одним из наиболее важных факторов для сепараторов арматуры, используемых в конструкции просверленных стволов, является тип используемой стали.Американское общество испытаний и материалов (ASTM) определяет несколько сталей, которые могут использоваться для усиления буровых валов, на основании Ежегодной книги стандартов ASTM.

    Большинство этих сталей ASTM также признаны Американской ассоциацией государственных служащих автомобильных дорог и транспорта (AASHTO) подходящими для использования в строительстве каркасов для арматуры для строительства просверленных стволов.

    Обычно для этих сепараторов используется сталь AASHTO M 31 (ASTM A 615) сорта 40 или 60.Если сварка необходима, можно использовать свариваемую сталь, такую ​​как ASTM A 706.

    В ситуациях, когда существует повышенный риск коррозии, для продольной и поперечной арматуры следует использовать оцинкованную сталь или сталь с эпоксидным покрытием. Это часто требуется для морской среды с высоким содержанием хлоридов в грунтовых или поверхностных водах.

    Поскольку во время подъема и установки корпусов арматурных стержней на покрытии могут образоваться зазубрины и дефекты, может возникнуть ускоренная коррозия.Это создает уникальные проблемы в морской среде. В этом случае можно использовать арматуру без эпоксидной смолы, а просверленный вал можно заполнить бетоном с низкой проницаемостью для повышения защиты от коррозии.

    В нестандартных ситуациях может оказаться полезным усиление высокой прочности. Это может включать использование резьбовых муфт для стыковых соединений и арматуры повышенной прочности.

    Подрядчики должны тщательно рассчитать конструктивные требования к просверленному валу при определении потребностей в арматурном сепараторе.

    Продольное усиление арматурных сепараторов

    Основная роль продольной арматурной стали в арматурных каркасах для транспортных конструкций — противостоять напряжениям, возникающим при изгибе и растяжении.

    Даже если вычисленные напряжения изгиба и растяжения пренебрежимо малы, могут возникнуть непредвиденные боковые нагрузки. По этой причине для подрядчиков рекомендуется обеспечить хотя бы некоторую продольную стальную арматуру во всех пробуренных стволах для фундаментов мостов.

    Согласно спецификациям проекта

    AASHTO, арматура для просверленных валов должна проходить не менее чем на 10 футов ниже плоскости, где почва обеспечивает «неподвижность». В соответствии с этими стандартами жесткость четко не определена, поэтому решение по этому вопросу остается на усмотрение подрядчика и проектировщика.

    Практически во всех конструкциях арматурных каркасов арматура должна быть максимальной в пределах верхнего диаметра линии заземления, быстро уменьшаясь с глубиной.

    Наибольшее количество продольных стержней потребуется в верхней части пробуренного ствола, при этом некоторые стержни будут исключены по мере увеличения глубины.

    Однако при некоторых методах строительства часто бывает желательно, чтобы арматурный каркас мог стоять на дне котлована во время укладки бетона. По этой причине, по крайней мере, некоторые продольные стержни должны проходить на всю длину просверленного вала.

    Чтобы бетон функционировал должным образом, продольные стержни должны правильно сцепляться с ним. Поэтому на стержнях не должно быть чрезмерного количества ржавчины, грязи, масел или других загрязнений. Для достижения этой цели используются деформированные стержни для обеспечения надлежащего сцепления.

    В мокром строительстве, когда бетон поднимается, вытесняя суспензию, существует вероятность того, что часть воды, бентонита или полимера будет задерживаться вокруг деформаций стержня. Если раствор соответствует соответствующим спецификациям во время укладки бетона, нет никаких свидетельств того, что произойдет значительная потеря сцепления.

    Как правило, продольные стержни должны располагаться равномерно вокруг каркаса арматуры. Если в симметричной клетке шесть или более стержней, то сопротивление изгибу практически одинаково в любом направлении.

    Если существуют веские причины для несимметричного зазора, можно изменить расстояние между продольными стержнями и разместить каркас арматуры в определенном направлении, где основные силы, вызывающие изгиб, имеют преимущественное направление.

    Любая потенциальная экономия материала, полученная с помощью такой процедуры, обычно компенсируется риском задержек в осмотре и строительстве или риском перекручивания или смещения клетки.

    Между продольными стержнями, а также поперечными стержнями или спиральными петлями должно быть достаточно свободного пространства, чтобы бетон проходил через клетку.

    Это особенно важно, потому что бетон для просверленного вала укладывается без вибрации бетона.

    Расстояние между стержнями зависит от характеристик жидкой бетонной смеси; однако размер самого крупного крупного заполнителя в смеси является важным фактором.

    Для бетона, уложенного тремами, исследования показывают, что необходимо минимальное расстояние, по крайней мере, в восемь раз превышающее размер крупного крупного заполнителя, чтобы избежать блокирования. Многие агентства требуют минимального расстояния в пять дюймов между стержнями, как по вертикали, так и по горизонтали, и, по крайней мере, в десять раз больше размера самого крупного крупного заполнителя в смеси.

    Если бетон укладывается в сухую шахту, то можно использовать меньшее расстояние, в пять раз превышающее размер самого крупного крупного заполнителя.

    В некоторых случаях процентное содержание стали можно увеличить, поддерживая клетку с соответствующим шагом арматурных стержней путем группирования или объединения двух или трех стержней вместе. Это может потребовать большей длины проявки за пределами зоны максимального движения.

    Чтобы обеспечить большее количество стали для просверленных валов с необычно большими движениями изгиба, можно использовать два концентрических сепаратора арматуры.

    Однако использование двух сепараторов таким образом может препятствовать боковому потоку бетона, увеличивая риск дефектного бетона по периметру пробуренной шахты и в пространстве между двумя сепараторами.

    В этих ситуациях подрядчики могут рассмотреть возможность использования высокопрочных стержней, связанных стержней или увеличения диаметра просверленного вала.

    Поперечное армирование арматурных сепараторов

    Поперечные арматурные стержни в арматурных сепараторах используются для четырех основных целей при строительстве бурения стволов.

    1. Сопротивление срезающим силам, действующим на просверленный вал.
    2. Удерживает продольную стальную конструкцию на месте во время строительства.
    3. Обеспечение достаточного сопротивления просверленному валу против сжимающих или изгибных напряжений.
    4. Удерживание бетона в центре клетки для придания просверленному валу пластичности после деформации. Поперечная арматурная сталь поставляется в одной из трех форм: стяжки, обручи или спирали.

    При использовании стяжек или спиралей конец стали должен быть закреплен в бетоне на достаточном расстоянии, чтобы обеспечить полную несущую способность стержня в точке соединения двух концов стяжки или конца одной спирали. раздел и начало следующего.

    Лучшая практика изготовления каркасов арматуры с использованием стяжек или спиралей — это закрепление поперечной стали с использованием достаточного количества притирки.

    Рабочие, собирающие армированную сталь, должны иметь навыки связывания арматуры, чтобы стержни сохраняли свое относительное положение во время заливки бетона.

    Саму арматурную клетку следует собрать так, чтобы она выдерживала силы, вызываемые бетоном, когда он течет изнутри клетки.

    Если сталь в поперечных связях слишком мала, может произойти деформация стали.

    Устойчивость арматурных сепараторов можно повысить, полностью связав каждое пересечение между продольной и поперечной сталью, вместо того, чтобы связывать только некоторые пересечения.

    Деформация каркаса арматуры может также произойти, если бетон течет в одну сторону от котлована, чтобы заполнить пустоту или негабаритный котлован.

    Если есть какие-либо возможности для этих условий, то клетка должна быть тщательно привязана и поддержана во время укладки бетона и снятия обсадной колонны.

    И клетка, и бетонная смесь должны быть спроектированы таким образом, чтобы бетон мог проходить через клетку.Ребра жесткости также могут быть спроектированы так, чтобы оставаться в клетке во время укладки бетона.

    Хотя арматурные сепараторы можно собирать с помощью сварки, это не является обычной практикой в ​​США. Свариваемая сталь обычно не используется в США, хотя при необходимости ее можно получить.

    В сейсмических условиях следует учитывать пластичность.

    В этих ситуациях может потребоваться относительно большое количество поперечной арматуры. Однако это может вызвать трудности с течением бетона, особенно при использовании узких спиралей.

    Одно из решений — использовать связанные пяльцы, чтобы увеличить свободное пространство между пяльцами.

    В качестве альтернативы можно использовать постоянный стальной кожух для обеспечения удержания и пластичности в верхней части вала.

    Наконец, если необходимо очень маленькое расстояние между спиралями, можно использовать бетонную смесь с высокой пропускной способностью.

    Соединение продольной арматуры

    Если длина каркаса арматурного стержня превышает длину имеющихся арматурных стержней, потребуется сращивание.Как правило, продольные арматурные стержни поставляются длиной 60 футов или меньше.

    Стыки в этих стальных стержнях могут быть выполнены путем нахлеста стержней таким образом, чтобы сцепление в стержне было достаточным для развития полной способности при растяжении или сжатии в каждом стержне в точке стыка.

    Стяжная проволока или зажимы, используемые для соединения стержней, должны быть достаточно прочными, чтобы можно было поднимать и размещать клетку без постоянного деформирования каркаса для арматуры.

    Если используемая сталь поддается сварке, стержни можно соединять сваркой.Однако это обычно не используется в Соединенных Штатах.

    Если требуется, стыки продольных стальных листов следует располагать в шахматном порядке, чтобы они не возникали в одном и том же горизонтальном месте. Не более 50 процентов стыков должно быть на любом одном уровне как по конструктивным, так и по конструктивным соображениям.

    Не только наличие слишком большого количества стыков на одном уровне будет менее стабильным, но и затруднит поток бетона в просверленном валу.

    Соединения также могут выполняться с использованием специальных соединителей.Эти соединители обычно дороже, чем соединения внахлест, но могут уменьшить скопление в клетке. Тем не менее, эти типы механических соединений все же следует располагать в шахматном порядке, чтобы обеспечить максимальную структурную поддержку.

    В местах, где ожидаются большие боковые нагрузки, многие конструкторы предпочитают не размещать стыки. Точно так же многие дизайнеры избегают стыков в зонах, где вероятность коррозии наиболее высока.

    В ситуациях, когда арматурный каркас настолько длинный, что его нельзя поднять как одно целое, его можно соединить в стволе скважины.

    Нижняя часть помещается в эксцентрик и удерживается на рабочем уровне, в то время как верхняя часть поднимается и устанавливается так, чтобы их можно было соединить вместе.

    Обычно для стыков используются проволочные стяжки или зажимы, при этом стяжки или зажимы расположены в шахматном порядке для обеспечения устойчивости. Затем вся клетка опускается на место.

    Поскольку бетон следует укладывать как можно скорее после выемки грунта, сращивание внутри ствола скважины следует минимизировать или по возможности избегать.

    Просверленный сепаратор вала диаметром 8 футов и длиной 65 футов поставляется в полностью собранном виде на рабочую площадку в Нью-Джерси компанией Dimension Fabricators из Скотия, штат Нью-Йорк. Эти клетки имеют запатентованный внутренний каркас, который поддерживает клетку во время строительства, транспортировки, погрузочно-разгрузочных работ и размещения. Фото: Dimension Fabricators, Inc.

    Соединения между просверленными валами и колоннами

    Соединение между арматурой просверленного вала и колонной вызывает еще одну проблему конструктивности.Существует несколько возможных подходов к проектированию подключения.

    Главное соображение, которое должны принимать во внимание все подрядчики, — это допуск при проектировании стыка в верхней части вала бурильщика или у основания колонны. Это может вызвать беспокойство по поводу пластичности в зоне высокого момента при сейсмической нагрузке.

    Если конструкция допускает соединение внахлест у основания колонны, относительно простой подход состоит в том, чтобы оставить арматуру вала прилипшей к вершине вала на длину, достаточную для образования соединения.Эта конструкция лучше всего подходит для круглых колонн с валом и колонн аналогичного размера.

    В качестве альтернативы соединение может быть выполнено в верхней части колонны для такой же релевантности смещения просверленного вала.

    Это может быть сделано для обеспечения допуска расположения просверленного вала и для поддержания необходимого бетонного покрытия для арматурного сепаратора просверленного вала. Это позволяет просверленному стержню арматурного стержня оставаться по центру просверленного вала, в то время как стальная колонна может соединяться непосредственно с просверленным сепаратором стержня вала.

    Если требуется непрерывная продольная клетка, идущая от вала в колонну без стыков рядом с линией заземления, то подрядчику может потребоваться работа вокруг клетки, которая выступает на много футов над валом.

    Это приведет к увеличению затрат в связи с необходимостью использования кранов большего размера и более сложной укладки бетона.

    В некоторых случаях просверленный вал, который значительно больше, чем колонна, является частью конструкции, так что любое повреждение от условий сейсмического перенапряжения ограничивается основанием колонны над уровнем земли.

    Этот тип соединения используется в сейсмических зонах, когда арматура колонны проходит в верхнюю часть вала, образуя «бесконтактное» соединение внахлестку для повышения прочности как колонны, так и арматуры вала.

    Если просверленная арматура вала включает соединение с колпаком, горизонтальной балкой или опорной стенкой, клетка для вала не должна включать стержни с крюком или другие препятствия, когда используется временная обсадная колонна.

    Если возможно, их можно повернуть внутрь во время установки, а затем повернуть на место после укладки бетона.

    Продольные стержни также можно сгибать в полевых условиях с помощью гидравлики после снятия кожуха, а во вторичную клетку для сращивания можно включить как L-образные стержни, так и выступы.

    Размерные пяльцы

    Чтобы облегчить изготовление каркаса для арматуры, часто изготавливаются калибровочные кольца. Эти обручи также обеспечивают правильный диаметр готовой клетки.

    Калибровочная скоба служит ориентиром для изготовления каркасов арматуры и часто изготавливается из простого арматурного стержня или тонкого листового проката.

    Иногда называемая «калибровочная пяльца», калибровочная пяльца также может быть изготовлена ​​со стыковкой внахлест или с концами, приваренными встык.

    Обручи имеют маркировку для облегчения размещения продольных стальных листов. Эти обручи придают готовой клетке дополнительную устойчивость, но не служат конструктивной цели. По этой причине допускается стыковая сварка несвариваемой стали.

    Центрирующие устройства

    Для обеспечения достаточного пространства для свежего бетона, протекающего через кольцевое пространство между клеткой и сторонами котлована, а также для обеспечения надлежащего укрытия для арматуры, готовая клетка должна иметь соответствующие размеры.

    Согласно AASHTO, минимальное бетонное покрытие должно составлять три дюйма для просверленных валов диаметром до трех футов, четыре дюйма для диаметров от трех до пяти футов и шесть дюймов для диаметров вала от пяти футов и более.

    Минимальное кольцевое пространство не должно быть менее чем в пять раз больше размера крупного заполнителя в бетонной смеси.

    Центрирующие устройства — лучший способ обеспечить удержание клетки на соответствующем расстоянии от стенок ствола скважины или обсадной колонны во время укладки бетона.Эти устройства также могут использоваться внутри арматурных каркасов для направления концов при укладке бетона в забойную скважину.

    Центрирующие устройства должны состоять из роликов, которые выровнены так, чтобы позволить клетке перемещаться по всей выработке пробуренной шахты без смещения почвы или мусора или накопления рыхлого материала на дне котлована перед укладкой бетона.

    Ролики могут быть из пластика, бетона или раствора. Они не должны быть изготовлены из стали, которая может привести к коррозии арматуры.

    Плоские или серповидные центраторы, известные как салазки, не должны использоваться в необсаженных валах. Эти типы центрирующих устройств увеличивают риск смещения материала с боков выемки и накопления обломков у основания выемки пробуренной шахты.

    В некоторых конструкциях основание просверленного сепаратора вала должно быть подвешено на грунте или скале, чтобы предотвратить коррозию арматуры.

    Центрирующие устройства могут использоваться для уменьшения давления на опору из-за веса клетки под продольными стержнями и для предотвращения проникновения арматуры в почву, где вес клетки поддерживается на основании котлована.

    В этих ситуациях для этой цели могут быть изготовлены или использованы небольшие «стулья» из бетона, раствора или пластика.

    Усиление клетки

    Когда арматурный каркас поднимается из горизонтального положения на земле (его положение при изготовлении), поворачивается в вертикальное положение, а затем опускается в скважину, он может деформироваться. Это критический этап строительства просверленного вала. Временное или постоянное усиление клетки может потребоваться для предотвращения деформации во время подъема.

    Временные ребра жесткости, которые привязаны к арматурному каркасу, обычно следует снимать, так как клетку держат вертикально и опускают в котлован, чтобы уменьшить препятствия при опускании в котлован грунта или насосной линии.

    Другие ребра жесткости могут быть приварены к калибровочным обручам, так как они не являются частью конструктивного усиления конструкции.

    Арматурные сепараторы

    также могут иметь внешние распорки, чтобы не было необходимости снимать распорки во время установки клетки.Подрядчики могут сделать это, используя «прочную опору», или отрезок трубы, или отрезок широкого фланца, привязанный к клетке во время ее подъема.

    Клетка с эпоксидным покрытием устанавливается вертикально на строительной площадке при подготовке к установке в котлован. Фото: Dimension Fabricators, Inc.

    Приспособления для подъема клетки

    Существует два основных варианта подъема каркаса арматурного стержня из горизонтального положения на земле в вертикальное положение для размещения.

    Во-первых, подрядчик может использовать стропы или временные приспособления, предоставляемые персоналом на работе.

    Во-вторых, обручи, привязанные к клетке, можно использовать для подъема клетки. В идеале сепаратор следует поднимать за несколько продольных стержней, чтобы избежать необратимого смещения стержня.

    Следует ожидать некоторой упругой деформации клетки во время подъема. Однако в случае пластической или необратимой деформации клетку необходимо отремонтировать перед ее установкой.

    Аналогичным образом, если стяжки проскальзывают или спираль видна после того, как клетка переместилась в вертикальное положение, ее необходимо отремонтировать.

    Если строительная операция требует, чтобы клетка имела самоподдержку на дне выемки полки, жизненно важно, чтобы клетка была хорошо закреплена и не деформировалась в результате подъемной операции.

    Внешняя опора со стороны «сильной спины» может использоваться для поднятия клетки в вертикальное положение. Конструкционные балки, трубы или другие элементы можно поднимать с помощью каркаса, чтобы переместить его в вертикальное положение.

    После поднятия сепаратора арматурного стержня к сепаратору арматурного стержня следует прикрепить дополнительные роликовые центраторы для замены поврежденных или отсутствующих.

    Производство и хранение

    Изготовление каркаса для арматуры может производиться на производственной площадке. Однако это влечет за собой расходы и проблемы, связанные с транспортировкой клетки на рабочую площадку. Если площадка слишком ограничена или перегружена, может потребоваться изготовление за пределами площадки.

    Если строительство может произойти на строительной площадке, типичная процедура заключается в транспортировке арматуры на строительную площадку, где клетка может быть собрана как можно ближе к выемке грунта.Таким образом, транспортировка клетки исключается, и единственное обращение с клеткой — это необходимый подъем и установка.

    В некоторых ситуациях подрядчик может даже изготовить клетку непосредственно над или в выемке из пробуренной шахты.

    Как правило, этого следует избегать в необсаженных скважинах, так как это увеличивает время открытия выемки, а также риски нестабильности скважины и деградации поверхности.

    В большинстве случаев перед бурением скважин сооружается ряд сепараторов.Эти клетки затем хранятся на стройплощадке до тех пор, пока клетка не понадобится, а затем размещаются как можно скорее после раскопок.

    Если подрядчики решат изготовить арматурные каркасы заблаговременно, следует принять меры, чтобы защитить их от загрязнения.

    Конструкция арматурных сепараторов имеет решающее значение при строительстве буровых шахт. Они не только должны обеспечивать конструктивную поддержку, но и должны быть тщательно сконструированы, чтобы обеспечить пропускную способность бетона и допуски на строительство.

    Учитывая множество и часто противоречивых соображений, связанных с конструкцией пробуренного ствола, включая использование арматурных сепараторов, подрядчикам следует проконсультироваться с квалифицированными инженерами относительно наилучшего решения этих проблем.

    Добавить комментарий