Расчет арматуры для фундамента: как правильно произвести
ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ
Расчет арматуры для фундамента происходит уже на этапе проектирования и является важнейшим его компонентом. Его производят, принимая во внимание СНиП 52 – 01 — 2003 в вопросах выбора класса арматуры, ее количества и сечения. Армирование монолитных конструкций производится с целью улучшения прочности бетонной конструкции на растяжение. Ведь неармированный бетон может разрушиться при вспучивании грунта.
Армирование фундамента
Расчет арматуры для фундамента плитного типа
Плитный фундамент используют для строительства коттеджей и загородного жилья, а также прочих строений без подвального помещения. Это основание представляет собой монолитную бетонную плиту, которая армирована прутком в двух перпендикулярных направлениях. Толщина такого фундамента более 20 см, а сетка вяжется как сверху, так и снизу.
Статья по теме:
Столбчатый фундамент своими руками: пошаговая инструкция. Расчет, стоимость работ. Мелкозаглубленный столбчатый фундамент, фундамент каркасного дома, фундамент под баню, фото и видео.
Вначале определяются с типом прутка арматуры. Для плитного монолитного фундамента, который выполняют на прочных плотных и непучинистых грунтах, обладающих весьма низкой вероятностью горизонтального сдвига, возможно допускать использование ребристого арматурного прута диаметром от 10 мм, имеющего класс A-I. Если грунт довольно слабый, пучинистый или здание проектируется на уклоне – арматуру необходимо брать толщиной не менее 14 мм. Вертикальные связи между нижним и верхним рядом арматурной сетки вполне будет достаточно использовать гладкий 6-миллиметровый прут класса A-I.
Фундамент с армированием
Очень серьезное значение имеет и материал будущих стен здания. Ведь нагрузка на фундамент имеет существенные отличия у каркасных, а также деревянных домов и зданий из кирпича либо газобетонных блоков. Как правило, для легких строений возможно применить пруток арматуры, диаметр которого 10-12 мм, а для стен из кирпича либо блоков – не менее 14-16 мм.
Промежутки между прутьями в армирующей сетке обычно где-то 20 см в продольном, равно как и в поперечном направлении. Данное обстоятельство предполагает наличие 5 арматурных прутков на 1 метр длины стены фундамента. Между собой пересечения перпендикулярных прутьев связывают мягкой проволокой при помощи такого приспособления, как крючок для вязания арматуры.
Схема армирования фундамента
Полезный совет! Если объем строительства очень большой, то для вязки арматуры можно приобрести специальный пистолет. Он способен в автоматическом режиме связывать между собой прутки с очень большой скоростью.
Пример реального расчета
Предположим, что нам требуется выполнить расчет арматуры для фундамента частного дома из газобетонных легких блоков. Проектируется его установка на плитный фундамент, который имеет толщину 40 см. Данные геологических изысканий говорят о том, что грунт под фундаментом суглинистый со средней пучинистостью. Габариты дома – 9х6 м:
Каркас из арматуры
- так как мы задумали достаточно большую толщину фундамента, то нам потребуется залить в него две горизонтальные сетки. Блочное строение на среднепучинистых почвах требует для горизонтальных прутков наличие диаметра в 16 мм и ребристости, а вертикальные стержни могут быть гладкими с толщиной 6 мм;
- для вычисления требуемого количества продольной арматуры берут длину наибольшей стороны стены фундамента и осуществляют ее деление на шаг решетки. В нашем примере: 9/0,2 = 45 толстых арматурных прутьев, которые имеют стандартную длину 6 метров. Вычисляем общее количество прутков, которое равняется: 45х6 = 270 м;
Варианты армирования фундамента
- таким же образом находим количество прутков арматуры для поперечных связок: 6/0,2 = 30 штук; 30х9 = 270 м;
- умножением на 2 получаем требуемое количество горизонтальной арматуры в обеих сетках: (270+270) х 2 = 1080 м;
- вертикальные связки обладают длиной, равной всей высоте фундамента, то есть 40 см. Их количество высчитывают по числу перпендикулярных пересечений продольных прутьев с поперечными: 45Х30 = 1350 шт. Перемножив 1350х0,4, получим общую длину 540 м;
- получается, что для сооружения требуемого фундамента понадобится: 1080 м прутка A-III D16; 540 м прутка A-I D6.
Использование арматуры в строительстве фундамента
Полезный совет! Для того, чтобы посчитать массу всей арматуры, необходимо воспользоваться ГОСТ 2590. Согласно этого документа 1 п.м. арматурного прутка D16 обладает весом 1,58 кг, а D6 – 0,22 кг. Исходя из этого общая масса всей конструкции: 1080х1,58 = 1706,4 кг; 540х0,222 = 119,9 кг.
Для сооружения арматуры требуется еще и вязальная проволока. Ее количество тоже можно посчитать. Если вязать обычным крючком, то на один узел будет уходить примерно 40 см. Один ряд содержит 1350 соединений, а два — 2700. Поэтому полный расход проволоки для вязания будет 2700х0,4 = 1080 м. При этом 1 м проволоки с диаметром 1 мм весит 6,12 г. Значит полный ее вес вычисляется так: 1080х6,12 = 6610 г = 6,6 кг.
Пример армирования фундамента
Как правильно рассчитать потребность в арматуре для ленточного фундамента
Особенности ленточного фундамента таковы, что разрыв его наиболее вероятен в продольном направлении. Исходя из этого и рассчитывается потребность в арматуре для фундамента. Расчет здесь не особо отличается от предыдущего, что был сделан для плитного вида фундамента. Поэтому толщина прутка может составлять для продольного крепления 12-16 мм, а для поперечного, а также вертикального 6 — 10 мм. В случае ленточного фундамента выбирают шаг не более 10-15 см во избежание продольного разрыва, так как нагрузка в нем гораздо больше.
Для примера рассчитаем фундамент ленточного типа в применении к деревянному дому. Предположим, что его ширина 40 см, а высота 1 м. Геометрические размеры строения 6х12 м. Грунт супесчаный пучинистый:
Арматурные пруты
- в случае ленточного фундамента в обязательном порядке производится устройство двух арматурных сеток. Нижняя предупреждает физический разрыв монолитной ленты при грунтовых просадках, а верхняя при пучении грунта;
- оптимальным видится шаг сетки 20 см. Поэтому для правильного устройства ленты такого фундамента нужно 0,4/0,2= 2 прута продольных в обоих слоях арматуры;
- для деревянного дома диаметр арматурного прутка берут 12 мм. Чтобы выполнить двухслойное армирование наиболее длинных сторон основания нужно 2х12х2х2 = 96 м прутка. Короткие стороны требуют 2х6х2х2 = 48 м;
Армирование ленточного фундамента
- для поперечных перекладин берем пруток 10-миллиметровый. Шаг его укладки 50 см.
Периметр здания: (6+12) х 2 = 36 м. Делим его на шаг: 36/0,5 = 72 арматурных поперечных прутка. Так как их длина равняется ширине фундамента, то общая потребность 72х0,4 = 28,2 м; - для вертикальных связей тоже применим пруток D10. Так как высота вертикальной составляющей арматуры равна полной высоте фундамента (1 м), то требуемое количество определяют по числу пересечений. Для этого умножают число поперечных прутов на количество продольных: 72х4 = 288 шт. Для высоты в 1 м общая длина будет 288 м;
- то есть, для выполнения полноценного армирования нашего ленточного фундамента необходимо: 144 м прута A-III D12; 316,2 м прутка A-I D10.
Армирование столбчатого фундамента
Полезный совет! В соответствии с тем же ГОСТ 2590 можно определить массу всей арматуры из расчета того, что 1 п.м. прутка D16 обладает весом 0,888 кг; D6 – 0,617 кг. Отсюда общая масса: 144х0,8 = 126,7 кг; 316,2х0,62 = 193,5 кг.
Проведенные примеры расчета арматуры для фундамента помогут вам сориентироваться в потребности материалов в любом случае. Для этого нужно только подставить в формулы ваши данные.
Арматура для фундамента (видео)
ОЦЕНИТЕМАТЕРИАЛ Загрузка… ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ
СМОТРИТЕ ТАКЖЕ
REMOO В ВАШЕЙ ПОЧТЕКак самостоятельно провести расчет арматуры для фундамента
Для восприятия деформационных нагрузок и формирования единой конструкции монолитный фундамент армируется. Если бетон прекрасно воспринимает сжимающие нагрузки, то арматура, как часто говорят, работает на растяжение. При условии, что вы решили своими руками возводить основание для дома, вам придется потрудиться над расчетами не только бетонной смеси, но и арматуры для фундамента. О том, как подсчитать необходимый метраж этого материала, а также рассчитать требуемое сечение арматуры, мы постараемся подробно расписать в этой статье.
Сколько должно быть арматуры в фундаменте
Чтобы процесс расчета был максимально понятным, в качестве примера мы рассмотрим ленточное основание высотой 600 мм с шириной ленты 400 мм для фундамента, схема которого изображена на рисунке ниже.
Минимально допустимое содержание армирующих элементов в ленточном основании определяется по СНиП 52-01-2003 «Бетонные и железобетонные конструкции». В пункте 7.3.5 сказано, что относительное содержание продольной арматуры не должно быть меньше 0,1% от площади сечения железобетонного элемента. Для ленточного фундамента учитывается отношение суммарного сечения арматуры и ленты.
В нашем случае имеем: площадь сечения ленты – 600×400=240 000 мм2. С учетом полученных данных определяем количество стержней, необходимое для продольного армирования ленты. Для этого воспользуемся частью таблицы из прил. 1 к пособию по проектированию «Армирование элементов монолитных железобетонных зданий», представленной на рисунке ниже. Предварительно переведем мм 2 в см2 и умножим полученное значение на 0,001 (именно такую часть должна занимать суммарная площадь поперечного сечения продольной арматуры). Получаем: 240000 мм2 = 2400 см2, 2400 см2×0,001=2,4 см2.
Изучая данные таблицы 1, сложно понять, арматуру какого диаметра, и в каком количестве нужно использовать. Ведь при требуемой площади сечения в 2,4 см2, судя по таблице, можно использовать 2 стержня 14 мм арматуры, 3 стержня 12 мм, 4 стержня 10 мм и т.д. От чего отталкиваться при расчетах? В разделе 1 приложения 1 к пособию по проектированию «Армирование элементов монолитных железобетонных зданий» сказано, что при длине стороны более 3 м (как в нашем случае), минимальный диаметр арматуры составляет 12 мм. Для равномерного восприятия нагрузок потребуется два пояса армирования, содержащих по два прутка арматуры диаметром 12 мм.
Диаметр поперечной арматуры выбираем минимально допустимый для каркаса, высотой менее 800 мм (у нас ввиду высоты фундамента и требуемого отступа от наружного слоя бетона в 50 мм – 500 мм=600-2×50) – 6 мм. Он должен быть не меньше четверти диаметра продольных прутков: 12/4=3<6 условие соблюдается. Если бы каркас был высотой от 800 мм и выше, то минимальный диаметр арматуры составлял бы 8 мм.
Выбор и расчет арматуры для плитного фундамента осуществляют таким же образом. Только данные таблицы 1 нужно будет умножить в зависимости от количества продольных прутков арматуры. А как быть, если необходимо провести арматурный расчет столбчатого фундамента? В этом случае достаточно использовать арматуру диаметром 10 мм: для свай, которые в диаметре меньше 200 мм, достаточно трех прутков, для остальных случаев их количество возрастает по мере увеличения диаметра сваи. Для соединения вертикальных прутков достаточно использовать гладкую арматуру диаметром 6 мм.
Если вы решили армировать основание дома своими руками, то перед покупкой строительных материалов очень важно провести как можно более точные расчеты требуемого количества. В нашем случае мы будем рассматривать расчет количества арматуры под дом 10×6, для которого возводится ленточный, плитный или столбчатый фундамент.
Количество арматуры для ленточного фундамента
Общая длина ленты составит: 10000×2+(6000-2×400)×3=35600 мм или 35,6 м. С учетом общего количества запусков суммарной длиной 40×250=10000 мм или 10 м и использования четырех продольных прутков арматуры суммарный метраж продольных армирующих элементов составит: 35,6×4+10=152,4 м. Это, что касается арматуры периодического профиля, но есть еще гладкая арматура.
При условии отступа от поверхности бетонного основания в 50 мм длина поперечной арматуры (горизонтальной и вертикальной на одно соединение) составит: 300×2+500×2=1600 мм или 1,6 м. Таких соединений при общей длине ленты в 35,6 м и шаге между поперечными прутками в 300 мм будет: 35,6/0,3=119. Итого общая длина поперечной гладкой арматуры составит: 119×1,6=190,4 м.
Количество арматуры для плитного фундамента
Для нашего дома 10×6 толщину плиты принимаем 300 мм (предварительно проводим расчет нагрузки на фундамент). Арматурный каркас будет состоять из двух поясов с шагом сетки 200 мм. Для одного пояса потребуется 10000/200=50 прутков поперек (шестиметровых) и 6000/200=30 прутков вдоль (десятиметровых). Итого на два пояса потребуется арматуры периодического профиля: (50×6+30×10)×2=1200 м
Если соединять пояса арматурными прутками, то общее количество соединений составит: 50×30=1500 шт. Длина каждого прутка с учетом отступа от края фундамента в 50 мм составит 200 мм. Итого гладкой арматуры потребуется: 1500×200=300000 мм или 300 м.
Количество арматуры для буронабивного свайного основания
В качестве примера приведем основание под тот же дом, только будем использовать буронабивные сваи (расстояние между опорами принимаем 2000 мм) и железобетонную обвязку высотой 400 мм. Нам потребуется 16 свай диаметром 200 мм и высотой 2000 мм. Сколько нужно арматуры для такого фундамента?
На сваи будем использовать 4 прутка длиной 2250 мм: 2000 мм на собственно сваю и 350 мм на запуск для связки с арматурным каркасом ростверка. Итого на одну буронабивную сваю потребуется 4×2350=9400 мм или 9,4 м арматуры периодического профиля. На 16 свай потребуется 150,4 м. Для формирования каркаса сваи будем использовать гладкую арматуру, которой соединим 4 вертикальных прутка в трех местах. Длина одного соединения составит примерно 3,14×200=628 мм, длина трех – 1884 мм или 1,9 м. Общий метраж гладкой арматуры, необходимый для формирования каркаса столбов составит: 1,9×16=30,4 м.
Расчет арматуры для ростверка проводится так же, как и в случае расчета ленточного фундамента. Прутков периодического профиля потребуется столько же, сколько и в вышеописанном случае (по ленточному основанию), т.е. 152,4 м. А вот на формирование каркаса с учетом высоты ленты нужно будет меньше гладкой арматуры: 119 (количество соединений) ×1,2 (сумма длин поперечной арматуры на одно соединение)= 142,8 м
Надеемся, что приведенная информация поможет вам понять процесс расчета и самостоятельно рассчитать необходимое количество арматуры и диаметр прутков применительно к фундаменту вашего дома.
Загрузка…Расчет арматуры для фундамента: сколько нужно
Расчет арматуры для фундамента позволяет рационально использовать материал и создать качественную и долговечную конструкцию. Объясняется это следующим: избыток металла в каркасе основания строения станет последствием того, что стоимость конструкции может существенно вырасти.
Противоположная ситуация, когда количество арматуры на 1 м3 бетона меньше нужного, сделает фундамент дома слабым и не способным вынести нагрузки, связанные с давлением строения и грунта. Это может привести к серьёзным последствиям.
Методы армирования
Прежде всего необходимо разобраться с вопросом, каким образом будет выполняться армирование конструкции. На сегодняшний момент используется 2 схемы, различающихся между собой количеством металлических стержней:
- 4 горизонтальных рядов.
- 6 горизонтальных рядов.
Выбор одной из схем определяется в СНиП 52-101-2003, в котором говорится следующее: «Интервал между прутками арматуры в ленточном фундаменте, расположенными параллельно не должен превышать величину 400 мм.
Расстояние между каждымм прутком и краем бетонного каркаса основания устанавливается 60 – 70 мм».
Согаласно приведённому выше документу, рассчитать количество арматуры для строения достаточно просто. Например, для оснований ширина которых превышает 0,5 м целесообразно использовать металлизированный каркас, состоящий из 6 продольных рядов.
Таким образом, нужно учитывать, расчет арматуры для ленточного фундамента определяется только согласно регламентированной схеме.
Вычисление диаметра
Толщина металлического прута должна составлять не менее 0,1 % от сечения фундаментаЕсли с количеством всё ясно, возникает следующий вопрос: какой диаметр арматуры необходимо использовать для создания качественного и надежного основания дома? Для этого существует требование СНиП 52-101-2003, в котором раскрываются требования к данной ситуации. Согласно документу, диаметр арматуры для фундамента берётся из 2 коэффициентов: минимальное сечение (толщина) продольных прутьев ленточной конструкции должно равняться 0,1% от всего сечения железобетона. Такого требования придерживаются когда высчитывают диаметр прутьев.
Диаметр арматуры для ленточного фундамента подбирается исходя из того, куда именно она будет установлена. В зависимости от места её предназначения могут измениться и требования к её сечению. Более точная информация приведена в следующей таблице.
№ | Условия использования | Сечение, мм |
---|---|---|
1 | Вертикальная с высотой продольного сечения ленты менее 0,8м | 6 |
2 | Вертикальная с высотой ленты более 0,8 м | 8 |
3 | Поперечная | 6 |
Выполняя расчет количества арматуры для фундамента одно-или двухэтажного дома, преимущественно берутся прутки толщиной 8 мм. Аналогичная ситуация для гаражей, бань и других малоэтажных построек.
Продольная арматура
Для вычисления площади сечения фундаментной ленты понадобится умножить его ширину на высоту. К примеру, если ширина 450 мм, а высота 1000 мм, искомая величина составит 45000 мм2. Согласно вышеупомянутому СНиП, коэффициент берётся равный 0,1 %, потому полученная ранее цифра умножается на это соотношение. Получается 45000 мм2 * 0.1 = 45 мм. Таким образом диаметр продольной арматуры на ленточный фундамент указанного размера должен быть не менее 4,5 см.
Преимущественно все фундаменты имеют стандартные размеры, потому со временем была разработана таблица, позволяющая определить сечение арматурного прутка для любых размеров оснований. В ней указано соотношение диаметра с площадью поперечного сечения стержня, в зависимости от количества прутьев.
Величины приведены в средних коэффициентах, поскольку полученные результаты были округлены в большую сторону. Измерения приведены в сантиметрах.
Получив расчетную площадь поперечного сечения арматурного ряда, равным 4,5 см при ширине основания в 45 см, допускается использование метода армирования 4 прутьями. В таблице находится графа, в которой приведена величина значения для данного случая. Она составляет 4,52 см2.
Для вычисления того, какая арматура нужна для ленточного фундамента, усиленного 6 стержнями, понадобится произвести аналогичные действия. Разница заключается лишь в том, что величина берётся из столбца с цифрой 6. Более сложные конструкции определяются аналогично.
Диаметр арматуры для плитного фундамента, как и для ленточного, берётся единый. Если имеются стержни меньшего сечения, они закладываются в нижний ряд.
Общее количество стержней
Количество металлических стержней зависит от периметра фундаментаПеред началом строительства возникает вопрос, сколько нужно арматуры на весь объём фундамента?
Тема достаточно актуальна, так как при возникновении ситуации, когда металл закончился, а работа не выполнена, возникнет простой, а за доставку дополнительной недостающей партии придётся заплатить отдельно.
Определяется это число таким образом:
- Находится длина периметра основания при площади строения 10 * 10 (10*4 = 40), величина составит 40 м.
- Так как требуется выполнить расчет для 4-стержневой конструкции, полученное ранее число умножается на 4 (40 * 4 = 160), итого 160 м.
Для возведения фундамента дома размером 10 * 10 м требуется 160 м арматурного стержня. Однако эта величина без учёта стыковки прутьев, потому и случаются такие ситуации, когда все действия по определению количества были выполнены верно, а рассчитанного металла не хватило.
Вопрос того, как соединять прутья металла в каркасе фундамента, является одним из важных. Осуществляется это внахлёст с напуском друг на друга. При сечении, равном 10 мм, длина соединения делается такой: 10 мм * 30 = 300 мм. Последующий расчет количества арматуры выполняется исходя из числа соединительных швов. Подробнее о расчетах смотрите в этом видео:
Сделать это можно двумя способами. Первый подразумевает грамотно составленную схему, в которой указывается расположение прутков и количество соединений. Второй метод несколько проще: если арматура уже рассчитана ранее описанными способами, к полученному числу добавляется 10 – 15%.
Поперечная и вертикальная
Как рассчитать арматуру для ленточного фундамента, расположенную поперечно или вертикально? Для этого используется уже проверенная схема. Из неё можно определить, что для заполнения одного прямоугольника потребуется 2,5 м (0.35 * 2 + 0.90 * 2 = 2,5). Нужно учитывать, что величина 0,3 и 0,85 берутся с запасом. Это нужно для того, чтобы концы стержней немного выходили за основной периметр границ.
В случае плиточного фундамента все несколько проще, арматура вяжется сеткойСреди частых ошибок малоопытных людей, занимающихся вязкой армированного каркаса для ленточного фундамента, происходит установка арматуры на дно траншеи. Некоторые для устойчивости конструкции вбивают её в грунт. В этих случаях расход арматуры на куб бетона увеличится, потому при средней величине вертикальных прутьев 0,9 м нужен небольшой запас, равный 10% от общей длины.
Чтобы облегчить себе задачу в большом количестве цифр, можно просто начертить схему основания, отметить на ней места расположения прямоугольников, а потом просто подсчитать их количество. Таким образом, определяется величина поперечных и вертикальных стоек для бетонного фундамента ленточного типа.
После того как все нюансы разобраны, рассчитать арматуру в фундаменте можно за несколько минут.
При этом нужно учитывать, чем больше площадь будущего строения, тем большее количество металла понадобится для армирования каждого кубического метра.
Только после этого можно отправляться в магазин и заказывать армированные стержни. Это позволит снизить вероятность ошибок, указанных в начале статьи, и даст гарантию того, что через несколько лет не придётся делать капитальный или частичный ремонт фундамента.
Расчет арматуры для фундамента – рекомендации от ТК Газметаллпроект
Любой жилой дом, производственное, офисное или складское помещение монтируются на заранее подготовленный фундамент. Конструкция основания может отличаться в зависимости особенностей почвы, климатических характеристик региона, массы и размеров здания. При этом армирование фундамента является обязательным условием длительной эксплуатации объекта, без повреждений и деформаций конструкции.
Назначение арматурного каркаса в фундаменте здания
Существует несколько типов оснований, выполняемых из бетонного раствора. Наиболее востребованными считаются плитные и ленточные фундаменты, мелко- и глубокозаглубленные. Также применяются основания на сваях, глубина заложения которых зависит от параметров грунта и уровня промерзания почвы.
Для армирования фундамента применяются металлические прутья с рифленой или гладкой поверхностью, которые соединяются в жесткий и прочный каркас. Армирование выполняется в следующих целях:
- стальная основа принимает нагрузки на растяжение и изгиб, равномерно распределяет их по всей конструкции основания;
- каркас исключает деформации бетона, позволяет избежать или минимизирует образование трещин и других дефектов фундамента;
- за счет арматурного каркаса удается снизить объем используемого для заливки основания бетонного раствора, уменьшить и снизить стоимость конструкции;
- армирование делает возможным строительство дома или производственного здания на слабых грунтах, в том числе сыпучих, болотистых, в регионах с экстремально низкими зимними температурами;
- возрастает несущая способность основания, арматура делает фундамент более приспособленным к высоким нагрузкам по массе, усилиям на растяжение и деформацию.
После заливки фундамента бетонный раствор постепенно набирает прочность. При этом монолит приобретает высокую прочность к сжатию, но не отличается хорошими показателями на растяжение. Арматурный каркас позволяет поднять данные параметры на должный уровень.
Как правильно рассчитать арматуру для фундамента
Для монтажа прочного и долговечного фундаментного основания необходимо выполнить расчет арматуры и каркаса. Такой подход обеспечивает соответствие требованиям нормативных документов. Для правильного расчета необходимо учитывать следующие моменты:
- в качестве конструктивных элементов лучше всего закладывать металлические прутья с рифленой поверхностью, толщина которых начинается от 12 мм – посмотреть каталог арматуры для фундамента;
- оптимальным является использование проката марки А400, А500 и А240;
- все расчеты выполняются в соответствии с требованиями СНиП 52-01-2003 и 2.02.01-83;
- при проектировании учитываются характеристики грунта, для каменистой, болотистой, сыпучей почвы арматурный каркас будет отличаться;
- обязательно учитывается при расчетах суммарная нагрузка на конструкцию, которая складывается из собственного веса фундамента, массы стен, перекрытий, перегородок, установленного в здании оборудования и предметов повседневного использования, среднегодового количества осадков;
- обязательно учитывается запас прочности, каркас должен быть прочнее расчетных показателей на 5-10%;
- несмотря на большое количество доступных онлайн-калькуляторов, расчет арматуры с их использованием получится приблизительным, желательно воспользоваться услугами специалиста в данной отрасли.
Выполняя указанные правила расчета арматурного каркаса можно быть уверенным в прочности и долговечности бетонного основания. При движении грунта, больших климатических и механических нагрузках, фундамент не получит повреждений. Соответственно стенам здания не угрожают деформации, появление трещин и щелей.
Конструктивное исполнение каркаса
В зависимости от типа и сложности фундамента, арматурный каркас может быть выполнен несколькими способами. Соответственно расчеты также отличаются для конструкций плитного, ленточного, свайного и других типов. После выбора подходящей схемы каркаса выполняется подбор необходимых комплектующих. Рассчитывается количество и длина прутьев, объем армирующей сетки. Необходимо определиться со способом соединения стержней между собой, направленностью конструкций, сечением металла и другими характеристиками.
Стандартный каркас собирается из прутков, расположенных в продольном и поперечном направлениях. Шаг ячеи определяется нагрузкой на основание, а для соединения используется технология сварки, вязальная проволока, специальные муфты.
Для ленточных фундаментов каркас представляет собой набор продольных прутков, соединенных между собой поперечными элементами. Такие сетки располагаются в несколько рядов. Для плитной конструкции подойдет плоский каркас из арматуры. Для свайного фундамента металлические прутки монтируются вертикально.
Расчет арматуры для фундамента плитного типа
Использование фундамента плитного типа актуально при возведении жилых домов и коттеджей, в которых не планируется выделение подвального помещения. Визуально основание выполнено в форме монолитной плиты, толщина которой может превышать 0,2 метра. При этом армирующая сетка укладывается в 1, 2 или более рядов, в зависимости от массы здания и типа грунта.
При выборе арматуры в первую очередь оценивается категория грунта. Для непучинистой почвы подойдут ребристые прутки толщиной от 10 мм. Если планируется строительство на слабой почве или участке с наклоном. Минимальный диаметр стержней должен быть 14 мм и более. Связи между сетками выполняются из арматуры на 6 мм. Стандартный шаг сетки составляет 0,2 метра, но данный показатель может меняться в большую или меньшую сторону. Связки продольных и поперечных стержней выполняются проволокой или сваркой.
Технология расчета арматуры предполагает выполнение следующих этапов:
- при толщине фундамента до 0,2 метра желательно использовать 2 плоских каркаса с вертикальной связкой, если основание более габаритное, число сеток увеличивается;
- для расчета количества продольных прутьев длина большей стороны делится на шаг 0,2 метра, что позволяет получить общую длину стержней;
- аналогичным образом рассчитывается общая длина поперечных звеньев каркаса;
- так как диаметр прутка принимается одинаковым, можно быстро вычислить необходимое количество стержней и рассчитать объем приобретаемой арматуры;
- для расчета вертикальных прутков подсчитывает количество точек соединения одной и сеток, размер связей равняется высоте фундаментной подушки, далее нетрудно подсчитать общую протяженность стальных стержней;
- если фиксация прутков выполняется на вязальную проволоку, вычисляется число соединений арматуры, средний расход составляет 0,4 метра на одну точку.
После выбора конструкции фундаментного основания и необходимой толщины арматуры, рассчитать объем приобретаемой продукции можно самостоятельно. Для этого достаточно знать площадь фундамента и его высоту, количество арматурных сеток, шаг ячеи. Все расчеты можно выполнить с помощью обычного калькулятора.
Расчет арматуры для фундамента ленточного типа
Для большинства зданий и сооружений выбор ленточного фундамента является оптимальным вариантом. Такая конструкция качественно выполняет свои функции, а затраты на монтаж существенно ниже, чем расходы на заливку монолитного основания. В состав каркаса входят продольные, поперечные и вертикальные металлические стержни.
Для продольной арматуры стандартным диаметром является 12-16 мм, поперечные и вертикальные связи могут быть меньшей толщины. Шаг ячеи принимается равным 0,2 метра, но может быть изменен в зависимости от конструкции и нагрузки на основание. Технология расчета арматурного каркаса ленточного фундамента будет следующей:
- в конструкцию обязательно закладывается 2 сетки, верхняя связывает основание при просадках грунта, нижняя исключает деформации при вспучивании почвы;
- для обустройства каркаса потребуется 4 продольных прутка, протяженность каждого из которых равняется периметру ленточного фундамента;
- количество поперечных прутков рассчитывается, исходя из принятого шага ячейки, длина стержней равна толщине бетонного основания;
- вертикальная арматура рассчитывается, исходя из количества соединение продольных и поперечных стержней, высота прутков определяется аналогичными показателями фундамента;
- для соединения прутков используется вязальная проволока, длина которой определяется из расчета 0,4 метра на 1 узел.
Путем достаточно простых вычислений удается подсчитать общую длину продольных, поперечных и вертикальных стержней, а также вязальной проволоки. В зависимости от длины имеющейся в продаже арматуры вычисляется число отдельных элементов. При этом учитывается некоторый запас, наличие которого необходимо в непредвиденных случаях.
Арматурные каркасы для фундаментов другого типа рассчитываются аналогичным образом. Для этого необходимо знать размеры каждого блока, определиться с конструкцией, толщиной используемых прутков. С помощью несложных математических расчетов определяется общая длина стержней, расходы на их приобретение.
Монтаж фундамента любого типа будет некачественным, если в основу не заложить металлический каркас. Стальные прутья, сваренные или связанные между собой, защищают фундамент от деформации, выкрашивание, излома и растяжения. Количество и стоимость необходимого материала можно рассчитать самостоятельно. При отсутствии опыта желательно обратиться к профессионалам, предлагающим свои услуги в данной сфере.
Расчет арматуры для ленточного фундамента, примеры, онлайн-калькулятор
Стандартный калькулятор онлайн расчета фундамента ленточного типа помогает вычислить необходимое количество стройматериалов и подобрать армирование. Закладка связанного каркаса из стальных прутьев является обязательным этапом, эта конструкция противостоит силам растяжения, возникающим при подвижках грунта и воздействии весовых нагрузок. Для арматуры цель заключается в выборе правильного и оптимального в плане цены размещения прутьев, подбора подходящего типа и диаметра металлопроката, определении суммарного метража и веса. Основной регламентирующий документ – СНиП 52-101 от 2003 года.
Оглавление:
- Что учесть при составлении схемы?
- Самостоятельный расчет по шагам
- Полезные рекомендации
Исходные данные и условия для расчета арматуры
Этот этап проводится после определения ширины основы и проверки ее соответствия весовым нагрузкам и геологическим условиям участка. В начале известны назначение и этажность постройки, материалы, тип и однородность грунта, уровень подземных вод. Эти данные служат основой для выбора глубины закладки, оптимальной марки бетона, толщины подушки. Знание длины, высоты и ширины ленты позволяет без проблем получать величину объема монолита, его периметра и сечения. В процессе учитываются не только наружные стены, ленточный фундамент заливается под все несущие конструкции, включая внутренние перегородки, правильный онлайн-калькулятор всегда предлагает выбрать нужную схему.
Самостоятельный расчет армирования начинается с составления схемы каркаса и определения необходимого диаметра прутьев. У ленточного типа предусматривается как минимум два ряда продольно расположенных стержней, это условие обязательно. СП указывают пределы при размещении и фиксации арматуры:
- Максимальный промежуток между двумя продольными прутьями – 40 см. Выполнение этого условия подразумевает закладку дополнительного стержня при превышении ширины ленты свыше 50 см.
- Расстояние от металла до боковых и нижних стен бетонной конструкции не может быть меньше 50-70 мм, верхних – 70-80. Но при этом крайние элементы каркаса не смещают в центр, в случае ленты это делает бессмысленным сам процесс армирования.
- Интервал между рядами по вертикали варьируется от 60 до 80 см. С учетом вышеизложенного это означает, что при высоте фундамента в пределах 1 мм (т.е. мелкозаглубленного типа) двух поясов армирования достаточно, но при необходимости закладки ниже уровня промерзания грунта (1,5-2 м) или строительстве дома с подвалом частота рядов возрастает.
- Поддерживающие (монтажные) вертикальные и поперечные ряды связываются в единую конструкцию и пересекаются друг с другом, шаг размещения варьируется от 30 до 80 см.
- В качестве горизонтальных прутьев, принимающих и распределяющих основные нагрузки, используются изделия с периодическим профилем (имеющие маркировку АIII или А3). Для вертикальных и продольных допускается применение гладких марок (АI или А1, соответственно). Ребристая поверхность обеспечивает более качественное сцепление с частицами бетона.
Диаметр продольной арматуры для фундамента выбирается из учета требований СНиП: минимальное процентное соотношение стали в бетонной конструкции составляет 0,1% от ее сечения. Рассмотрим пример: для ленточного основания шириной в 40 см и высотой 1 м выбирается схема из 4 прутьев, требуемая площадь сечения – от 4 см2 и выше. Существуют специальные таблицы, помогающие подобрать оптимальный диаметр одного продольного стержня, в данном случае это 12 мм. При их отсутствии расчет проводят самостоятельно, величина сечения находится по формуле: F=π·R2, где π=3,1415, R – радиус. Для обеспечения равномерного распределения нагрузки все продольные элементы должны иметь одинаковый диаметр, при наличии изделий с разным сечением (к примеру, 14 и 12 мм) более толстые прутья укладываются снизу.
Минимальный диаметр остальной арматуры для связки составляет 6 мм, верхний предел в частном строительстве – 10. В отличие от продольных неразрывных прутьев эти стержни представляют собой отрезки нужной длины, немного превышающие высоту и ширину каркаса, т.е. выступающие за края стыков.
Рекомендуемый тип фиксации пересекающихся и угловых элементов – обвязка проволокой, сварочное соединение не подходит из-за риска коррозии и разрушения стыков.
Пример расчета
Исходные данные: для фундамента под деревянный дом с шириной ленты в 40 см и высотой в 100 требуется определить количество арматуры. Несущими являются только наружные стены, длина составляет 10 м, ширина – 6. С учетом вышеизложенных требований для данного дома подходит схема с 4 продольными ребристыми прутьями с диаметром в 12 мм, размещенных на расстоянии в 80 см между собой по высоте. Шаг вертикальных и поперечных стержней – 50 см.
Рекомендуемая последовательность расчета:
- Определяется минимальный метраж для продольных рядов с учетом периметра здания: (6+10)×2=32 м. Соответственно, на схему из 4 прутьев потребуется не менее 88 м.
- Рассчитывается общая длина арматуры для поперечных элементов каркаса: периметр дома делится на шаг размещения: 32/0,5=64 узла. Расстояние между продольными рядами – 30 см, но с учетом выступания концов за края стыка отрезки нарезают по 34 см как минимум (рекомендуемый запас для выполнения данного условия – от 10 %). Таким образом, для соединения каркаса поперек потребуется 64×0,34≈22 м арматуры.
- Находится длина отрезков вертикальных стержней и их общий метраж. Для приведенной высоты ленточного фундамента она составляет 0,8+0,8×10 %≈0,88 м, для определения их количества число узлов умножают на 4. На них уйдет: 64×4×0,88≈225 м.
- Требуемый вес (продукция реализуется в кг и тоннах). Используются стандартные значения для изделий выбранного диаметра: 1 п.м. металлопроката А3 сечением в 12 мм весит 0,888 кг, то же для гладкой разновидности 10 мм – 0,617. В итоге потребуется не менее 88×0,888=79 кг рифленой продукции и (225+22)×0,617=152 кг стали А1.
Приведенная схема расчета арматуры для ленточного фундамента является упрощенной и не учитывает запасы на закладку при соединении двух продольных прутьев (не менее 30 см), потребность в усилении углов и другие факторы. Большинство онлайн-калькуляторов их также не берет во внимание, полученный результат показывает необходимый минимум и помогает составить бюджет строительства. Для исключения ошибки предусматривается 10-12 % запас.
Что еще следует учесть, потребность в подушке
При возведении на сложных грунтах допустимый минимум диаметра арматуры составляет не 12, а 16 мм. То же относится к необходимости заливки конструкций тяжелыми марками бетона. Вне зависимости от типа постройки для соединения отдельных элементов армокаркаса используется вязальная проволока, а не сварка. Расчет ее количества несложный: число узлов умножают на длину отрезка на обвязку (30-50 мм), метраж пересчитывается в вес, из-за риска разрывов материал приобретается с 50-100 % запасом.
Арматура не укладывается на грунт, для предотвращения подобной ситуации под нижний ряд каркаса подкладывают кирпичи или специальные пластиковые стаканчики. Засыпка и трамбовка песчаной подушки под ленточное основание – обязательный этап, данный слой снижает нагрузку на нижний продольный ряд. На подвижных грунтах он занимает не менее 30 см. В особо сложных случаях организовывается фундамент с подушкой под ленту из тощего бетона толщиной около 10 см, армирование этого слоя необязательно.
сколько нужно, какую использовать, как рассчитать количество, шаг, диаметр
Теоретически (для идеальных условий) фундамент может быть выполнен только из бетонной смеси, которая при достижении проектной прочности хорошо работает на сжатие. Это позволяет эффективно воспринимать любую нагрузку от стен здания. Но, учитывая то, что на конструкцию оказывает воздействие еще и смещение грунта (особенно склонного к пучению), необходимо предусмотреть усиление фундамента при помощи армирования.Изготовление армирующего каркаса достаточно простой технологический процесс, главное правильно выполнить расчет арматуры для ленточного фундамента и придерживаться нескольких рекомендаций при его монтаже.
Несколько слов о физике работы фундаментных конструкций
Бетон нельзя назвать пластичным материалом, при значительных нагрузках возможна деформация конструкции, и пусть она не будет видна невооруженным глазом, возникающих усилий вполне достаточно для нарушения целостности поверхности (а в некоторых случаях и для полного разрушения).
При любой деформации создаются две особо нагруженные зоны — участки, на которых конструкция сжимается и растягивается. Именно зона растяжения является потенциально опасной, так как бетон очень плохо реагирует на такой тип нагрузки.
Для того чтобы повысить устойчивость к таким нагрузкам и применяется армирование, сталь способна сохранить целостность всей конструкции именно при растяжении.
Наибольшая деформация происходит именно в поверхностных слоях бетона, поэтому армирование в большинстве случаев выполняется путем увязки параллелепипеда из стальных арматурных прутьев с максимально близким их расположением к поверхности. При этом не стоит забывать о том, что сталь и бетон взаимодействуют и на электрохимическом уровне, поэтому расстояние от стержня до поверхности фундамента не должно быть меньше чем 2-3 см (так называемый защитный слой).
Для того чтобы решить, какую арматуру для ленточного фундамента выбрать, необходимо рассмотреть физику работы каркаса в несколько другой плоскости.
Выбор арматуры для фундамента
Диаметр стальной арматуры, применяемой при устройстве фундамента, должен определяться расчетом при проектировании. Большую роль играют предполагаемые нагрузки. Но в частном строительстве чаще всего (к сожалению) пренебрегают этим этапом.
Исходя из сложившейся практики, для армирования выбирают материал с такими параметрами:
- Постройки небольшого размера или в случае применения стеновых материалов с небольшим удельным весом (каркасная технология, пенобетон, ракушняк) — арматура диаметром 8 мм.
- Постройки среднего размера, к которым можно отнести большинство загородных домов — арматурный прут диаметром 10-12 мм.
- Для многоэтажных строений желательно применять арматуру большего сечения (14 мм).
Основную нагрузку несут четыре продольных прута, именно они и работают на растяжение в основном. Поперечные (вертикальные и горизонтальные) перемычки подвергаются гораздо меньшим деформационным усилиям. Поэтому, решая вопрос, какая нужна арматура для ленточного фундамента, можно принять арматуру с уменьшенным сечением для перемычек, это позволит несколько сократить затраты на армирование.
Достаточно много споров идет и по вопросу какую арматуру лучше применять — рифленую или гладкую. Опят же из стремления сэкономить часто выбор падает именно на гладкий прут.
Но стоит помнить о том, что рифленая арматура обеспечивает более качественное сцепление с бетоном, поэтому для продольных прутьев стоит применять именно ее.
Для перемычек вполне допускается применение гладкого прута. Но перед тем, как рассчитать арматуру для ленточного фундамента, задумайтесь о том, что в условиях небольшого частного строительства экономия будет минимальной, а несколько снизить несущую способность фундамента применение гладких прутьев сможет. Не стоит гнаться за мнимой выгодой, лучше всего применять именно рифленую арматуру.
Увязка армирующего каркаса
Основной параметр, определяющий несущую способность арматурного каркаса — шаг установки поперечных перемычек, он должен определяться расчетом. Но во многих случаях и в этом вопросе частный застройщик руководствуется опытом. Чаще всего этот параметр составляет 30-80 см, а лучше всего придерживаться золотой середины, расстояние в 40-50 см будет оптимальным для большинства случаев. Но если предполагается возведение серьезной постройки, стоит все-таки обратиться к профессионалу для выполнения расчета.
Соединение элементов каркаса стоит выполнять только при помощи стальной вязальной проволоки, применение сварки недопустимо.
Дело в том, что сварочные работы приводят к локальному нагреву арматуры в местах соединения, а это меняет физические свойства прута. Кроме того, получаемое соединение будет жестким, и при воздействии растягивающих усилий возможно разрушение каркаса.
Исходя из этого рассчитывая, сколько надо арматуры на ленточный фундамент, следует определить и необходимое количество вязальной проволоки.
Расчет материалов для армирования
В качестве примера рассмотрим расчет потребности в материалах для армирования фундамента длиной (по периметру) 20 м, шириной 0,5 м и высотой 1 м. Шаг монтажа перемычек составляет 0,5 м.
- Основные продольные прутья 20х4 = 80 метров.
- Всего на конструкцию понадобится установить 20/0,5 = 40 штук перемычек. Исходя из размеров фундамента, на каждую из них понадобиться (0,5+1)х2 = 3 метра арматуры. А общая потребность составит 40х3 = 120 метров.
- Каждая перемычка увязывается в двух точках, при этом на вязку уходит примерно полметра проволоки. Получаем примерный расход 40х4х2х0,5 =160 метров. К этому количеству стоит добавить запас для выполнения стыковки продольных арматурных стержней (выполняя эту увязку помнить о том, что при стыковке арматура укладывается внахлест, при этом его длина не должна быть менее 10 диаметров прутка), поэтому в среднем получим цифру 200 метров.
Благодаря этой методике достаточно просто рассчитать, сколько арматуры для армирования ленточного фундамента потребуется. К полученным результатам целесообразно будет добавить 10-15% запас, это позволит избежать необходимости ехать на базу при нехватке материалов.
Несколько особенностей выполнения армирования
Чтобы упростить выполнение работ по вязке армирующего каркаса, прислушайтесь к следующим рекомендациям:
- Проще всего выполнять увязку каркаса на ровной площадке, и только после этого устанавливать его в траншею. В стесненных условиях останется только состыковать отдельные сегменты армирования.
- При выполнении небольших объемов работ проволоку можно скручивать обычными плоскогубцами, но скорость выполнения увязки будет невысока. Поэтому стоит приобрести специальный крючок или сделать его самостоятельно. Он представляет собой согнутый в форме буквы «Г» небольшой отрезок стальной катанки, при этом рабочий край необходимо несколько заточить, тогда крючок будет проще вставлять в петлю увязочной проволоки.
К выполнению работ по армированию фундамента стоит отнестись с максимальной ответственностью, от этого будет зависеть долговечность всей постройки.
Расчет арматуры для ленточного фундамента
Популярность ленточного фундамента связана с его высокой эффективностью и простотой технологии его выполнения. Также с его помощью можно решить проблему строительства на слабых грунтах. Но вместе с тем устройство фундамента такого типа отличается повышенной трудоемкостью процесса и значительным увеличением расхода строительных материалов, в том числе и арматуры.
Расчет ленточного фундамента.
Армирование ленточного фундамента – это обязательное условие, без соблюдения которого нельзя говорить о надежности и долговечности всей конструкции.
Поэтому крайне необходимо выполнить правильный расчет арматуры в ленточном фундаменте.
Технология устройства ленточного фундамента
Армирование угла и примыкания ленточного фундамента.
Чтобы ответить на вопрос, какая арматура нужна для ленточного фундамента, надо вначале вспомнить, что он собой представляет и каким подвергается нагрузкам. Сама по себе бетонная лента достаточно хорошо выдерживает вертикальную и боковую нагрузку на сжатие, но очень плохо работает на изгиб. Для защиты фундамента выполняется его армирование, при этом, благодаря взаимодействию пластичного металла и прочного бетона, получается очень надежная и долговечная конструкция.
Технология устройства ленточного фундамента достаточно проста. После расчистки земельного участка, привязки здания и закрепления осей согласно проекту переходят к земляным работам: выкапывают траншею, выравнивают и уплотняют основание. Следующим обязательным этапом является устройство подушки из песка. Песчаная подушка поможет равномерно распределить вес здания на площадь подошвы.
После этого устанавливают опалубку и начинают укладку арматуры, диаметр которой должен соответствовать расчетному значению. После изготовления арматурного каркаса переходят к заливке бетона, каждый слой которого уплотняют вибратором. Когда бетон застынет, опалубку снимают и покрывают ленточный фундамент слоем гидроизоляции, а оставшиеся пазухи заполняют песком и тщательно утрамбовывают.
Вернуться к оглавлению
Инструменты и материалы
Схема армирования ленточного фундамента.
Для выполнения работы по устройству ленточного основания используются следующие материалы и приспособления:
- песок;
- щиты опалубки;
- арматура;
- вязальная проволока;
- бетон;
- рубероид или мастика;
- рулетка;
- уровень;
- шнур;
- лопата;
- кусачки;
- плоскогубцы;
- трамбовка;
- глубинный вибратор.
Строгое соблюдение технологии позволит возвести действительно надежную и долговечную конструкцию. Особое внимание при этом следует уделить вопросу, какой диаметр арматуры на ленточном фундаменте целесообразно применить. Этот вопрос решается еще на этапе проектирования всего здания.
Вернуться к оглавлению
Расчет арматуры ленточного фундамента
Расчет арматуры для фундамента.
Стандартная ширина ленты составляет 0,3-0,4 м, при высоте 0,7 м, то есть ее сечение достаточно небольших размеров. Поэтому диаметр применяемой арматуры обычно не превышает 12-14 мм. Укладка арматуры на ленточном фундаменте выполняется в виде двух поясов. Арматура располагается в верхней и нижней его частях в 4 прутка. Диаметр арматуры рассчитывают на основании данных о параметрах фундамента и используемых для его строительства материалах.
Следует помнить, что при возведении массивного дома или выполнении строительства на подвижных, слабых грунтах продольная арматура укладывается по 3-4 прутка в каждом поясе.
Низ основания в поперечном сечении испытывает нагрузку на изгиб, которую берет на себя поперечная арматура. Вертикальное армирование обеспечивает жесткость всего каркаса, при этом позволяет избежать в будущем наклонных трещин в теле фундамента.
Вернуться к оглавлению
Пример расчета арматуры для ленточного фундамента
Схема монтажа фундамента.
Проведем расчет необходимого количества арматуры для фундамента ленточного типа здания размером 6 х 6 м, ширина ленты – 40 см, высота – 70 см. Длина несущей стены – 6 м.
Для продольного армирования используют прутки класса А-III с ребристой поверхностью, диаметр которых составляет 12 мм. Стержни укладываются продольно в 4 прута вдоль ленты по всему периметру и под несущей стеной (по 2 прута в нижнем и верхнем поясах). Общая длина ленты составляет 30 м, где 24 м – это длина периметра и 6 м под несущей стеной. Общее количество арматуры, диаметр которой 12 мм, составляет 120 м. Вес 1 м арматуры такого сечения – 0,888 кг, следовательно, для армирования всего монолитного основания понадобится 106,56 кг.
Так как поперечные и вертикальные стержни не испытывают существенной нагрузки, то для армирования достаточно будет применить гладкую арматуру класса А-I, диаметр которой составляет 6 мм. Поперечные и вертикальные прутки устанавливают с шагом 0,5 м, отступ от поверхности фундамента должен составлять 5 см. С учетом этого количество стержней диаметром 6 мм на одно соединение составляет 1,8 м. Всего таких соединений 61, следовательно, общая длина прутков составит 109,8 м. Вес 1 м арматуры, диаметр которой соответствует 6 мм, составляет 0,222 кг. Следовательно, ее общее количество, необходимое для армирования, составит 24,38 кг.
Вернуться к оглавлению
Выбираем диаметр вязальной проволоки и способ вязки каркаса
Количество вязальной проволоки на одну связку составляет 0,3 метра, всего таких связок в одном соединении 4. Умножив на общее количество соединений – 61, получаем, что понадобится 73,2 м вязальной проволоки. Диаметр проволоки, которая применяется для связки стержней в углах каркаса, составляет 0,8-1,2 мм. При изготовлении арматурного каркаса используется именно вязка стальной проволокой, что гарантирует долговечность всей конструкции. Категорически нельзя применять сварку, чтобы избежать коррозии металла в местах соединения арматуры.
Технология вязки заключается в следующем: на пересечении прутков проволоку вначале затягивают, а затем оставшиеся концы скручивают плоскогубцами. Кроме того, для вязки арматуры применяется и специальный пистолет, который значительно сокращает трудозатраты. Недостатком является достаточно высокая стоимость этого инструмента.
Диаметр и количество применяемой арматуры напрямую зависит от массивности сооружения, от вида грунта на строительном участке, а также от типа ленточного фундамента (мелкозаглубленный или заглубленный). Процесс расчета арматурного каркаса должен осуществляться еще на этапе проектирования всего здания. Только строгое соблюдение требований проектной документации, технологии строительства и профессионального выполнения строительных работ могут гарантировать срок службы ленточного фундамента не менее 150 лет.
Технологическая схема армирования и расчет армирования ленточных фундаментов
Технологическая схема армирования и расчет арматуры
Армирование фундамента — это процесс, необходимый для усиления конструкции и увеличения срока службы здания. Другими словами, это сборка «каркаса», который играет роль защитного компонента, сдерживающего давление грунта на стенки основания. Но чтобы эта функция реализовалась в максимальной степени, необходимо не только правильно рассчитать арматуру для ленточного фундамента, но и уметь организовать ход строительных работ.
Содержание
- Как армировать ленточный фундамент
- Схема конструкции армирования
- Расчет расхода материала
Как армировать ленточный фундамент
Фундамент ленточного фундамента представляет собой бетонный раствор состоящий из цемента, песка и воды. К сожалению, физические характеристики строительного материала не гарантируют отсутствие деформации основания здания.Для повышения способности выдерживать сдвиги фундамента, перепады температур и другие негативные факторы необходимо наличие металла в конструкции.
Материал пластиковый, но обеспечивает надежную фиксацию; Поэтому армирование — важный этап в комплексе работ.
Армирование ленточного фундамента — стальной стержень с ребрами жесткости
Армирование фундамента требуется в местах, где могут возникнуть зоны растяжения. Отмечено, что наибольшее натяжение возникает на поверхности основания, что создает предпосылки для армирования вблизи верхнего уровня.С другой стороны, во избежание коррозии каркаса его необходимо защитить от внешних воздействий бетонным слоем.
Важно! Оптимальное расстояние армирования для фундамента — 5 см от поверхности.
Так как развитие деформации невозможно предсказать, зоны растяжения могут возникать как в нижней части (при изгибе середины), так и в верхней (при изгибе рамы вверх). Исходя из этого арматура должна проходить снизу и сверху арматурой диаметром 10-12 мм, причем эта арматура для ленточного фундамента должна иметь ребристую поверхность.
Обеспечивает идеальный контакт с бетоном.
Ленточные опорные зоны
Остальные части каркаса (горизонтальные и вертикальные поперечные стержни) могут иметь гладкую поверхность и меньший диаметр.
При армировании монолитного ленточного фундамента, ширина которого обычно не превышает 40 см, допускается использование 4 стержней арматуры (10-16 м), соединенных с каркасом диаметром 8 мм.
Важно! Расстояние между горизонтальными стержнями (шириной 40 см) — 30 см.
Ленточный фундамент имеет при большой длине небольшую ширину, поэтому в нем будут возникать продольные напряжения, а поперечных вообще не будет. Из этого следует, что поперечные вертикальные и горизонтальные стержни, которые будут гладкими и тонкими, нужны только для создания каркаса, а не для восприятия нагрузок.
Усиление углов требует особого внимания
Особое внимание следует уделить армированию углов: бывают случаи, когда деформация происходит не в середине, а в угловых частях.Углы следует укрепить так, чтобы один конец гнутой арматуры входил в одну стену, а другой — в другую.
Специалисты советуют шатуны использовать проволоку. Ведь не всякая арматура изготавливается из стали, которая поддается сварке. Но даже если сварка допустима, часто возникают проблемы, которых можно избежать с помощью проволоки, например, перегрев стали, приводящий к изменению свойств, утонение прутка в месте сварки, недостаточная прочность сварного шва и т. Д.
Схема конструкции армирования
Армирование начинается с установки опалубки, внутренняя поверхность которой выложена пергаментом, что позволяет упростить демонтаж конструкции в будущем.Создание каркаса производится по схеме:
1. В грунт траншеи вбиваются арматурные стержни длиной, равной глубине основания. Сохраняйте расстояние от опалубки 50 мм и шаг 400-600 мм.
2. На нижнюю установите опоры (80-100 мм), на которые нужно уложить 2-3 нитки нижнего ряда арматуры. Кирпичи, установленные на краю, вполне подходят в качестве опор.
3. Верхний и нижний ряд фитингов закрепляются поперечными перемычками на вертикальных шпильках.
4. На перекрестке закрепить проволокой или сваркой.
Важно! Следует строго соблюдать расстояние до внешних поверхностей будущего фундамента. Лучше с кирпичами. Это одно из важнейших условий, так как металлические конструкции не должны опираться непосредственно на дно. Они должны быть подняты над землей не менее чем на 8 см.
Армирование ленточного фундамента
После установки арматуры остается проделать вентиляционные отверстия и залить бетонным раствором.
Вам нужно знать!
Вентиляционные отверстия не только способствуют износу фундамента, но и предотвращают возникновение гнилостных процессов.
Расчет материалоемкости
Для расчета ленточного фундамента нужно заранее знать некоторые параметры. Рассмотрим пример. Предположим, что наш фундамент имеет прямоугольную форму и следующие размеры: ширина — 3,5 метра, длина — 10 метров, высота отливки — 0,2 метра, ширина ленты — 0.18.
В первую очередь необходимо рассчитать общий объем отливки, для чего нужно узнать размеры основания, как если бы оно имело форму параллелепипеда. Для этого произведем несколько простых манипуляций: узнаем периметр основания, а затем умножим периметр на ширину и высоту отливки.
P = AB + BC + CD + AD = 3,5 + 10 = 3,5 + 10 = 27
V = 27 x 0,2 x 0,18 = 0,972
Но на этом расчет монолитного фундамента не заканчивается.Мы узнали, что само основание, а точнее отливка, занимает округленный объем, равный 0,97 м3. Теперь нужно узнать объем внутренней части фундамента, то есть того, что находится внутри нашей ленты.
Получаем объем «начинки»: умножаем ширину и длину основания на высоту отливки и находим общий объем:
10 х 3,5 х 0,2 = 7 (кубометров)
Отнимаем объем отливки:
7 — 0,97 = 6,03 м3
Результат: объем отливки равен 0.97 м3, внутренний объем наполнителя 6,03 м3.
Теперь нужно рассчитать количество арматуры. Допустим, диаметр будет 12 мм, в отливке — 2 горизонтальные резьбы, т.е. 2 стержня, а по вертикали, например, стержни будут располагаться через каждые полметра. Периметр известен — 27 метров. Итак, мы умножаем 27 на 2 (горизонтальные полосы) и получаем 54 метра.
Вертикальные стержни: 54/2 + 2 = 110 стержней (108 интервалов 0,5 м и два по краям). Добавляем в угол еще один стержень и получаем 114 стержней.
Допустим, высота стержня 70 см. Получается: 114 х 0,7 = 79,8 метра.
Последний штрих — опалубка. Допустим, мы построим его из досок толщиной 2,5 см, длиной 6 метров и шириной 20 см.
Рассчитайте площадь боковых поверхностей: периметр умножьте на высоту отливки, а затем на 2 (с запасом, не учитывая уменьшение внутреннего периметра по отношению к внешнему): (27 x 0,2) x 2 = 10,8 м2
Площадь доски: 6 х 0,2 = 1,2 м2; 10,8 / 1,2 = 9
Нам понадобится 9 досок длиной 6 метров.Не забудьте добавить платы для подключения (на ваше усмотрение).
Результат: требуется 1 м3 бетона; Заполнитель 6,5 м3; 134 метра фурнитуры и 27 погонных метров досок (шириной 20 см), шурупов и стержней. Указанные значения округлены.
Результаты кропотливых расчетных работ
Теперь вы знаете не только, как правильно армировать ленточный фундамент, но и как рассчитать необходимые компоненты. А это значит, что построенный вами фундамент будет надежным и прочным, что позволит возводить монолитные конструкции любой конфигурации.
Арматура в ленточном фундаменте. Схемы усиления углов и устоев ленточного фундамента. Способы крепления штанг.
Армирование бетонных фундаментов проводится с целью увеличения прочности и несущей способности основания. Эти параметры, ширина и длина ячеек каркаса, форма стальных стержней, способ стыковки их пересечения. Расчет производится с учетом напряжений, которые возникнут при строительстве дома.Например, армирование ленточного фундамента выполняется с учетом продольных напряжений, обусловленных его конструкцией. В узких и длинных траншеях поперечные и вертикальные перекладины практически не участвуют в распределении нагрузки, а лишь служат элементами крепления.
Расчет арматуры для ленточной основы
Расчеты производятся на этапе проектирования дома, в документацию вносятся следующие данные:
- класс и сечение арматуры,
- метод укладки и вязания,
- необходимое количество материалов.
В малоэтажном домостроении, как правило, используются прутки d = 12 мм. Для продольных элементов каркаса берется арматура только с ребристой поверхностью; для поперечных и вертикальных стержней можно использовать гладкие стержни меньшего диаметра. Если решено произвести самостоятельные расчеты, обязательно учитываются нормы. В них указано минимальное количество арматуры, которое составляет 0,1% площади сечения фундамента. От этой цифры зависит количество стержней и размер их сечения.Для периодического профиля указывается размер наружного диаметра.
Площадь поперечного сечения ленточного фундамента определяется умножением его ширины и высоты. Например, траншея имеет размеры 70 см в глубину и 40 см в ширину. Площадь поперечного сечения в этом случае будет:
70×40 = 2800 см2.
Это значение умножаем на 0,1 и получаем минимальную площадь стержня 2,8 см2. Количество ремней также имеет большое значение: 1, 2 или 3. Два ремня гарантируют более равномерное распределение нагрузки в неглубоком и глубоком фундаменте, а 3 ремня используются для глубоко погруженных оснований.При расчете диаметра стержней учитывают общую высоту рамы, которая в случае 2 ремней рассчитывается путем сложения их высот. СНиП определяет граничное значение высоты 80 см. Это значит, что если общая высота каркаса меньше этого показателя, то минимальный диаметр прутка составляет 6 мм, если каркас больше 80 см, арматура берется от 8 мм.
Формулы для расчета арматуры
Однако нельзя опираться только на эти данные, необходимо сделать конкретный расчет по таблицам СНиП с учетом габаритов вашего фундамента.Для самостоятельных расчетов можно использовать следующую формулу:
- Длина арматуры в погонных метрах на ленту составляет D = PxK (P — базовая длина, K — количество стержней в 1-м поясе).
- Количество горизонтальных перемычек Q = P / L (L — длина скелетной ячейки).
- Длина перемычки C = Tх (K-1) +0,05 (T — расстояние между продольной арматурой).
- Количество вертикальных перемычек J = P / N (N — шаг между вертикальными полосами).
- Длина вертикального стержня между ремнями составляет U = Hx (P-1) + 0,05 (H — расстояние между ремнями каркаса).
Армирование углов основания
Ленточный фундамент имеет несколько углов, в которых важно правильно уложить армопояс. В случае ошибок именно в этих местах начинается деформация основания, трещины в бетоне, что со временем приводит к разрушению дома. Для исключения погрешностей соблюдается схема армирования ленточного фундамента, подразумевающая использование хомутов.В каждой планке делают загиб, который нужно загнуть концом так, чтобы он упирался в противоположную стену.
При этом длины планки часто просто не хватает. Затем сделайте соединение со штоком Г-образным. Следует отметить, что усиление углов Г-образными и П-образными хомутами выполняется по всей высоте конструкции. Длина элементов U-образных хомутов составляет 2 ширины фундамента. Использование зажимов важно для предотвращения изгиба сжатых стержней в местах стыковки углов.Запрещено делать каркас в углах простым пересечением арматуры.
Конструктивные особенности каркаса арматурного
Конструкция может быть собрана двумя способами: сразу в траншею сразу или заранее отдельными блоками, залитыми бетоном (заводское производство). В первом случае получается более надежный ленточный монолитный фундамент (при условии правильной стыковки каркаса). Во втором случае слабыми местами основания являются блочные соединения.Скрепляются они между собой одинаково: с помощью железобетона.
Монтаж металлического каркаса на месте требует соблюдения следующих условий:
- На дно траншеи сначала насыпается песчано-гравийная площадка высотой 30 см. Затем устанавливается съемная или несъемная опалубка. Его устойчивость при заливке бетона гарантируют внутренние подкосы, которые устанавливаются после установки арматуры, а также внешние опоры из бруса или досок.
- Армирование должно находиться на расстоянии 5 см от опалубки, то есть если ширина траншеи 40 см, то ширина стального каркаса будет равна 30 см.
- Работа начинается с установки вертикальных стоек, к которым будут крепиться продольные стержни каркаса. У них ребристая поверхность и самый большой диаметр из всей используемой арматуры. Например, если продольные стержни возьмем диаметром 16 мм, то вертикальные столбы — не менее 20 мм.
- Стойки должны уходить в землю на глубину 2 м.В местах поворотов вертикальные стойки каркаса располагаются на расстоянии в 2 раза меньше, чем на прямых участках.
- Вертикальные перемычки устанавливаются на стыках горизонтальных перемычек и дополнительно с шагом 20 см (шаг турников выбираем стандартно 30 см).
- Точки пересечения соединяются вязальной проволокой с помощью крючков, проволочного вязального пистолета, отвертки или специальных зажимов. Также можно использовать плоскогубцы. Длина одного отрезка проволоки 20 см.
Продольная арматура укладывается в количестве 2-3 стержня. Расстояние между ними по СНиП должно быть 25-40 см. Важно соблюдать такое же количество стержней во втором поясе каркаса, если это предусмотрено проектом. Вертикальный и горизонтальный ряды арматуры располагаются друг относительно друга под углом 90º: продольные относительно вертикали, а вертикальные — относительно горизонтали.
Опытные строители знают, что прочность основания под стену дома напрямую зависит от правильности выбранного каркаса арматурного каркаса для создания ленточного фундамента и правильности монтажа.В этой конструкции четко распределены все, так сказать, «обязанности» составляющих ее элементов. Таким образом, арматура принимает на себя деформирующие линейные напряжения, которые возникают не только от силы тяжести стен, но и от перепадов температуры, а бетонная часть конструкции препятствует ее сжатию. Таким образом, в комплексе эти материалы создают надежную опору для стен.
Вязкая арматура под ленточный фундамент — лучший вариант крепления металлического «хребта» железобетонной конструкции.Такое соединение, сохраняя заданные линейные и пространственные формы каркаса, тем не менее оставляет возможность несколько «уравновесить», когда бетон затвердевает, и устанавливает прочность марки, занимая оптимальное положение при воздействии результирующих нагрузок. Если каркас фундамента сделать жестким, то есть арматуру заделать сваркой, то даже при небольшой усадке грунта или под давлением стен дома бетонная часть конструкции может начать разрушаться, т. К. раствор частей каркаса не сдвинулся оптимально и сплошная монолитная плита сохраняет значительные внутренние напряжения.
Ленточный тип фундамента можно назвать универсальным, наиболее распространенным, позволяющим возводить здания практически из любых строительных материалов. Широкое использование этой базовой конструкции связано, в том числе, со значительной экономией средств, простотой и доступностью самостоятельной конструкции, а также с тем, что ленточный фундамент прошел тщательные испытания очень широкой практикой многолетней эксплуатации. .
Сам по себе такой фундамент представляет собой железобетонную ленту, которая может иметь разную ширину, толщину и высоту.Эти параметры зависят от проекта будущего здания — размеров стен и материала, из которого планируется возводить стены, общей массивности конструкции, состояния грунта на строительной площадке и ряда других. важные факторы. Но в любом случае ленточный фундамент устанавливается по периметру будущей конструкции, имеет замкнутый контур, который предназначен для дальнейшего возведения несущих стен. При необходимости этот тип фундамента дополняют внутренними перемычками, которые становятся основой для возведения на них внутрикорпоративных капитальных перегородок.
Глубина подошвы тесьмы может существенно различаться в зависимости от конкретных обстоятельств. Таким образом, при неустойчивых верхних слоях грунта на строительной площадке подошва фундамента полностью заглубляется ниже уровня промерзания или выполняется в сочетании с свайным фундаментом. Если грунт плотный, или если на общую массу планируется возвести небольшую постройку, то вполне можно обойтись неглубоким ленточным фундаментом.
В любом случае, требования к качественному и качественному армированию одинаково важны для любого типа ленточного фундамента.Только при этом условии основание оптимизирует нагрузку от стен дома на землю по всему периметру здания, что сводит к минимуму риск провисания здания, перекоса и деформации всех составляющих его строительных конструкций.
В соответствии с положениями ГОСТа эти клапаны делятся на шесть классов. Если для первого класса используется обычная низкоуглеродистая сталь, то по мере повышения класса содержание специальных и даже легирующих добавок увеличивается, резко повышая механическую прочность материала.
Стержни якоря I класса имеют гладкую внешнюю поверхность. Остальным (за редким исключением) придают гофрированную форму, так называемый периодический профиль кольца, серповидного или смешанного типа. Такая рельефная структура поверхности предназначена для максимального контакта армирующих элементов конструкции с набирающим прочность бетоном.
Для основного армирования ленточного фундамента оптимальным выбором с точки зрения достаточной степени прочности и приемлемой цены будет арматура класса А-III диаметром от 12 до 18 мм, в зависимости от особенностей конструкции. создаваемая структура.Показатели классов от четвертого и выше останутся просто невостребованными, а вот A-II может оказаться слабоватым.
Стоит обратить внимание на наличие буквенного индекса.
- Таким образом, буква «С» говорит о том, что эти фитинги можно соединять сваркой. При всех остальных видах сварочных работ полностью исключены сварочные работы — структура стали при высокотемпературном нагреве изменится, и каркас потеряет необходимую прочность.
- Буква «К» обозначает изделия из стали с улучшенными антикоррозийными свойствами.Их обычно используют при строительстве объектов, к которым предъявляются особые требования, а для ленточного фундамента для частного строительства покупка такой фурнитуры (а она стоит, конечно, намного дороже) не рассматривается как необходимость.
А для дополнительных элементов конструкции — перемычек, подкосов, хомутов, придающих основному каркасу необходимую громоздкость, гладкие арматурные стержни класса А диаметром 6 мм (при высоте ленты до 800 мм) или 8 мм (при большая высота) вполне подходят.Они легко гнутся в нужную конфигурацию, а их прочностных характеристик для такого применения вполне достаточно. Также можно использовать гофрированные стержни класса А-II, но это уже будет несколько дороже.
Армирование часто делается с помощью специальной вязальной проволоки, которую устанавливают и скручивают петлей во всех точках пересечения стальных стержней. Использование сварки не приветствуется по нескольким причинам:
- Любой, даже хорошо сделанный сварной шов — это место с повышенной уязвимостью к коррозии.
- Течь на стыке, которую вполне можно не заметить при установке каркаса, может привести к нарушению целостности конструкции еще на этапе заливки тяжелого бетонного раствора.
- Даже небольшой перегрев стержня в месте его пересечения с другим элементом конструкции приводит к снижению заложенных в нем армирующих качеств.
Так что даже если разработчик считает себя опытным сварщиком и имеет в своем распоряжении аппарат, от такой операции все же лучше воздержаться.Кстати, к работам по сварке арматурных конструкций там, где это необходимо в условиях промышленного строительства, допускаются только мастера высшей квалификации. При этом использовать исключительно арматуру, обозначенную буквой «С».
Композитная арматураКомпозитная арматура — относительно новый строительный материал. Он может быть выполнен на разных основах — это стекловолокно, углепластик или базальтопласт.
Арматура из стекловолокнаявляется наиболее распространенной в этой категории, так как имеет более доступную цену, чем два других типа, при этом обладая высокими прочностными свойствами.
Композитные стержни используются для армирования различных типов фундаментов, в том числе ленточных. Преимущество этого вида арматуры — низкая теплопроводность по сравнению с металлическими стержнями. Поэтому эти изделия хорошо подходят для армирования фундаментов и стен подвала, которые планируется утеплить, так как за счет этого материала не будет лишних потерь тепла.
Полимерная арматура инертна к внешним воздействиям, поэтому достаточно прочна — не боится влаги и достаточно высоких температурных перепадов.Если при возведении фундамента используется качественная бетонная и стеклопластиковая арматура, фундамент для дома должен быть прочным и долговечным.
Установка полимерных стержней намного проще, чем установка и крепление металлической фурнитуры, так как они имеют небольшой вес, легко крепятся хомутами или проволокой и не оставляют ржавчины на руках и одежде.
Можно провести сравнение со стальной арматурой на базовом уровне:
- Предел прочности при растяжении при одинаковом диаметре для стального прутка — 390 МПа, для стеклопластика — 1000 МПа.
- Стекловолокно имеет массу в 3,5 раза меньше стали.
- Сталь подвержена коррозии, полимер устойчив к кислой среде.
- Стекловолокно не проводит электричество, в отличие от металла.
Сталь- обладает высоким показателем теплопроводности, полимер практически не проводит тепло.
- Металл — негорючий материал, стеклопластик также относится к легковоспламеняющимся самозатухающим.
- Эластичность стали в несколько раз выше, чем у стеклопластика.
- Полимеры обладают высокой прочностью на разрыв, однако при нагревании до очень высоких температур связующее волокно пластика становится мягким, теряя эластичность.
- Композитная арматура крепится только пластиковыми хомутами или проволокой, металл можно сварить или скрутить проволокой.
Сравнение характеристик этих двух материалов позволяет сделать вывод, что для тяжелых конструкций лучше всего использовать металлическую арматуру, а каркас для ленточных фундаментов, армированных волокном, также подходит для легких конструкций.Однако следует иметь в виду несколько важных моментов.
- На сегодняшний день не выработано четких технологических рекомендаций по применению композитной арматуры — все расчеты основаны на использовании металлопродукции. Так что хозяин, решивший использовать каркас из стекловолокна, идет на определенный риск.
- Рынок буквально наводнен стекловолокном очень сомнительного качества. Это неудивительно — если для производства стального проката требуются только определенные производственные условия, то линии по производству композитных стержней рекламируются и продаются всем, кто хочет попробовать свои силы в этом деле.Естественно, что о соответствии ГОСТу в данном случае говорить не приходится — в лучшем случае декларируется соответствие независимо установленным техническим условиям (ТУ), в которых критерии оценки качества продукции либо нечетко сформулированы, либо сформулированы нечетко. И очень часто — партии товаров вообще не имеют сопроводительной технической документации.
На таких стержнях могут быть продольные или поперечные (видимые на срезе) трещины, расслоения, выступающие волокна, сучки, потеки смолы, неравномерный шаг волны, разница в цвете, что, в свою очередь, свидетельствует о явном несоблюдении температурно-временной режим обработки.Как ведет себя такая арматура в груженом состоянии в составе ленточного фундамента, сказать сложно, и надеяться, что она ее «пронесет» — не самое разумное решение.
Схемы распределения арматуры в каркасной конструкции ленточного фундаментаКак было сказано выше, армирование в конструкции фундамента способствует равномерному распределению основной нагрузки от веса здания и внешних динамических воздействий, сохраняет целостность конструкции под действием внутренних напряжений.Поэтому качество крепления элементов каркаса будет таким же прочным и долговечным, как и фундамент, и вся конструкция в целом.
Обустраивая каркас ленточного фундамента, нужно учитывать некоторые нюансы:
- Наибольшие нагрузки приходятся на продольные стержни каркаса верхнего и нижнего (в частности) армирующих поясов. Поэтому с учетом характеристик грунта и особенностей будущего здания для них подбирается арматура периодического профиля диаметром 10 мм, и если длина ленты на любом из участков превышает 3 метра (и это чаще всего результат) то минимум 12 мм.
- Продольная арматура должна располагаться на расстоянии от нижней части, боковых стенок и верхней границы заливки цементного раствора на расстоянии от 30 до 50 мм. Например, если вы строите фундамент шириной 400 мм, расстояние между продольными стержнями в горизонтальной плоскости должно составлять 300 мм.
- Расстояние между двумя соседними параллельными стержнями продольной арматуры не должно превышать 400 мм.
- Для поперечных и вертикальных элементов рамы используются гладкие стержни диаметром 6–8 мм (при высоте ленты 800 мм и более — не менее 8 мм).Этого раздела будет вполне достаточно, так как на них ложится меньшая нагрузка.
- Расстояние между зажимами (прорези поперечной арматуры и стойки) может варьироваться от 100 до 500 мм. Последнее значение максимальное, поэтому превышать его — нельзя. Лучше всего исходить из расчета, что шаг установки хомутов составляет 0,75 × h, где h — общая высота фундаментной ленты.
- Количество ярусов продольной арматуры и количество стержней будет зависеть от высоты и ширины ленточного фундамента.СНиП устанавливает минимальное соотношение площади сечения ленты и общей площади сечения стержней продольной основной арматуры.
- Если нагрузка на фундамент не слишком велика, то конструкция каркаса предельно упрощается и представляет собой прямоугольник в поперечном сечении без дополнительных арматурных стержней. То есть в нижней и верхней зоне армирования используются два продольных стержня, которые соединяются вертикальными и горизонтальными перемычками или готовыми зажимами.
Повышенной сложности — это участки, требующие дополнительного армирования — это углы и участки примыкания поясов фундамента. Подробно об этом рассказывается в соответствующей статье.
Проволока изготавливается из низкоуглеродистой стали и подразделяется на несколько типов:
- Путем обработки. Есть термически обработанная (отожженная) и необработанная проволока.
- По точности изготовления. Итак, проволока может быть повышенной точности или нормальной.
- По временному сопротивлению нагрузке разрушается изделие, не прошедшее термическую обработку и относящееся к первой и второй группам.
- Проволока может иметь специальное защитное покрытие или быть без него.
Проволока может быть стальной или черной. Диаметр секции варьируется от 0,16 до 10 мм. При этом допускаются отклонения сечения изделия 0,02 мм.
В ГОСТ-документах можно найти более подробные характеристики этого продукта.Некоторые из них:
- Удлинение термообработанной проволоки с защитным покрытием 12 ÷ 18%, без защиты 15 ÷ 20%.
- У жаропрочных необработанных изделий в зависимости от их поперечного сечения различается такой параметр, как предел прочности и составляет (Н / мм²):
— 590 ÷ 1270 для диаметра 1,0 ÷ 2,5 мм;
— 690 ÷ 1370 для диаметра менее 1,0 мм.
Производитель данного продукта должен обеспечить соответствие следующим стандартам ГОСТ:
— изделия без термообработки диаметром 0.5-6,0 мм должны сохранять целостность после четырех и более складок;
— проволока должна продаваться в бухтах. Эти отсеки могут иметь разный вес в зависимости от диаметра провода и наличия или отсутствия защитного покрытия. Таким образом, масса бухты варьируется от одного килограмма при сечении изделий 0,16 ÷ 0,18 мм до 40 кг при 6,3 ÷ 10 мм.
Термическая обработка проволоки (ее отжиг) делает материал более пластичным, удобным в эксплуатации, без существенной потери прочностных свойств.Так что есть смысл сразу обзавестись именно такой опцией. Отжиг, конечно, можно провести самостоятельно — но стоит ли тратиться на него, когда проволока уже есть в продаже и по более чем доступной цене?
Наверное, и в ленточном фундаменте нет необходимости, и нет особой необходимости приобретать проволоку с цинковым покрытием, если сразу после установки каркаса арматуры заливать бетон. За такой короткий промежуток времени коррозия не успеет «сожрать» составы, а потом, после полного созревания бетона, совсем не будет страшно.
Как правило, для самостоятельного строительства ленточных фундаментов используют проволоку диаметром 1,2 или 1,4 мм, реже до 1,8 мм. Миллиметр для таких целей еще слабоват — может давать обрывы при затягивании узлов, а при диаметре 2 мм и более — работать будет очень сложно, потребуется много сил, чтобы хорошо связать без особых преимущества.
Строительный рынок пополнился еще одним чрезвычайно удобным материалом для обвязки каркаса.Это бухты готовых отрезков проволоки диаметром, как правило, 1,2 мм и длиной от 80 до 180 мм, у которых на концах уже есть готовые петли. Обычно в бухте — 1 тысяча таких продуктов.
Стоимость таких пакетов петель очень доступна, а производительность труда, как показывает практика, почти втрое.
Ниже читателю предлагается калькулятор, который поможет быстро подсчитать, сколько примерно точек соединения вам придется связать на создаваемом арматурном каркасе и сколько для этого потребуется проволоки.При этом учитывается, что некоторые участки армирования требуют дополнительного армирования.
Калькулятор расчета количества проволоки для обвязки арматурного каркаса ленточного фундаментаВведите требуемые данные и нажмите «РАССЧИТАТЬ МИНИМАЛЬНОЕ КОЛИЧЕСТВО ПРОВОЛОКИ»
Количество стержней продольной ленточной арматуры
Следует правильно понимать, что это минимально необходимое количество материала.При работе вполне вероятно обрыв завязанных узлов, собственные недоработки в работе, а просто на стройплощадке легко уронить и потерять обрезанные куски проволоки. Стоимость его невысока, поэтому закладывать запас в 50, а то и более процентов вполне можно. Более того, поскольку возводится только фундамент, впереди еще много разных строительных работ, и всегда найдется применение лишней проволоке.
Инструмент арматурныйЗакрепить арматуру проволокой вручную, то есть просто усилиями пальцев, практически невозможно, поэтому для проведения этого процесса были созданы специальные инструменты, как ручной, так и механический.Эти приспособления и приспособления не только ускорят работу, но и значительно улучшат качество связок арматуры.
Итак, завязку стержней в арматурную конструкцию под фундамент можно производить такими инструментами:
— крючки для ручной вязки, заводские или самодельные;
— крючок вязальный инерционный полуавтоматического действия;
— специальный вязальный пистолет;
Кроме того, для процесса вязания научились пользоваться обычной электродрелью (которая переключается на малую скорость) или отверткой со специальной самодельной насадкой-крючком.
Наивысшее качество переплета получается при использовании специализированного вязального пистолета. Но это достаточно дорогое средство, и для того, чтобы сделать всего один фундамент, его редко кто приобретает. В основном профессиональные строители имеют это в наборе своих инструментов, так как, переходя от объекта к объекту, они не могут терять много времени на и без того довольно длительной и трудоемкой операции связывания каркаса.
Для пистолета выпускаются специальные сменные катушки с намотанной на них проволокой, заряжающей устройство.Многие из этих инструментов могут работать от батареек, и, поскольку обычно в комплекте с вязальным пистолетом идут две батареи, работа может идти почти гладко. Еще одним преимуществом такого устройства можно назвать то, что он не привязан к розетке кабелем, поэтому с ним можно работать автономно — при отсутствии близко расположенных точек подключения к сети.
Пистолет для вязания захватывает желаемую область металлических стержней, отпускает проволоку и связывает их петлей, а затем скручивает края проволоки между ними.Минусом, помимо дороговизны самого устройства, является невозможность работы в некоторых труднодоступных местах, где все равно придется переходить на «ручной труд».
Универсальный инструмент для вязания фурнитуры — крючок на ручке
Крючкимогут незначительно отличаться по внешнему виду и конфигурации, поэтому, приобретя этот инструмент, вас обязательно попросят опробовать его на месте. Инструмент, который будет удобно «лежать в руке», а значит, им будет комфортнее работать и его следует выбирать для дальнейшей работы.Имейте в виду — неудобный крючок способен быстро заполнить мозоли на пальцах.
Самодельный крючок изготавливают по типу заводской модели, повторяя ее форму. Для его изготовления может быть использован заостренный участок арматуры, который сгибается в тисках, а затем вставляется в ручку. Ручку можно сделать из расплавленного пластика, навинтив ее на арматуру, или положив на нее толстостенную полимерную трубку, нагрея ее, а затем охладив. При остывании пластик плотно прижимается к клапану, образуя удобную для рабочих ручку.
Еще один вариант крючка, конструкция которого значительно ускоряет установку каркаса — это полуавтоматический инструмент, действующий по инерционному принципу.
Сам крючок расположен на своеобразной ножке с прорезанными в виде спирали канавками. Внутри рукоятки крючка находится механизм возвратной пружины.
Этот инструмент работает следующим образом: зацепите крючки проволоки и потяните их вверх с усилием. В это время ножка на выходе из рукоятки при перемещении спиральных канавок по направляющим вращается, делая несколько оборотов, скручивая два конца проволоки между собой до упора сборки до закрепленных элементов каркасная конструкция.При необходимости операцию повторяют — до достижения необходимой затяжки узла. Таким образом, для соединения точки требуется одно или два поступательных движения.
Крюк, установленный в дрель или шуруповерт, ускорит выполнение работы с меньшими физическими усилиями. Эти инструменты быстро скручивают два конца проволоки до упора, надежно фиксируя между собой перекрещенную арматуру. На трещотке шуруповерта экспериментально установить оптимальный момент затяжки несложно.Работать компактным инструментом будет удобнее, так как пространство траншеи под ленточным фундаментом зачастую очень ограничено. К тому же, если в планах использовать для привязки арматуры обычную электродрель, то придется запастись удлинителем-мультиметром.
Какой бы инструмент для обвязки ни был выбран, принцип скручивания проволоки с его помощью одинаков, поэтому его выбор зависит от финансовых возможностей и предпочтения мастера.
Способы стыковки арматурыЕсть несколько способов вручную вкрутить металлические стержни в каркас под фундамент.О них мы поговорим более подробно.
Арматура металлическаяСвязывание фурнитуры вручную — не слишком сложное, а довольно долгое и трудоемкое занятие. Процесс привязки узла осуществляется в несколько этапов:
- Если вы планируете использовать обычную проволоку (то есть без подготовленных на ее концах петель), то разрежьте ее на фрагменты длиной 250 ÷ 300 мм.
- Плоский кусок проволоки складывается пополам. Затем этот уже спаренный отрезок сгибается так, чтобы полученная петля имела примерно треть выученной длины, а остальная часть оставалась на свободных концах.
Принципы крепления арматуры вязкой клещами представлены на этой схеме-рисунке:
1 — Обвязка арматуры жгутом проволоки, то есть несколькими отрезками, сложенными вместе, без натяжения.
2 — Связка угловых узлов.
3 — Узел двухрядный.
4 — Перекрестный узел.
5 — Мертвый узел.
6 — Связка стержней со специальным соединительным элементом.
7 — Арматурные стержни.
8 — Металлический соединительный элемент.
9 — Вид спереди.
10 — Вид сзади.
Помимо металлической проволоки, для связывания арматурных элементов каркаса используются также пластиковые хомуты.
У этих крепежных элементов есть ряд преимуществ и недостатков, о которых следует помнить при выборе этой технологии выравнивания рамы.
ТО «Плюсы» Хомуты из пластика можно отнести к нескольким пунктам. Это:
- Простота и удобство процесса привязки кадра.
- Крепление зажимов арматуры не требует дополнительных инструментов.
- Скорость работы, минимальные затраты физических усилий.
- Связующая сила после затвердевания бетона.
«Минусы» Пластиковые крепления называются следующими факторами:
- Очень высокая общая стоимость материала.
- Недостаточная прочность креплений перед заливкой бетонного раствора и его созреванием.
- Невозможность сборки каркаса при отрицательных температурах, так как прочность соединений под их воздействием ослабевает, а пластик теряет эластичность, становится хрупким.
Если есть финансовые возможности, а работа должна выполняться быстро и без использования дополнительных инструментов, можно использовать пластиковые хомуты с металлическим сердечником. Такая затяжка имеет преимущества как пластиковых, так и металлических крепежей, то есть простота установки и прочность соединения. Правда, за это придется раскошелиться.
Использование дополнительных деталей для пространственной фиксации арматурыВ некоторых случаях при установке арматурных стержней используются так называемые «проушины» — хомуты из пластика.Их конструкции очень разнообразны, и такие изделия используются либо как элементы временного крепления стержней, либо как опоры для нижнего ряда арматуры, либо как своеобразные «калибраторы» для боковых.
В каркасе под ленточный фундамент такие вставки используются для выдерживания расстояния между армирующими элементами и стенами опалубки, так как между ними должен оставаться зазор под бетонный слой шириной 50 мм.
Другой способ приклеивания арматуры на перекрестках — использование специальных стальных монтажных кронштейнов.Они сделаны из стальных стержней с высоким показателем упругости, диаметром от 2 до 4 мм, то есть действуют буквально как пружина, а внешне напоминают канцелярскую скрепку.
Такой зажим-соединитель изгибается с образованием петли, и оба его конца заканчиваются крючками. Как устанавливается такая связь, хорошо показано на иллюстрации. Конечно, это удобно, но приобретение большого количества таких зажимов обойдется очень дорого.
Вязкое армирование стекловолокномВязание данного вида арматуры несколько отличается от работы по креплению металлических стержней.Выбирая композитный армирующий материал для создания каркаса, прежде чем приступить к его стыковке, необходимо произвести точные расчеты по распределению веса конструкции. Если при установке металлического каркаса могут быть допущены небольшие ошибки, для стеклопластика они недопустимы. А про сложность именно этого момента уже говорилось выше.
В зависимости от степени тяжести материала стены расстояние между полимерными стержнями может составлять 150 ÷ 350 мм.Если фундамент делается под легкие постройки, то расстояние можно увеличить до 600 мм. Но, увы, четких стандартов пока нет.
При прокладке под него нижнего армирующего пояса обязательно, и с достаточно небольшим шагом устанавливаются пластиковые опоры. Они необходимы для того, чтобы при заливке бетонного раствора в опалубку арматурный каркас не просел под тяжестью раствора. С этой же целью часто используются металлические стержни для упрочнения каркаса из стекловолокна, который сохранит конструкцию в первоначальном виде на этапе литья.
Вязание композитных арматурных конструкций также осуществляется разными способами, некоторые из которых практически аналогичны операциям крепления на металлических каркасах.
Для монтажа композитных каркасных конструкций могут использоваться специальные пластиковые крепления.
- Крепление специальными пластиковыми застежками, которые защелкиваются в арматурных стержнях в точках их соединения — этот способ считается наиболее надежным для полимерных каркасов.
- Металлическая (алюминиевая) мягкая проволока. Вязание производится по тому же принципу, что и на стальных каркасах, то есть с помощью крючка. Однако, учитывая специфические свойства алюминиевой проволоки, ее нельзя сильно затягивать, иначе она легко сломается.
Еще раз обратите внимание: прежде чем выбирать композитную арматуру, нужно взвесить все «за» и «против» и быть готовым взять на себя ответственность за отказ. Для возведения фундаментов частных домов чаще всего используется металлическая фурнитура, каркасные конструкции из которой легко рассчитываются, будут предсказуемы, так как уже проверены многолетней практикой.
В конце публикации — несколько полезных видеороликов с технологическими рекомендациями по процессу обвязки арматуры.
Полезные ролики — в помощь начинающему строителю Видео: как связать фурнитуру крючком Видео: полезные инструменты для быстрой и точной сборки арматуры Видео: адаптируем отвертку для стыковки арматуры
Ленточный фундамент — самый популярный в частном строительстве.Идеально подходит для строительства небольших домов, гаражей, бань и других хозяйственных построек. Все строительные работы можно выполнять вручную, а относительно небольшой расход материалов и минимальный объем земляных работ позволяют снизить стоимость и время производства. Конечно, для того, чтобы все прошло как надо, нужно знать, как правильно укрепить фундамент.
Прежде чем рассказывать, как правильно армировать ленточный фундамент, стоит сказать несколько слов о выборе арматуры.
- Если вам нужно усилить фундамент под одно- или двухэтажный дом, а также более легкие постройки, следует взять фитинг диаметром 10-24 миллиметра. Более толстый материал будет слишком дорогим, а его высокая прочность не будет задействована. Арматура меньшей толщины может не выдержать нагрузки.
- Желательно использовать специальную гофрированную арматуру. Он обеспечивает лучшее соединение с бетоном, обеспечивая его высокую прочность и надежность. Гладкий аналог стоит немного дешевле, но к использованию не подходит из-за низкой адгезии.Единственное исключение — поперечные стыки. У них нагрузка намного меньше.
- Если грунт однородный по всей площади фундамента, то можно использовать материал сечением 10-14 миллиметров. При неоднородном грунте нагрузка на основание увеличивается, поэтому желательно потратиться на штанги диаметром 16-24 мм.
Конечно, покупка толстой гофрированной арматуры — удовольствие довольно дорогое. Но если вы решили укрепить ленточный фундамент своими руками, значит, объем работ не слишком велик.Значит, придется переплатить максимум несколько сотен рублей — это полностью компенсирует высокую прочность и надежность готовой конструкции.
При самостоятельном расчете и выборе арматуры для арматурного каркаса ленточного фундамента вероятность ошибки велика. В дальнейшем это может стать причиной разрушения дома, поэтому лучшим решением будет заказать проект усиления фундамента у дизайнера, а каркас самостоятельно связать по чертежу.
Сколько арматуры вам нужно?
Перед тем, как отправиться в магазин за материалом, нужно знать, сколько его понадобится для армирования ленточного фундамента. Для этого следует заранее подумать, какое армирование ленточного фундамента будет оптимальным выбором, и провести расчеты для конкретного объекта.
Пример арматурного каркаса для фундамента
При строительстве небольших домов, гаражей и бань обычно используется следующая конфигурация каркаса:
- 2 ремня: верхний и нижний;
- каждая лента состоит из 3-4 стержней арматуры;
- оптимальное расстояние между стержнями 10 сантиметров.Учтите, что расстояние от арматуры до краев будущего фундамента должно быть не менее 5 сантиметров;
- соединение ремней осуществляется при помощи хомутов или кусков арматуры с шагом 5-30 сантиметров в зависимости от сечения арматуры.
Такая схема оптимальна. Теперь, зная размеры будущей постройки, совсем не сложно провести соответствующие расчеты.
Допустим, вы хотите построить просторный каркасный или деревянный коттедж площадью 150 квадратных метров с периметром внешних стен 50 метров.Мы будем проводить расчеты исходя из этого. Соответствующие и описанные выше характеристики мы используем при армировании ленточной основы СНиП.
У нас есть два ремня по три стержня в каждом. Итого — 6 умножить на 50 = 300 метров главного клапана. Учитываем количество перемычек, которые умещаются с шагом 30 сантиметров. Для этого разделите 50 метров на 0,3. Получаем 167 штук. Перекрестие в этой основе будет иметь длину 30 сантиметров, а вертикальное — 60 сантиметров. На вертикальную перемычку вам понадобится 167х0.6х2 = 200,4 метра. По горизонтали — 167х0,3х2 = 100,2 метра. Итого потребуется 300 метров гофрированной арматуры и на 300,6 метра тоньше, гладкая арматура. Получив эти номера, смело отправляйтесь в магазин за материалом — ленточный фундамент без армирования долго не прослужит. Некоторые специалисты рекомендуют брать арматуру с запасом 10-15%. Ведь какое-то количество материала понадобится для усиления угловых частей ленточного фундамента и выхода на причал.
Как связать каркас?
Правила армирования ленточного фундамента вынуждают отказаться от использования сварки в пользу вяжущего, потому что при использовании сварки в местах сварных стыков металлические стержни теряют прочность до 2-2,5 раз. Кроме того, именно здесь чаще всего появляется коррозия, которая может повредить арматуру в течение нескольких лет, значительно снижая надежность и долговечность основания. Действует только соединение с помощью вязки.Это довольно сложный этап, и на его прохождение у недостаточно опытного пользователя уйдет много времени. Однако здесь многое зависит от того, какой инструмент вы будете использовать.
Надежный узел армирования проволокой
Классический инструмент для вязания фурнитуры в ленточной основе — специальный крючок. С его помощью опытные мастера могут производить до 12-15 узлов в минуту (конечно, если вязальная проволока подготовлена и разрезана заранее). Главное преимущество такого варианта — доступность — крючок можно купить во многих магазинах за сотню рублей и даже дешевле.Минус — скорость работы с ним не велика даже среди мастеров. Учтите — вам придется завязать много сотен узлов, даже если вы укрепляете фундамент небольшого размера.
Проволока и крючок для обвязки рамки
Если вы хотите поскорее закончить работу, можно воспользоваться специальным вязальным пистолетом. Работая с ним, даже неопытный пользователь легко выдаст 25-30 узлов в минуту. То есть производительность увеличится минимум в 2 раза.Увы, стоимость такого оборудования не низкая — от 50 тысяч и выше. К тому же для работы с ним понадобится специальный провод — обычный может не подойти. Это еще больше увеличивает стоимость. Но если есть возможность арендовать вязальный пистолет на несколько часов или на день — смело соглашайтесь на такое предложение, только не забудьте узнать максимальный диаметр арматуры, которую он может связать. Работая качественным инструментом, вы потратите максимум дня на сборку каркаса — правильное армирование ленточного фундамента становится намного проще и быстрее.При работе вручную этот процесс может занять неделю и более.
Как сделать каркас?
Перед тем, как приступить к армированию ленточного фундамента, необходимо изучить чертежи подходящих каркасов. Ведь от прочности каркаса зависит, прослужит ли фундамент много десятилетий или же уже в первую весну покроют трещины из-за сезонных колебаний уровня грунта.
Чтобы не ошибиться при изготовлении, нужно запомнить несколько правил:
- Нахлест (расстояние от места стыковки до края стержня) должен быть не менее 5 сантиметров.
- В угловых соединениях перпендикулярные стержни должны быть соединены между собой — ни в коем случае нельзя использовать два отдельных блока, которые не соединены между собой. Идеальным решением станут уголки из гнутой арматуры — такая схема армирования фундамента самая надежная. Но для этого нужно иметь специальное оборудование, если фурнитура имеет диаметр 14 миллиметров и более, меньшие диаметры можно гнуть в домашних условиях.
- Соединения с проволокой должны быть плотными — если вы используете вязальный крючок, натяните проволоку до упора, чтобы не оставалось места между зажимом и основной арматурой.Также проверьте рукой, отодвигается ли зажим от касания, следует сделать дополнительную стяжку проволокой.
- Перехлест по арматуре должен составлять 40-50 диаметров арматуры. По проекту должен быть зазор между соседними шатунами, верхним и нижним слоями.
- Арматурный каркас должен стоять точно в опалубке. Также нужно позаботиться о защитном слое бетона для армирования, чтобы сделать его согласно требованиям чертежа.Следует помнить, что минимальный защитный слой равен диаметру арматуры.
Гибка всех элементов для армирования фундамента, выполняется на холоде. Ни в коем случае без нагрева фурнитуры, так как это приведет к потере ее прочности.
Как видите — правила максимально простые. Но некоторые неопытные строители не подозревают и не забывают об их существовании.Это приводит к тому, что нарушается технология армирования ленточного фундамента и значительно сокращается срок его службы.
Земляные и подготовительные работы
Одним из преимуществ ленточного фундамента является относительно небольшой объем земляных работ. Пара человек, работая днем с небольшими перерывами, смогут легко выкопать канаву подходящего размера в нормальном грунте. Когда яма будет готова, можно приступать к ее обустройству.
Первый шаг — изготовить фундаментную подушку.Благодаря ему снижается негативное влияние грунтовых вод на фундамент, а нагрузка от самого фундамента и всей конструкции максимально равномерно распределяется по земле. Здесь можно использовать разные материалы. Чаще всего используется песок или гравий. Они хорошо справляются со своей функцией — главное, чтобы толщина подушки была не менее 15-20 сантиметров.
Но некоторые специалисты рекомендуют бетонную площадку. Да, он самый дорогой. Дорогой цемент и необходимость армировать подушку круто увеличивают стоимость и время строительства.Но в результате вы получаете максимально надежный фундамент под фундамент, гарантируя, что он прослужит долгие годы. Поэтому можно смело сказать, что эти деньги не будут выброшены на ветер.
Пример устройства ленточного армированного фундамента
Если работы ведутся на слабом, пучинистом грунте или планируется строительство тяжелого кирпичного дома, но использование монолитного фундамента по каким-то причинам нежелательно, то можно использовать ленточный фундамент с подошвой.Уширение (стекло) позволяет значительно снизить нагрузку на почву. Конечно, не стоит забывать об армировании стеклянного цоколя — на пучинистых грунтах он будет регулярно выдерживать значительные растягивающие и изгибающие нагрузки. Очень важно обеспечить ему достаточную силу.
При использовании фундамента с подошвой объем земляных работ увеличивается. Кроме того, необходимо дополнительно потратиться на усиление подошвы ленточного фундамента — если оно выйдет из строя, это приведет к скорейшему разрушению всей конструкции.
На готовую подушку устанавливают опалубку. При выборе ширины учитывайте — готовый фундамент должен быть на 10-15 сантиметров толще внешних несущих стен.
Следующий этап — гидроизоляция. Некоторые строители используют рубероид, но это достаточно дорогой материал. А большой вес усложняет процесс установки. Поэтому можно использовать строительный полиэтилен. Да, он менее прочный. Но нужно это всего на несколько дней — чтобы цементное молоко не ушло в песок.Поэтому дешевый и легкий полиэтилен вполне подойдет. Укладывается поверх опалубки. В местах стыков перекрыть больше — не менее 10-15 сантиметров — и приклеить широкой лентой.
На этом подготовительные работы окончены. Теперь расскажем о заливке и армировании фундамента своими руками.
Установить каркас, залить бетон
Каркас арматуры лучше всего собирать прямо в подготовленной яме — это позволяет максимально прочно закрепить элементы.Но если речь идет об армировании подземного ленточного фундамента, или если котлован слишком узкий для проведения работ непосредственно в нем, то каркас можно собрать вне траншеи, а затем аккуратно опустить на место. Здесь обычно проблем не возникает и пошаговые инструкции не нужны.
Последний и один из самых ответственных этапов — заливка фундамента.
Заполнение ленточного фундамента бетононасосом
Для этого рекомендуется использовать бетон марки М200 или выше.Он обладает высокой прочностью, чтобы выдерживать значительные нагрузки, а также имеет достаточный показатель хладостойкости.
Сразу следует сказать — для работы потребуется большое количество материала. Заранее сделайте все необходимые расчеты — заливать бетон нужно за один раз, не допуская расслоений и других отслоений. В противном случае прочность основания будет значительно снижена, а это скажется на безопасности эксплуатации дома. По этой же причине желательно арендовать бетономешалку.Сегодня многие компании предлагают эту услугу. К тому же аренда дешевых моделей стоит относительно недорого — менее тысячи рублей в сутки. При интенсивной работе в это время вполне можно справиться с работой. К тому же наличие бетономешалки позволяет повысить производительность — нужно просто бросить песок, цемент и залить водой, получив в скором времени готовое изделие, которое нужно просто вылить на каркас, установленный в опалубке. Работая с лопатой, такой производительности добиться невозможно.
После заливки бетона необходимо подождать 28 дней. За это время бетон наберет достаточную прочность и можно будет приступить к строительству дома, гаража или бани.
Рекомендуем посмотреть видео, где опытный инженер-строитель расскажет о важных нюансах армирования фундамента. На что следует обращать внимание при работе в первую очередь, чтобы фундамент дома был надежным.
Теперь вы знаете, как армировать ленточный фундамент своими руками.Для этого совсем не обязательно иметь узкоспециализированные навыки или покупать дорогостоящее оборудование. Достаточно знать хотя бы теоретически, как укрепить фундамент. Опыт придет в процесс, и все инструменты можно будет заменить дешевыми аналогами или взять напрокат, сэкономив деньги и время.
Армирование ленточного фундамента значительно увеличивает его прочностные характеристики, позволяет создавать устойчивые конструкции при одновременном снижении веса.
Расчеты армирования и схем армирования выполняются в соответствии с положениями действующего СНиП 52-01-2003.В документе есть подробные требования к расчетам, даются примечания к нормативным документам и сводам правил.
СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003. Скачать файл
Ленточный фундамент должен соответствовать требованиям по прочности, надежности, устойчивости к различным климатическим факторам и механическим нагрузкам.
Основными характеристиками прочности бетонных конструкций является показатель сопротивления осевому сжатию (Rb, n), растяжению (Rbt, n) и боковому разрушению.В зависимости от нормативных нормативных показателей бетона выбирают его марку и класс бетона. Принимая во внимание ответственность проекта, можно использовать поправочные коэффициенты безопасности в диапазоне от 1,0 до 1,5.
Требования к клапану
При армировании ленточных фундаментов устанавливаются тип и контролируемые значения качества армирования. Стандартами разрешено применение горячекатаной строительной арматуры периодического профиля, термически обработанной арматуры или арматуры механической упрочнения.
Класс арматуры выбирается с учетом гарантированного значения предела текучести при максимальных нагрузках. Наряду с характеристиками прочности на разрыв нормируются пластичность, коррозионная стойкость, свариваемость, устойчивость к отрицательным температурам, релаксационная стойкость и допустимое удлинение до начала разрушающих процессов.
Таблица классов арматуры и марок стали
Тип профиля | Класс | Диаметр, мм | Марка стали |
---|---|---|---|
Гладкий профиль | A1 (A240) | 6-40 | Ст3кп, Ст3пс, Ст3сп |
Периодический профиль | A2 (A300) | 10-40, 40-80 | Ст5сп, Ст5пс, 18Г2С |
Периодический профиль | A3 (A400) | 6-40, 6-22 | 35ГС, 35Г2С, 32Г2РПС |
Периодический профиль | A4 (A600) | 10-18 (6-8), 10-32 (36-40) | 80C, 20HG2TS |
Периодический профиль | A5 (A800) | 10-32 (6-8), (36-40) | 23х3Г2Т |
Периодический профиль | A6 (A1000) | 10-22 | 22х3Г2АЮ, 22х3Г2Р |
Ленточный фундамент рассчитывается в соответствии с рекомендациями ГОСТ 27751, показатели предельных нагруженных состояний рассчитываются по группам.
Рама арматуры — фото
- Требования к размерам железобетонных конструкций. Геометрические размеры цоколя не должны препятствовать правильному пространственному размещению арматуры.
- Защитный слой должен обеспечивать сопротивление соединения нагрузкам арматуры и бетона, защищать его от внешней среды и обеспечивать устойчивость конструкции.
- Минимальное расстояние между отдельными стержнями арматуры должно обеспечивать ее совместную работу с бетоном, обеспечивать правильное соединение и обеспечивать правильную технологическую заливку бетона.
Для армирования можно использовать только качественную арматуру, вязание сеток осуществляется с учетом проектно-сметной документации. Отклонения от значений не могут выходить за пределы полей допусков, регламентированных СНиП 3.03.01. Специальные строительные меры должны обеспечивать надежную фиксацию арматурной сетки в соответствии с существующими правилами.
СНиП 3.03.01-87. Несущие и ограждающие конструкции. Строительные нормы и правила. Скачать файл
При изгибе арматуры необходимо использовать специальные приспособления, минимальный радиус изгиба зависит от диаметра и конкретных физических характеристик арматуры конструкции.
Видео — Ручной станок для гибки арматуры, видеоинструкция
Видео — Как согнуть арматуру. Работа на самодельном станке
В опалубку вставляется арматура, изготовление опалубки должно производиться с учетом требований ГОСТ 25781 и ГОСТ 23478.
ФОРМЫ СТАЛЬНЫЕ ДЛЯ ПРОИЗВОДСТВА ЖЕЛЕЗОБЕТОННЫХ ИЗДЕЛИЙ. Технические условия. Скачать файл
Опалубка для возведения монолитных бетонных и железобетонных конструкций.Классификация и общие технические требования
Расчет количества и диаметра арматуры
Для ленточного фундамента бань применяется строительная арматура периодического профиля Ø 6 ÷ 12 мм.
Действующие государственные правила регулируют минимальное количество стержней в бетоне для придания ему максимальных прочностных характеристик. Минимальное суммарное сечение продольных стержней арматуры не может составлять ≤ 0,1% площади сечения фундаментной полосы.Например, если ленточный фундамент имеет сечение 12000 × 500 мм (площадь поперечного сечения 600000 мм2), то общая площадь всех продольных стержней должна быть не менее 600000 × 0,01% = 600 мм2. На практике застройщики редко выдерживают этот показатель, учитывают еще и вес ванны, характер грунта и марку бетона. Это расчетное значение можно считать приблизительным, отклонения от рекомендуемых значений не должны превышать ≈20% в меньшую сторону.
Для расчета количества арматуры необходимо знать площадь поперечного сечения базовой полосы и площадь поперечного сечения арматурного стержня. Для облегчения расчетов предлагаем вам готовую таблицу.
Количество стержней | |||||||||
---|---|---|---|---|---|---|---|---|---|
Диаметр, мм | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
6 | 28,3 | 57 | 85 | 113 | 141 | 170 | 198 | 226 | 254 |
8 | 50,3 | 101 | 151 | 201 | 251 | 302 | 352 | 402 | 453 |
10 | 76,5 | 157 | 236 | 314 | 393 | 471 | 550 | 628 | 707 |
12 | 113 | 226 | 339 | 452 | 565 | 679 | 792 | 905 | 1018 |
14 | 154 | 308 | 462 | 616 | 769 | 923 | 1077 | 11231 | 1385 |
16 | 201 | 402 | 603 | 804 | 1005 | 1206 | 1407 | 1608 | 1810 |
18 | 254,5 | 509 | 763 | 1018 | 1272 | 1527 | 1781 | 2036 | 2290 |
20 | 314,2 | 628 | 942 | 1256 | 1571 | 1885 | 2199 | 2513 | 2828 |
Теперь расчеты намного проще.Например, вы используете восемь рядов арматуры диаметром 10 мм для армирования ленточных фундаментов. Согласно таблице, общая площадь стержней составляет 628 мм. Такой каркас может работать с бетонной лентой глубиной 120 см и шириной 50 см. Несколько лишних квадратных миллиметров можно не учитывать, они будут дополнительной страховкой на случай нарушения технологии стыковки или изготовления некачественного бетона.
Кроме этих показателей нужно определить диаметр стержней для фундаментов.Эти показатели зависят от многих составляющих, для упрощения расчетов можно воспользоваться предложенной таблицей.
С помощью этой таблицы можно легко выбрать рекомендуемый диаметр арматуры для ленточного фундамента.
Правила арматурного ленточного фундамента
Существует несколько схем вязания арматуры, каждый разработчик может использовать наиболее удобную для себя. Выбор схемы следует проводить с учетом размеров фундамента и его несущих характеристик.
Арматуру можно связать отдельно, а затем уже готовые элементы конструкции опустить в траншею фундамента и соединить между собой, а можно сразу вязать в траншее. Оба метода почти эквивалентны, но есть небольшая разница. На земле все основные прямолинейные элементы можно изготовить самостоятельно; при работе в траншее требуется помощник. Для вязки нужно сделать специальный крючок, соединение производится мягкой проволокой диаметром ≈ 0.5 мм.
В некоторых статьях можно найти советы во время вязания использовать ручную электродрель — не обращайте на них внимания. Так могут писать те, кто не имеет представления о работе.
Во-первых, рука устает от дрели намного сильнее и быстрее, чем от легкого крючка. Во-вторых, кабели всегда будут путаться под ногами, цепляться за концы арматуры и т. Д. В-третьих, не на всех стройках есть электроэнергия. И в-четвертых, ваши проволочные узлы всегда будут ослаблены или порваны.
Для вязания армирования используется тонкий мягкий и проволочный материал, и он имеет невысокую прочность. Проволока натягивается хорошо, сильное заедание должно произойти в пределах двух-трех оборотов крючка. В противном случае производительность труда намного ниже и повышается утомляемость. Есть еще варианты сварки арматуры, о них мы поговорим в следующем разделе статьи.
Советуем начать вязать арматуру на самую короткую ленточную основу, это даст возможность набраться немного опыта и уверенно справиться с длинными стержнями.Стричь их не рекомендуется, это увеличивает расход металла и снижает прочность фундамента. Размеры заготовок рассмотрим на примере ленточного фундамента высотой 120 см и шириной 40 см.
Арматуру со всех сторон залить бетоном толщиной не менее 5 сантиметров. Это начальные условия. С учетом таких показателей чистые размеры арматурного каркаса должны быть не более 110 см в высоту (минус 5 см с каждой стороны) и 30 см в ширину (минус 5 см с каждой стороны).Для вязки нужно добавить по два сантиметра с каждой стороны внахлест. Это значит, что заготовки для горизонтальных перемычек должны быть длиной 34 см, заготовки для вертикальных перемычек — 144 см. Но делать такой высокий каркас не стоит, достаточно иметь высоту 80 см.
Шаг 2. Выбираем плоскую площадку, ставим две длинные планки, обрезаем их концы.
Шаг 3. На расстоянии ≈ 20 см от концов обвяжите с двух крайних сторон горизонтальные распорки. Для вязания понадобится проволока длиной около 20 сантиметров.Сложите его пополам, проденьте под точку привязки и затяните проволоку, просто повернув крючок. Не переусердствуйте с усилием, проволока может не выдержать. Величина скручивающего усилия определяется опытным путем.
Шаг 3. На расстоянии примерно 50 сантиметров по очереди свяжите все оставшиеся горизонтальные стойки. Все готово — отложите конструкцию на свободное место и таким же образом сделайте еще один элемент каркаса. У вас есть верхняя и нижняя части, теперь вам нужно скрепить их между собой.
Шаг 4. Далее следует отрегулировать упоры для двух частей сетки, они могут упираться в любой объект. Главное, чтобы родственные элементы занимали устойчивое боковое положение, расстояние между ними должно быть равно высоте вязанной арматуры.
Шаг 5. Свяжите две вертикальные распорки по концам, размеры которых вам уже известны. Когда каркас стал более-менее напоминать готовое изделие — свяжите все остальные детали.Не торопитесь, проверьте все размеры. Хоть у вас заготовка и такой же длины, проверить размер не помешает.
Шаг 6. По такому же алгоритму необходимо на земле соединить все прямые участки каркаса.
Шаг 7. Выложите дно котлована под фундамент высотой не менее пяти сантиметров; на них будут опираться нижние стержни сетки. Поставьте боковые опоры, установите сетку в правильное положение.
Армирование (каркас установлен в опалубке)
Шаг 8. Убрать размеры не предусмотренных углов и стыков, подготовить куски арматуры для соединения каркаса в единую конструкцию. Учтите, что перекрытие концов арматуры должно быть не менее пятидесяти диаметров стержня.
Шаг 9. Обвяжите нижний виток, затем вертикальные стойки и верхнюю. Проверить расстояние армирования до всех поверхностей опалубки.
Арматура готова, можно приступать к заливке фундамента бетоном.
Вязание арматуры специальным приспособлением
Для изготовления приспособлений понадобится несколько досок толщиной около 20 мм, качество пиломатериалов может быть любым.Изготовить шаблон несложно, и это значительно упростит работу.
Шаг 1. Отрежьте четыре доски по длине арматуры, соедините их по две на расстоянии шага от вертикальных стоек. Должно получиться два одинаковых шаблона. Внимательно следите за тем, чтобы разметка расстояния между планками была одинаковой, иначе не будет вертикального положения соединительных элементов.
Шаг 2. Сделайте две вертикальные опоры, высота опор должна соответствовать высоте арматурной сетки.Опоры должны иметь боковые угловые упоры, не позволяющие им опрокидываться. Все работы по обвязке необходимо проводить на ровной поверхности. Проверить устойчивость собранного устройства, исключить вероятность его опрокидывания во время работы.
Схема стыковки якоря с хомутами
У вас есть макет арматурной сетки, теперь вы можете выполнять работу быстро и без посторонней помощи. Подготовленные вертикальные стержни арматуры разместите на отмеченных местах, предварительно зафиксировав положение при помощи гвоздей.На каждую горизонтальную металлическую перемычку наденьте арматуру. Эту операцию следует повторить со всех сторон рамы. Еще раз проверьте их положение. Хорошо — берем проволоку и крючок и начинаем вязать. Адаптацию целесообразно делать, если у вас много одинаковых участков сетки арматуры.
Видео — Как связать арматуру с помощью приспособления
Как связать армированную сетку в траншею
Работать в траншее намного труднее из-за тесноты. Необходимо тщательно продумать схему вязания отдельных элементов, чтобы не пришлось пролезать между стержнями арматуры.Кроме того, самостоятельно связать сетку невозможно, нужно работать с помощником.
Шаг 1. Положите на дно траншеи камни или кирпичи высотой не менее пяти сантиметров, они поднимут металл от земли и позволят бетону закрыть арматуру со всех сторон. Расстояние между камнями должно быть равно ширине сетки.
На фото — фиксатор для армокаркаса
Шаг 2. На камни нужно поставить продольные стержни.Горизонтальные и вертикальные стержни уже надо обрезать по размеру, как мы их измеряем, мы уже говорили.
Шаг 3 . Приступайте к формированию каркаса каркаса на одной стороне фундамента. Если предварительно привязать к тягам горизонтальные распорки, работать будет легче. Помощник должен удерживать концы стержней, пока они не зафиксируются в правильном положении.
Шаг 4. По очереди продолжаем вязать арматуру, расстояние между распорками должно быть примерно пятьдесят сантиметров.
Шаг 5. По тому же алгоритму привяжите арматуру на всех прямых участках фундаментной ленты.
Шаг 6. Проверить размеры и пространственное положение каркаса, при необходимости необходимо откорректировать положение и исключить касание металлических деталей опалубкой.
Шаг 7. Теперь пора заняться углами фундамента. На картинке дан довольно сложный вариант вязания по углам, вы можете придумать более простой вариант для себя.Главное — соблюдать длину внахлест. И еще одно замечание. В углах фундамент работает не только на изгиб, но и на вертикальный разрыв. Эти усилия удерживают вертикальные планки строительной фурнитуры, не забудьте установить их. Чтобы гарантировать это, можно использовать вентиль большого диаметра.
Если все же придется прибегать к сварке, то сделайте все возможное, чтобы на одном месте поставить минимальное количество стежков, сместите фиксирующий шаг горизонтальных и вертикальных упоров на несколько сантиметров.Во время сварки точно поддерживайте оптимальную силу тока и диаметр электродов. Металл в шовном нахлесте не должен перегреваться.
Есть несколько способов, с помощью которых можно ускорить и облегчить процесс стыковки и в то же время улучшить качество конструкции и снизить расход материалов.
Для проставок согните арматуру в форме буквы «P». Для этого можно за пару часов сделать простейший станок, и он пригодится не только для гибки стержней.Сначала нужно согнуть один образец, проверить его размеры и только потом, используя образец как шаблон, подготовить все стыки. Такие распорки вязать намного проще, они сразу удерживают нужный размер конструкции. Еще один плюс — уменьшенный расход дорогостоящего материала. На первый взгляд экономия кажется незначительной, максимум десять сантиметров на одном подключении. Но если десять сантиметров умножить на количество штук и цену арматуры, получится очень «приятная» сумма.
Для распорок можно использовать арматуру меньшего диаметра и опционально дорогой строительный периодический профиль. Подойдут даже металлические прутки или катанка подходящего диаметра.
Если у вас нет опыта выполнения подобных работ, то лучше не делать этого самостоятельно. Наличие помощника делает процесс намного проще и безопаснее.
Цена на железобетонный фундамент намного дороже обычного, используйте этот метод усиления архитектурных конструкций в крайнем случае.Есть много более дешевых способов повысить несущие характеристики ленточного фундамента. Правда, их можно использовать не всегда, все зависит от особенностей проекта бани, особенностей почвы и ландшафта.
Армирование должно производиться во всех частях фундамента, даже в средних перемычках межкомнатных перегородок
Несколько слов о предварительно нагруженной арматуре. Это комплексный метод, позволяющий значительно улучшить все показатели ленточного фундамента без увеличения количества арматуры.Суть метода заключается в предварительном нагружении стержней усилиями, противоположными тем, которые будут действовать на конструкцию при эксплуатации фундамента. Например, если штанга будет работать на растяжение, то она предварительно сжимается и т. Д.
Видео — Армирование монолитных ленточных фундаментов мелкого заложения
Видео — Армирование фундамента своими руками
Фундамент — это фундамент здания. И с этой аксиомой сложно не согласиться, ведь именно он держит и равномерно распределяет нагрузку на грунт, обеспечивает устойчивость и долговечность конструкции.Но бетон, как известно, довольно твердый материал. Для придания ленточной конструкции пластичности и способности выдерживать различные виды нагрузок применяется так называемая арматура.
Для чего нужна арматура?
Упрощенно фундамент ленточного типа представляет собой замкнутый контур из бетона под всеми капитальными стенами здания по периметру. Это один из самых популярных видов обломков, ведь он прост в конструкции, выдерживает значительные нагрузки и позволяет дополнительно оборудовать подвал в процессе эксплуатации.В минусах — большой расход стройматериалов, необходимость использования спецтехники (автобетононасосы, краны).
Ленточный вид фундамента возводится для зданий из тяжелых штучных материалов (кирпич, блоки, камень) и домов с монолитными или сборными перекрытиями большой массы. Такой тип основания оптимален на неоднородных грунтах, где есть риск неравномерного проседания.
Схема перекоса фундамента
Бетонная конструкция выдерживает два типа нагрузок:
- Компрессия — вес здания и его содержимого (мебель, отделка и т. Д.).).
- Растяжение — влияние сил морозного пучения. Влажная почва, промерзая, увеличивается в объеме и сжимает каркас, выталкивая его вверх.
Очевидно, эти нагрузки неравномерны. Чтобы лента выдерживала деформации и соответственно трещины, разрывы, применяется армирование ленточного фундамента. На практике это означает формирование внутри бетонного ядра единого металлического каркаса. По правилам он должен располагаться ближе к краям фундамента, то есть в зонах максимального сжатия-растяжения.
Какие материалы используются для армирования
Даже если предполагается армирование фундамента ленточного типа своими руками, необходимо правильно подбирать комплектующие. В состав необходимых материалов входят:
Виды фурнитуры
1. Стальная или композитная арматура — стержни из металла или стекловолокна. Реализуются рулонами по 50-100 м или нарезанным металлопрокатом длиной 6-12 м. Гладкие стержни сечением до 10 мм называются сборочными и используются для вертикальной и поперечной части каркаса.Гофрированные стержни диаметром 12-80 мм обозначены как рабочие. Из них подходят верхняя и нижняя продольные части «каркаса».
2. Проволока стальная для вязальных или стяжных зажимов. Сварка используется реже (металл должен иметь маркировку «C»)
3. Зажим для инструмента или специальный крючок для вязания, ножовки и т.п.
Металлический каркас пользуется наибольшей популярностью у строителей, его эффективность и надежность проверены временем. Армирование фундамента стеклопластиковой арматурой применяется для тех зданий, к которым предъявляются особые требования в отношении радиопомех, немагнетизма, химической стойкости.Однако из-за того, что композит плохо растягивается при изгибе, то есть фактически не выполняет одну из основных функций, в частном домостроении применяется редко.
Ни в коем случае нельзя использовать пластиковые бутылки, металлические уголки или трубы, грубую сетку, железные тросы и другие подобные материалы в качестве арматурного каркаса фундаментной ленты. Это не каркас, а посторонние включения, которые только вредит бетонному основанию. Результат печальный — фундамент не выдержит проектных нагрузок, неизбежные повреждения как несущего фундамента, так и стен, перекрытий, кровли и других элементов здания.
Расчет арматуры ленточного фундамента
Рассчитать количество материала для армирования несложно. Чаще всего используется двух- или трехрядная сетка-каркас. Шаг между вертикальными участками 40-80 см, между горизонтально расположенными уровнями примерно 30-60 см. То есть заглубленный фундамент высотой более 90 см требует 3-4 продольных яруса; для каркаса глубиной менее 0,9 м достаточно двух. Рассмотрим пример:
- Параметры бетонного основания (ВхШ) — 60х40 см,
- периметр здания — 5х5 м,
- шаг сетки — 50 см
Очевидно, вам понадобится двухуровневая сетка.Рабочие задвижки на 4 продольные линии по 20 м потребуют 80 пог. м, монтаж вертикальный с учетом расстояния от поверхности 5 см — 1,4 м * 51 (количество пересечений) = 71,4 м. Продавцы рекомендуют брать сталь с запасом не менее 10%, итого получится около 170 погонных метров. м арматуры. Не стоит забывать и о комплектации. На каждом перекрестке достать около 30 см проволоки. Стыков в секции — 4 штуки, значит с запасом потребуется около 70 пог. м вязание металлочерепицы.
Как самостоятельно армировать ленточный фундамент
Железобетонная конструкция не терпит халатности. Арматуру перед использованием следует проверить, очистить от грязи и ржавчины. Строители часто пренебрегают этим этапом, хотя известно, что инородные включения ухудшают качественные характеристики бетонного ядра.
Схема армирования ленточного фундамента проста, но трудоемка:
- На песчано-щебеночную «подушку» насыпают бетонную «подошву» толщиной 5 см.Он защитит металл от коррозии и преждевременного разрушения. Иногда в целях экономии подкладывают под каркас куски кирпича или камня.
- Поставить опалубку.
- На бетонный слой укладывается необходимое количество поперечных монтажных прутков с интервалом не более 80 см.
- Гофрированные стержни накладываются в два ряда сверху в продольном направлении. Сайты пересечения связаны. Получается нижний уровень каркаса арматуры.
- В стыках вертикально устанавливается гладкая сталь заданной длины.Соблюдение геометрии углов 90 ° обязательно.
- К ним прикреплен верхний ярус поперечных монтажных тяг. Получается каркас, перекрытие концов которого должно быть не менее 20 см.
- Укладывается верхний продольный ярус армирующего «каркаса» и скрепляется вязальной проволокой или зажимами.
- С помощью распорок готовый каркас жестко фиксируется относительно опалубки. Зазор между ними должен быть не менее 3-5 см.
- Связки снова проверяются, весь лишний материал, мусор убирается.
Армирование угла ленточного фундамента — головная боль большинства профессионалов. Именно здесь образуется так называемое концентрированное напряжение. Поэтому используются особые приемы П- или Г-образной арматуры, создаваемой при помощи струбцин.
Схематично это выглядит так:
Для углов:
Для прицела:
Для углов стыковки менее 160 ° с L-образным армированием:
В точках крепления углов хомуты устанавливаются вдвое чаще, чем остальная часть ленточного фундамента.Именно такие способы армирования углов создают жесткое соединение между элементами конструкции, позволяя равномерно распределять нагрузку.
Таким образом, стоимость материалов составляет не более 5% от стоимости строительства арматурного каркаса. Конечно, экономия на материалах в этом случае — последнее.
Армирование ленточного фундамента (75) | Tekla User Assistance
Добавлено 4 мая 2021 г. от Tekla User Assistance [email protected]
Используйте вкладку Изображение для определения толщины бетонного покрытия и смещения хомута.
Толщина крышки
Описание | |
---|---|
1 | Толщина покрытия (концы ленты) |
2 | Смещение хомута |
3 | Толщина крышки (верхняя и нижняя) |
Используйте вкладку «Основные полосы», чтобы определить свойства верхней, нижней, левой и правой полос.
Длина связки основных стержней
Длина связки определяет, насколько далеко основные стержни входят в соседние конструкции на концах ленточных фундаментов. Используйте поля Bond Length 1 для первого конца опоры (с желтой ручкой) и поля Bond Length 2 для второго конца опоры (с пурпурной ручкой).
Длину облигаций можно определить отдельно для:
Используйте вкладку «Хомуты», чтобы определить свойства хомутов и тип шага.
Тип отвода
Выбрать место нахлеста хомутов в ленточном фундаменте.
Размеры хомута
Описание | |
---|---|
1 | Толщина крышки (по бокам) |
2 | Наружное расстояние между основными стержнями и внешними боковыми стержнями |
3 | Длина двойного хомута внахлест |
4 | Длина внахлест двойной U-образной балки |
Форма торца стержней с двойным хомутом
Если выбраны стержни с двойными хомутами, можно выбрать формы концов стержней из списка.
Опция | Примеры |
---|---|
135 градусов По умолчанию | |
90 градусов | |
Перекрытие Если вы выбираете перекрытие, вы можете ввести длину перекрытия. |
Используйте вкладку Атрибуты, чтобы определить процесс нумерации для присвоения номеров позиций деталям, отлитым элементам, сборкам или армированию.
В Tekla Structures номера позиций, назначенные в нумерации, отображаются, например, в метках и шаблонах.
свойства стержней и хомутов.
Опция | Описание |
---|---|
Префикс | Префикс для номера позиции детали. |
Стартовый номер | Начальный номер для номера позиции детали. |
Имя | Tekla Structures использует это имя на чертежах и в отчетах. |
Класс | Используйте «Класс» для группировки арматуры. Например, можно отображать арматуру разных классов разными цветами. |
Как это сделать правильно: использование арматуры в фундаменте
Один из наших геодезистов недавно испытал некоторый шок, когда посетил участок для пристройки дома.
Их вызвали для проверки арматуры перед бетонированием фундамента, но они не были на месте ранее для проведения земляных работ или осмотра начала работ.«Строитель» гордо отступил и сообщил офицеру, что он выкопал 450 мм, но все еще находится в засыпанной земле, поэтому вместо этого решил построить усиленный фундамент плота.
Более того, он помогал окружающей среде, перерабатывая тележки для покупок для усиления.
«Каждая мелочь помогает», — ответил ошеломленный офицер, прежде чем объяснить, что случилось. Впоследствии от проекта отказались из-за дополнительных затрат на его правильное выполнение, и он вернулся в патио.
Если вы участвуете в строительстве фундамента на плоту, необходимо учитывать несколько ключевых факторов, чтобы обеспечить правильную установку армирующей ткани. Это альтернатива, если вы не можете использовать традиционный ленточный или траншейный фундамент, но важно отметить, что фундаменты на плотах подходят не во всех случаях и обычно требуют проектирования инженером-строителем.
В отличие от ленточных фундаментов подвесных полов, где сетка просто помещается в нижнюю часть бетона, чтобы действовать на растяжение, плоты обычно имеют сетку вверху, чтобы противостоять сжатию от тяжелых точечных нагрузок, таких как внутренние стены, и внизу для растяжения, чтобы распределять нагрузку по более широкая поверхность.
Ключевые точки армирования
- Армирование бывает разных размеров и классов , но чаще всего используются тканевое армирование A и B. В таблице ниже показаны размеры и центры стержней для наиболее часто используемых стержней:
- Армирующая ткань должна быть очищена от рыхлой ржавчины, масла, жира, грязи и любых других загрязнений , которые могут повлиять на долговечность бетона.
- Стальной элемент должен быть покрыт достаточным покрытием, чтобы защитить его внутри бетона.40 мм — это минимальное покрытие, необходимое для всех поверхностей бетонной плиты. Внизу это может быть достигнуто с помощью запатентованных табуретов / сеток / пенополистирола / подъемников (не лишних кирпичей) по 20 штук на лист с гистулом или проволочными прокладками между любыми слоями по 5 штук на лист, чтобы гарантировать, что верхний слой останется там, где он должен, а где нет. просто просачивайтесь сквозь бетон (особенно когда он заливается или утрамбовывается и по нему ходят) и удерживает минимальное покрытие на поверхности.
- Ткань класса B можно определить по размеру продольных и поперечных стержней, при этом продольные стержни расположены с шагом 100 мм по центру и всегда расположены в направлении пролета.Поперечные стержни расположены на расстоянии 200 мм по центру, как указано в таблице 1 в руководстве по техническим стандартам LABC Warranty.
- Там, где армирующая ткань нахлестывается, практическое правило — это минимальное перекрытие из двух стержней плюс 50 мм, т.е. 200 + 200 + 50 = 450 мм, но иногда это можно уменьшить за счет инженерного проектирования в соответствии с Еврокодом 2, которое указано в таблице 2 в руководстве по техническим стандартам LABC Warranty. минимальные размеры нахлеста для ткани B.
Перемычки должны быть связаны проволочной обвязкой.
Обратите внимание: LABC не поддерживает использование корзины для покупок / тележки в фундаменте!
Дополнительная информация
Основание плотного фундамента
Руководство по техническим стандартам, версия 9 или специальный раздел «Основы».
Обратите внимание: были приняты все меры, чтобы информация была верной на момент публикации. Предоставленные письменные инструкции не заменяют профессионального суждения пользователя. Ответственный за выполнение работ или лицо, выполняющее работы, обязаны обеспечить соблюдение соответствующих строительных норм и правил или применимых технических стандартов.
605-614_TCEM_A_8
-Cicek.indd
% PDF-1.3 % 1 0 объект >] / PageLabels 6 0 R / Pages 3 0 R / Type / Catalog / ViewerPreferences >>> эндобдж 2 0 obj > поток 2015-04-12T12: 00: 49 + 03: 002015-04-27T10: 30: 53 + 03: 002015-04-27T10: 30: 53 + 03: 00Adobe InDesign CS5.5 (7.5.3)
FDS Strip Foundation — Frilo
Nemetschek Frilo GmbH — Приложения для расчета конструкций и проектирования FDS Полоса Фундамент FDS strong > Приложение позволяет рассчитать требуемые размеры ленточного фундамента при центрической и одноосной эксцентричной нагрузке.Требуемая арматура на изгиб и сдвиг рассчитывается для выбранных размеров. Стандарты DIN EN 1992 ÖNORM EN 1992 BS EN 1992 DIN 1045 / 1045-1 ÖNorm B4700 Стандарт почвы: DIN EN 1997-1 в сочетании с DIN 1054: 2010. ÖNORM EN 1997-1 в сочетании с DIN 1054: 2005. В зависимости от выбранного стандарта на бетон автоматически выбирается соответствующий стандарт почвы (DIN 1054: 1976/2005/2010). Нагрузки Ветровые нагрузки G и Q Моменты MG и Mq Нагрузка на фундамент слева и / или справа от стены Собственный вес фундамента учитывается автоматически.Система и расчет Ширина фундамента рассчитывается в зависимости от заданного допустимого давления грунта. Вы можете определить, как должна выполняться итерация: по центру с увеличением влево или вправо по центру, с увеличением только на одну сторону до определенного предельного размера. Вы можете указать минимальную толщину фундамента. Для конструкции приложение дополнительно предлагает толщину, которая не требует армирования на сдвиг или армирования на изгиб. В результате отображается давление почвы согласно DIN 1054 и максимальное краевое давление слева и справа.Изгибающий момент и необходимое армирование при изгибе указываются на погонный метр фундамента, если применимо. Для восходящих каменных стен расчет выполняется на сглаживаемый момент под осью стены, а для подъемных бетонных стен — на лицевой момент. Кроме того, при необходимости выполняется анализ напряжения сдвига. Подробная информация о продукте www.frilo.com По состоянию на: 15/11/2012
Несущая способность стяжки на армированном песке
J Adv Res.2015 сен; 6 (5): 727–737.
Кафедра структурной инженерии, инженерный факультет, Университет Танта, Танта, Египет
Поступила в редакцию 8 января 2014 г .; Пересмотрено 2 апреля 2014 г .; Принято 11 апреля 2014 г.
Copyright © 2014 Производство и хостинг Elsevier B.V. от имени Каирского университета.Это статья в открытом доступе под лицензией CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Эта статья цитируется в других статьях в PMC.Реферат
В данной статье предельная несущая способность фундамента-оболочки на неармированном и армированном песке была определена с помощью лабораторных модельных испытаний.Серия нагрузочных испытаний была проведена на основании модели оболочки с однослойной арматурой и без нее. Испытания проводились на фундаменте-оболочке при различной глубине заделки оболочки и плотности земляного полотна. Результаты сравнивались с результатами для плоских фундаментов без армирования. Результаты испытаний модели были проверены с помощью конечно-элементного анализа с помощью программы PLAXIS. Экспериментальные исследования показали, что предельная несущая способность фундамента оболочки на усиленном земляном полотне выше, чем на неармированном основании, и кривые осадки под нагрузкой были значительно изменены.Фундамент-оболочка поверх армированного земляного полотна можно считать хорошим методом увеличения эффективной глубины фундамента и уменьшения возникающей осадки. Кроме того, поверхность разрыва армированной системы оболочки была значительно глубже, чем обычное основание и основание корпуса без армирования. Численный анализ помогает понять деформационное поведение исследуемых систем и определить поверхность разрушения армированного основания оболочки.
Ключевые слова: Фундамент из ракушечника, Предельная грузоподъемность, Песок, Армирование, Эффективность ракушки, Коэффициент оседания
Введение
Фундамент из ракушечника считается лучшим неглубоким фундаментом для передачи большой нагрузки на слабые грунты, где обычно неглубокий фундамент подвергается воздействию. чрезмерная осадка из-за его экономического преимущества в области с высоким соотношением материальных и трудовых затрат.Куриан [1] и Фарид и Давуд [2]. Фундамент с конической оболочкой, представляющий собой комбинированный фундамент, подходит для резервуаров с водой и башенных конструкций. Концепция каркаса не нова в конструкции фундамента, учитывая, что в прошлом в этой категории использовался фундамент с перевернутой кирпичной аркой. Использование перевернутых кирпичных арок в качестве фундамента уже давно практикуется во многих частях мира. Оболочки — это, по сути, тонкие конструкции, поэтому конструктивно они более эффективны, чем плоские конструкции.Это преимущество в ситуации, когда большие сверхструктурные нагрузки передаются на более слабые почвы. Фундамент оболочки ограничен несколькими геометрическими формами, например конической, пирамидальной, гипер- и сферической опорой. Структурные характеристики основания оболочки в отношении мембранных напряжений, изгибающего момента, сдвига, прогиба и предельной прочности самой оболочки исследовались в широком диапазоне, как заявили Паливал и Рай [3], Паливал и Синха [4] и Мелерски. [5]. Однако геотехническим характеристикам оболочки-фундамента для определения реакции грунта в отношении осадки, несущей способности, распределения контактного давления и деформации в массиве грунта уделялось мало внимания.Экспериментальные и численные исследования, которые проводились для определения геотехнических характеристик фундамента оболочки, были ограничены. Абдель-Рахман [6], Ханна и Абдель-Рахман [7] сообщили о результатах экспериментов на конических основаниях оболочки на песке для условий плоской деформации. Махарадж [8], Хуат и Мохамед [9] и Кентаро и др. [10] провели анализ методом конечных элементов и экспериментальный анализ фундамента из оболочки, чтобы изучить эффекты увеличения модуля упругости грунта в дополнение к исследованию геотехнического поведения фундамента из оболочки.В большинстве публикаций в литературе изучается только поведение различных оснований из ракушек на неармированном песке, без учета существования армированного элемента ниже этого типа. Все работы проводились только на плоском фундаменте, размещенном на однослойной или многослойной арматуре, как обсуждали многие исследователи, такие как Латха и Сомванши [11] и Патра и др. [12], за исключением Шалиграма [13], который изучал поведение треугольного основания оболочки на армированном слоистом песке. Его исследование представляет собой исследование поверхности, которое объясняет только влияние такой техники на несущую способность без определения напряжения и деформации принятой системы.Следовательно, в этом исследовании был принят новый подход к изучению геотехнического поведения фундамента из ленточной оболочки, опирающегося на однослойную арматуру, с целью подтверждения эффекта армирования в сочетании с использованием фундамента из оболочки. Настоящее исследование было выполнено с использованием как экспериментального, так и численного анализа для подтверждения результатов испытаний модели и определения деформационных характеристик исследуемой системы.
Экспериментальный
Испытательный резервуар
a показывает схематический вид экспериментальной модели стального устройства, использованного в этом исследовании.Испытательный бокс, имеющий внутренние размеры 90 × 30 см в плоскости и 120 см в глубину, толщина стенок резервуара составляет 6 мм. Резервуар был построен достаточно жестким, чтобы поддерживать условия плоской деформации за счет минимизации смещения вне плоскости во всех направлениях. Стенки резервуара крепились к внешней поверхности с помощью горизонтальной стальной балки, установленной на средней глубине резервуара. Внутренние стенки резервуара гладко отполированы, чтобы уменьшить трение о почву, насколько это возможно, за счет оцинкованного покрытия на внутренней стене.
Схематическое изображение: (а) испытательной установки и (б) модели фундамента оболочки.
Погрузочная система состоит из гидравлического домкрата с ручным приводом и предварительно откалиброванного нагрузочного кольца для ручного приложения нагрузки к грунтовой системе основания, а оседание измерялось стрелочными индикаторами, закрепленными на поверхности опоры.
Модели фундаментов
Модели фундаментов из ленточной оболочки были изготовлены из стальных пластин постоянной ширины ( B = 150 мм) в горизонтальной проекции с разной глубиной заделки a ( a = 60, 75 и 112.50 мм) и толщиной 20 мм. Поперечная длина опоры составляет 29 см, чтобы удовлетворить условию плоской деформации. Эскизы моделей фундаментов показаны на б. Приблизительное состояние основания было достигнуто за счет фиксации тонкого слоя песка на основании основания модели с помощью эпоксидного клея. Нагрузка передается на опору через стальной погрузочный рычаг, который был жестко закреплен сваркой в середине модели фундамента, как показано в соответствующем пункте b.
Материалы для испытаний
Песок, использованный в данном исследовании, представляет собой кварцевый песок со средним и крупным размером частиц.Образовался однородный слой сухого кварцевого песка. Средний размер зерна D 50% = 0,33 мм и коэффициент однородности 3,5. Физические свойства испытанного песка следующие: удельный вес был определен с использованием метода газового ящика и оказался равным 2,65; максимальная и минимальная плотность в сухом состоянии были получены с использованием японского метода и составили 17,96 и 15,6 кН / м 3 соответственно.
Для подготовки уплотненного песчаного слоя был принят японский метод [14] с использованием ручного компактора.Глубина песка во время испытаний поддерживалась постоянной. Были проведены три серии испытаний на рыхлом, среднем и очень плотном песке. Удельный вес песка и, следовательно, требуемая относительная плотность контролировались путем заливки предварительно определенного веса песка в испытательный резервуар для заполнения каждого слоя, а затем поверхность песка выровнялась и уплотнилась. Рыхлый песчаный слой был получен за счет укладки слоев грунта толщиной 50 мм на нулевой высоте падения. Чтобы получить плотную структуру песка, песок укладывают слоями, каждый слой имеет толщину 50 мм и уплотняют с помощью ручного уплотнителя 35 Н.Количество проходов уплотнения предварительно оценивается для каждого слоя в начале программы для достижения требуемой плотности песка. Для среднего и плотного ящика высота падения составляет 40 см и 90 см соответственно. Относительная плотность, достигнутая в ходе испытаний, контролировалась и оценивалась путем сбора образцов в небольшие емкости известного объема, помещенные в различные произвольные места в емкости для испытаний. Относительные плотности во время программы испытаний составили 50%, 72% и 83%. Соответствующие углы сопротивления сдвигу составляют 31 °, 36 ° и 41 °, соответственно, которые были получены путем применения серии испытаний на прямой сдвиг в боксе при соответствующей относительной плотности при различных нормальных напряжениях.
Чтобы подготовить ядро грунта под модель оболочки, пространство под оболочкой было заполнено песком в соответствии с требуемым удельным весом, указанным Ханной и Абдель-Рахманом [7]. Процесс заполнения модели оболочки песком был выполнен путем размещения тонкой стальной пластины на дне модели оболочки перед ее установкой на место. Затем стальную пластину медленно вытягивали горизонтально под оболочку сбоку.
Армирование, принятое в настоящем исследовании, представляло собой термосваренный нетканый геотекстиль (Typar-3857), изготовленный из полипропиленовых мультифиламентных волокон.По данным производителя, он имеет номинальную толщину 2 мм и массу на единицу площади 290 г / м 2 . Предел прочности при растяжении по методу испытания полосы составляет 20,1 кН / м, а относительное удлинение при максимальной нагрузке составляет 10%.
Программа экспериментальных испытаний
Всего было проведено 34 испытания на заранее подготовленных моделях фундамента с использованием трех различных плотностей песка и при различной глубине заделки ( a / B ). Была проведена серия нагрузочных испытаний для фундамента как на неармированном, так и на армированном песчаном грунте с использованием геотекстиля, который был размещен на фиксированном расстоянии, равном 0.5B ниже кончика фундамента с постоянной длиной, равной 4B, как утверждали Androwes [15], Abdel-Baki и Raymond [16] и Abu-Farsakh et al. [17]. Во всех программах испытаний обе стороны плит фундамента оболочки были погружены в песок.
Увеличение предельной нагрузки основания оболочки по сравнению с ее плоским аналогом признано в настоящем исследовании как коэффициент полезного действия оболочки ( η ). Он определяется, как указано в формуле. (1), как отношение разницы предельных нагрузок на опоры оболочки к предельной нагрузке на плоские опоры.
, где η : КПД оболочки; Q us : предельная нагрузка на подошву корпуса; Q uf : предельная нагрузка плоского основания.
Для того, чтобы изучить характеристики осадки фундаментов из оболочек по сравнению с обычными плоскими, был введен безразмерный коэффициент осадки ( F δ ). Коэффициент осадки был рассчитан при предельной нагрузке ( Q и ), чтобы отразить характеристики осадки опор в процессе загрузки.Расчетный коэффициент представлен в формуле. (2). Следует отметить, что более низкое значение коэффициента расчетности указывает на лучшие расчетные характеристики.
, где δ u : осадка при предельной нагрузке; γ : удельный вес грунта; A b : опорная поверхность в горизонтальной проекции; Q u : предельная нагрузка.
Результаты и обсуждение
Кривые осадки фундамента оболочки с арматурой и без нее
Данные по оседанию нагрузки суммированы для данных испытаний из-за ограниченного пространства, и некоторые результаты представлены в.Представлены графики расчета нагрузок для плоских и оболочечных фундаментов с армированием и без армирования при разной плотности песка. Было обнаружено, что кривые осадки нагрузки были значительно изменены по мере увеличения плотности земляного полотна. Наличие опоры корпуса может улучшить и увеличить предельную нагрузку по сравнению с плоской опорой. Можно видеть, что предельная нагрузка увеличивается из-за эффектов оболочки и усиления, как показано на соответствующем рисунке, на глубине заделки оболочки ( a / B = 0.5). Из этого рисунка также видно, что предельная нагрузка возрастает с увеличением угла сопротивления сдвигу, а также опоры оболочки имеют более высокие предельные нагрузки, чем плоские. Наличие арматуры под фундаментом корпуса может значительно улучшить и увеличить предельную несущую способность фундамента корпуса. Несущая способность фундамента оболочки над армированным земляным полотном выше, чем у основания оболочки без армирования; это указывает на то, что усиление оказывает значительное влияние на увеличение несущей способности фундамента с увеличением глубины заделки оболочки.Основание корпуса обеспечивает лучшую изоляцию корпуса внутри пространства основания, предотвращая вытекание почвы наружу. Кроме того, клин грунта внутри основания корпуса постепенно уплотняется на этапах загрузки; таким образом улучшается грунт земляного полотна и уменьшается осадка. Это может быть очень значительным, особенно когда плотность почвы плохая / низкая.
Сводка кривых расчета нагрузок для плоского и оболочкового фундамента при разной плотности с армированием и без него.
Несущая способность опоры на рыхлом песке увеличена по сравнению с опорой на ровном грунте. С другой стороны, армирование может привести к дополнительному улучшению оболочки, где клин грунта между оболочкой и грунтом над арматурой был эффективно заблокирован, и было достигнуто уплотнение земляного полотна. Это связано с армированием, которое контролирует и уменьшает вертикальную деформацию, вызывая постепенное уплотнение. Можно видеть, что был индуцирован комбинированный эффект, который представлен в эффекте оболочки и в эффекте усиления.Таким образом, и грунт внутри клина оболочки, и грунт над армированным слоем стали более жесткими, как единое целое и эффективно сцепились. В результате увеличилась несущая способность фундамента и уменьшилась осадка.
Степень улучшения предельной несущей способности системы зависит от соотношения ( a / B ) и плотности грунта или угла сдвига. Эти результаты согласуются с Ханной и Адель-Рахманом [7].
Влияние глубины заделки обечайки и усиления на предельную нагрузку
Для изучения влияния глубины заделки обечайки и арматуры на предельную несущую способность фундамента была определена зависимость между углами сопротивления сдвигу от предельной нагрузки. нанесены на разную глубину заделки обечайки как с армированием, так и без него.Замечено, что увеличение глубины заделки увеличивает предельную нагрузочную способность основания оболочки по сравнению с плоской опорой. Поскольку увеличение глубины заделки приводит к эффективному увеличению глубины фундамента и замкнутой зоны, таким образом увеличивается предельная несущая способность. По мере увеличения угла сдвига земляного полотна грузоподъемность основания также увеличивается. Настоящий армированный слой под носком оболочки снижает давление, создаваемое внутри земляного полотна, и увеличивает предельную нагрузочную способность, как показано в соответствующих случаях, для различных усиленных случаев.Комбинированный эффект такой арматуры может существенно снизить степень деформации в зоне сдвига и ограничить наведенные деформации растяжения, возникающие при разрушении. Кроме того, этот рисунок еще раз подтверждает, что армирование может значительно улучшить способность земляного полотна за счет комбинированного эффекта (эффект оболочки и армирования).
Соотношение между углом сопротивления сдвигу и предельной нагрузкой для плоского и оболочечного фундамента с армированием и без него при различных подъемах оболочки.
Взаимосвязь между предельной нагрузкой ( Q u ) и углом сдвига земляного полотна ( ϕ ) для основания оболочки с армированием и без него может быть выражена следующей нелинейной зависимостью, основанной на регрессионном анализе:
, где C 1 и C 2 — это факторы, связанные с соотношением ( a / B ) и наличием армирующего слоя. Значения коэффициентов C 1 и C 2 в различных случаях были извлечены из соотношения ( a / B ) для основания оболочки с армирующим слоем и без него, как показано на рис.Было обнаружено, что увеличение глубины заделки оболочки может увеличивать значения коэффициента C 1 как для основания оболочки с армированием, так и без него. Однако значения коэффициента C 1 усиленных корпусов выше, чем у основания корпуса без усиления (а). Это также может подтвердить влияние армирования на увеличение предельной несущей способности основания оболочки на армированном песке.
Изменение коэффициента C 1 и C 2 с соотношением a / B для фундамента с армированием и без него.
С другой стороны, было обнаружено, что резкое снижение коэффициента C 2 было достигнуто для неармированного основания оболочки, когда коэффициент заделки a / B увеличился с 0,5 до 0,75 (b). Значения коэффициента C 2 для усиленного корпуса выше, чем для неармированного основания оболочки, но между усиленным и неармированным корпусом есть тривиальная разница. Также было обнаружено, что коэффициенты C 1 и C 2 зависят от начальной плотности земляного полотна, особенно от угла внутреннего трения.
Это уравнение можно использовать в качестве приблизительного ориентира для определения предельной прочности основания корпуса в исследуемых условиях. Можно видеть, что на основе приведенного выше уравнения конечные теоретические значения почти равны конечным лабораторным значениям. Поскольку разница между полученными значениями незначительна, это уравнение справедливо выражает измеренные значения Q и в лабораторных испытаниях, если множитель C 1 , C 2 и угол сопротивления сдвигу. известны.
Влияние оболочки и арматуры на эффективность основания
представляет расчетные коэффициенты эффективности оболочки ( η , которые были выведены в ходе настоящего экспериментального исследования. В целом можно сделать вывод, что эффективность оболочки увеличивается с увеличением заделки оболочки. глубина ( a / B ). Видно, что влияние конфигурации оболочки уменьшается, когда почва становится более плотной. Более того, коэффициент полезного действия оболочки значительно уменьшается, когда почва более плотная.Это мнение аналогично мнению, высказанному Ханной и Адель-Рахманом [18]. Эффективность оболочки заметно возрастает в испытаниях, проведенных на армированном земляном полотне, по сравнению с основанием оболочки без армирования.
Коэффициент полезного действия оболочки по сравнению с оболочкой увеличивается для оснований оболочки с армированием и без него при разной относительной плотности.
Коэффициенты эффективности оболочки также уменьшаются с увеличением угла сопротивления сдвигу, что подтверждается в. На этом рисунке представлено изменение эффективности оболочки ( η ) с углом сдвига ( ϕ ) при различной глубине заделки оболочки.Отмечено резкое снижение КПД оболочки при увеличении угла сдвига, а значения КПД оболочки увеличиваются с увеличением глубины заделки оболочки. Было обнаружено, что увеличение плотности земляного полотна значительно снижает коэффициент полезного действия оболочки как для усиленного, так и для неармированного основания оболочки. Можно сделать вывод, что при более высокой плотности земляного полотна диапазон улучшений невелик по сравнению с рыхлой и средней относительной плотностью. Это происходит из-за увеличения степени улучшения рыхлого состояния за счет эффекта оболочки и лучшего улучшения за счет наличия армированного слоя.
Изменение эффективности оболочки в зависимости от угла сопротивления сдвигу для опор оболочки с армированием и без него при разном коэффициенте подъема.
Влияние конфигурации оболочки и усиления на характеристики осадки
В этой части была предпринята попытка изучить влияние основы оболочки, а также наличие армированного слоя на результирующую осадку при разрушении. Расчетный коэффициент осадки ( F δ ), который был выведен из настоящего экспериментального исследования при различных изученных параметрах, нанесен на график.Как правило, для любого основания коэффициент осадки уменьшается для более плотного песка. Сравнение опор из оболочки и плоских оснований для любого данного состояния песка показывает, что опоры из оболочки имеют более низкий коэффициент осадки, что демонстрирует лучшие характеристики осадки для опор из оболочек. Сравнение фундамента из оболочки без армирования и с армированием показывает, что коэффициент осадки заметно уменьшается для фундамента из оболочки с армированием. Также на коэффициенты осадки влияет глубина заделки оболочки.Увеличение глубины заделки оболочки ( a / B ), очевидно, уменьшает осадку грунтовой системы основания оболочки как в усиленных, так и в неусиленных условиях. Но снижение осадки для усиленного фундамента корпуса выше, чем для неармированного корпуса. Было обнаружено, что при низкой относительной плотности и на глубине заделки (, / B, = 0,75 усиленное состояние) улучшение коэффициента осадки достигает 50% от его начального значения плоского основания, в то время как это значение составляет 26%. для фундамента без армирования.С другой стороны, в плотном состоянии эти значения достигают 55% для усиленного основания оболочки при ( a / B = 0,75) и 31% для неармированного основания оболочки. Это еще раз подтвердило эффективность армированного слоя в регулировании вертикальной осадки основания оболочки за счет результирующего комбинированного эффекта.
Соотношение между углом сопротивления сдвигу и коэффициентом осадки для плоского и оболочкового фундамента с армированием и без армирования различной плотности.
Механизм разрушения несущей способности системы
В следующем анализе приводятся некоторые полезные комментарии по поводу разрушения системы грунтов основания оболочки с одинарным армированным слоем и без него.экспериментально и теоретически показаны режимы разрушения фундамента оболочки с армированием и без него. Как правило, в случае нормального плоского основания, расположенного в среднем и плотном состоянии, можно видеть, что общее разрушение при сдвиге представляет собой четко определенный образец, который состоит из непрерывной поверхности разрушения, которая развивается от одного края основания до поверхности земли. . Механизм обрушения грунта нормального плоского основания на армированном слое, размещенном на заданной глубине ниже основания, был подробно исследован Яхмамото и Кусудой [19] и Михаловски и Ши [20].Их исследование доказало, что разрушение было вызвано и образовалось непосредственно под арматурой. Армирование может способствовать увеличению несущей способности за счет значительного изменения геометрии схемы обрушения, предотвращая проникновение механизма глубоко в почву. Армирование предотвращает возникновение наиболее неблагоприятных механизмов, приводящих к увеличению предельной нагрузки. Основная роль включения заключается в уменьшении скорости деформации в зоне сдвига и уменьшении предельного напряжения сдвига, возникающего в зоне сдвига.Армирование обеспечивает эффективное сдерживание и играет важную роль в предотвращении вертикального распространения почвы. В результате прочность земляного полотна на сдвиг заметно увеличивается, а характер разрушения изменяется, как заявили Михаловски и Ши [20].
Модифицированная картина разрушения фундамента оболочки без и с усиленным одинарным армирующим слоем, a / B = 0,50.
Применяя эту терминологию к испытанному основанию оболочки на армированном песке, можно сделать вывод, что присутствие такого армированного слоя под основанием оболочки вызывает постепенное уплотнение замкнутого земляного полотна и действует как улучшенная зона.Зона между оболочкой и арматурой может постепенно уплотняться на этапах нагружения и вести себя как закладной блок или один блок (как указано в уплотненном треугольнике или клине, как показано на a с воображаемой шириной основания B — в зависимости от передачи нагрузки механизм). В результате разрушение грунта при сдвиге происходит ниже армированного элемента из-за более высокой деформации армированного слоя при разрушении. Фундамент оболочки и почва внутри оболочки, расположенная над арматурой, могут препятствовать эффекту глубокого фундамента.Это подтверждает, что основание оболочки и ограниченный грунт поверх арматуры ведут себя как заложенный фундамент или жесткий блок, а разрушение грунта распределяется непосредственно под арматурой, что подтверждается экспериментальными результатами, показанными в b и c. Этот рисунок продемонстрировал, что плоскости разрушения при сдвиге начинаются и рассеиваются ниже армированного слоя.
Необходимо отметить, что не только форма фундамента и плотность грунта, но также и другие определяющие факторы, упомянутые выше, влияют на изменение характера индуцированных отказов.Например, увеличение глубины заделки может значительно увеличить действующее напряжение на арматуру, в результате чего повышается несущая способность и модифицируется механизм разрушения. Также воображаемая ширина подошвы оболочки на поверхности армированного слоя может играть важную роль в изменении плоскости разрушения ( B — ). Увеличение ширины обечайки увеличило воображаемую ширину, следовательно, увеличилась несущая способность. Поверхности разрушения или плоскости сдвига имели место в нижней части армированного слоя (с).На этом рисунке показан механизм передачи нагрузки и концентрация напряжения, которая в основном находится под арматурой.
Анализ методом конечных элементов подтверждает и показывает изменение характера разрушения испытываемого основания оболочки.
С другой стороны, для основания оболочки с армированием и без него, поверхность разрыва изменяется, как показано на рисунках a, b и c, и нарушение несущей способности происходит на носке оболочки. Клин поверхности разрушения основания оболочки более глубокий, чем у плоского основания, из-за эффекта закладки.Можно сделать вывод, что использование ракушечного фундамента можно считать хорошим методом увеличения эффективной глубины фундамента, как это ясно видно на диаграммах соединения. Таким же образом армированный слой под подошвой основания оболочки также может заметно увеличить эффективную глубину фундамента, и поверхность разрушения возникает непосредственно под армированным слоем. Отмечено, что клин поверхности разрыва основания оболочки с арматурой более глубокий, чем у других систем.Это связано с тем, что образовавшийся клин грунта внутри оболочки и над арматурой больше, чем в основании оболочки без армирования. Это также указывает на то, что фундамент с армированием имеет более высокую несущую способность, чем другие системы. В то время как при низкой относительной плотности усиленная опора оболочки может значительно уменьшить вызванное пробивным сдвигом разрушение в виде упругой осадки по сравнению с большой оседкой, вызванной в случае плоской опоры.
Численное моделирование
В следующей части представлена проверка численного анализа по результатам модельных испытаний.Результаты, полученные в результате модельных испытаний, были проверены путем проведения численных исследований с использованием метода конечных элементов. Упругопластический анализ методом конечных элементов плоской деформации проводился с использованием коммерческой программы PLAXIS [21]. Этот анализ направлен на выявление характера разрушения и поведения напряжений в системе усиленной оболочки. Это также считается хорошим методом для проверки параметров, которые невозможно измерить в лаборатории, таких как эффект масштаба при использовании крупномасштабного основания оболочки.
Грунт в этом анализе моделировался критерием разрушения Мора – Кулона. Это просто и достаточно совместимо и согласуется с результатами экспериментальных испытаний по сравнению с другими моделями. Для этого анализа использовались условия плоской деформации и 6-узловые треугольные элементы. Модуль упругости грунта при различной плотности песка был получен в результате трехосных испытаний.
Элемент основания оболочки, использованный в этом исследовании, представляет собой элемент балки, который считается очень жестким и грубым (прочность на границе раздела R между была взята 0.67, границы раздела из песчаной стали). Свойства материала балки: упругая нормальная жесткость EA и жесткость на изгиб EI . Принимая во внимание, что E : модуль упругости используемого материала балки, A : площадь поперечного сечения и I : момент инерции модели основания оболочки. Армированный слой принятой модели был смоделирован как геотекстильный элемент, который определяется осевой горизонтальной жесткостью EA (кН / м) для геотекстильного материала.Виртуальный интерфейсный элемент с геотекстилем был смоделирован до создания сетки. В программе моделируются положительные и отрицательные элементы интерфейса с виртуальной толщиной.
Во всех расчетах, описанных в этом исследовании, рассматривается метод управления силой, в котором сосредоточены точечные силы, силы, которые действуют на геометрическую точку в центре опор оболочки. Точечные силы на самом деле являются линейными нагрузками, направленными вне плоскости. Входные значения точечных сил даны в силе на единицу длины (например, кН / м).Значение приложенной точки (система нагрузки A) берется в соответствии с полученным значением в результате модельного испытания, деленным на ширину основания в плоскости.
Свойства принятого песка, которые были смоделированы и определены в программе, следующие: ( γ = 18 кН / м 3 , ν = 0,3, E = 7500 кПа, угол трения ϕ = 41 ° и угол дилатансии = 11 °). Основание оболочки моделируется как элемент упругой балки и определяется с коэффициентом заделки ( a / B = 0.75). Основные свойства фундамента (осевая жесткость, EA = 20,1 кН / м и жесткость на изгиб, EI = 151 200 кН / м 2 / м).
Проверка анализа методом конечных элементов
Сравнение между реакциями на смещение нагрузки было рассчитано с использованием анализа методом конечных элементов, и результаты, полученные в ходе соответствующих испытаний модели для основания оболочки с армированием и плоского основания, показаны на рис. Расчеты методом конечных элементов умеренно корректны для расчетных значений предельных нагрузок.Результаты конечных элементов близки к результатам лабораторных испытаний моделей и согласуются с теми же тенденциями.
Кривые осадки под нагрузкой для модельных испытаний и численных результатов в плотном состоянии, ϕ = 41 °.
Результаты анализа методом конечных элементов подтверждают экспериментальное значение. Однако есть небольшая разница между результатами анализа методом конечных элементов и результатами модельного испытания. Это различие связано с обычными условиями деформации и эффектом масштаба в дополнение к условиям окружающей среды в лаборатории.
Численные результаты
Результаты анализа методом конечных элементов и его выходные данные показаны на графиках a – g для различных вариантов фундамента, которые являются плоскими, оболочками без армирования и с армированием. Вектор полного смещения, полученный в результате анализа, показан на (a – c) при соответствующей предельной несущей способности. Можно видеть, что оболочка и арматура могут значительно изменить направление деформации по сравнению с плоскими случаями (а), в то время как деформация и поток частиц грунта для плоского основания происходят в основном под основанием, а вдоль сторона плоского основания, как ясно показано, и наличие оболочки заставляет почву значительно вздыбляться вдоль каждой стороны оболочки (b).Кроме того, армирование может ограничивать и уменьшать деформацию грунта, как показано в c. Как правило, сравнение плоских фундаментов и фундаментов из оболочек показывает, что поверхность разрыва фундамента оболочки глубже, чем поверхность разрыва плоского типа. Это также подтверждает характер отказов системы, показанный и согласуемый с Абд-Аль-Рманом [6].
Отклик нормального и оболочечного фундамента с армированием и без него ( a / B = 0,75 и ϕ = 41 °).
Кроме того, при отказе происходит постепенное уплотнение. Следовательно, клин грунта внутри оболочки, который расположен непосредственно над армированным элементом, ведет себя как единое целое и оседает одновременно, как указано в c. Это показывает, что векторы смещения распределяются непосредственно под арматурой и простираются до глубины, равной 0,5B, что подтверждает наличие встроенного блока.
С другой стороны, деформации сдвига, связанные с разрушением, показаны на (d – f) для различных типов фундаментов.Распределение предельных деформаций сдвига представлено в заштрихованной области, где красная заливка относится к максимальным деформациям. Замечено, что для плоского основания максимальные деформации или зоны с высоким сдвигом находятся непосредственно под основанием на глубине, равной B, и заметно уменьшаются как на более низкой глубине, так и по горизонтали на соседних сторонах основания (d). В то время как для испытанного основания оболочки без армирования максимальные деформации (зоны с высоким сдвигом) возникают на краю основания оболочки и уменьшаются на более низкой глубине грунта.Он также увеличен до расстояния, равного 2B, как показано на рисунке e. Это еще раз подтверждает, что оболочка может значительно сделать поверхность разрушения глубже, чем это плоское основание, тогда как наличие арматуры под основанием оболочки изменяет результирующие экстремальные напряжения. Максимальные деформации сдвига обнаруживаются только у носка оболочки и распространяются на расстояние, равное 0,5B, вдоль сторон оболочки, как ясно показано красной штриховкой f. Это относится к эффективности оболочки и армирования в изменении распределения деформаций.Это также оправдывает эффект армирования при изменении плоскости разрушения. Замечено, что разрушение грунта при сдвиге происходит под арматурой непосредственно под опорным блоком оболочки, который действует как закладной фундамент. Этот фундаментный блок оседает одновременно и передает напряжение ниже арматуры, как показано на f. Он показал, что максимальные деформации сдвига индуцируются ниже армированного грунтового блока. Таким образом, g подтвердил и обосновал возникновение разрушения грунта при сдвиге в нижней части армированного элемента.Как видно из этого рисунка, пластические точки и отсечки растяжения находятся в основном в ограниченной зоне и простираются на глубину ниже арматуры. Это подтверждает и подтверждает, что разрушение грунта при сдвиге изменяется и становится отличным от основания оболочки без армирования. Это также подтверждает полученные и ожидаемые ранее результаты, представленные в.
Для изучения влияния основания оболочки и наличия арматуры значения контактного давления под фундаментом оболочки с армированием и без него были численно извлечены из результатов программы при различной плотности земляного полотна и глубине заделки ( a / В ).Эти значения были определены на глубине, равной расстоянию ( a /2) ниже центральной линии оболочки и в пределах ограниченной области стенками оболочки.
Как правило, можно заметить, что контактное давление при разрыве увеличивается с увеличением глубины заделки оболочки, как показано на. Увеличение глубины заделки оболочки обеспечивало большее ограничение для более плотного состояния песка, так как угол сопротивления сдвигу увеличивается, а контактное давление при разрушении увеличивается. Сравнение основания оболочки с армированием и без него показывает, что арматура имела более ограниченное давление, как показано на соответствующем рисунке, в то время как значения контактного давления плоского основания на той же глубине ниже основания были меньше, чем у корпусов корпусов. .
Изменение контактного давления с коэффициентом a / B для основания оболочки с армированием и без него ниже центра оболочки на глубине a /2, полученное в результате численного анализа.
Масштабный эффект
Как и во всех тестах маломасштабных моделей, особенно в песке, необходимо учитывать масштабные эффекты. Есть несколько важных факторов, которые делают невозможным использование мелкомасштабных моделей, которые были построены из песка и испытаны при весе 1 г.Работа, описанная в этом исследовании, была выполнена на мелкомасштабных физических моделях весом 1 г. Для таких мелкомасштабных моделей размер частиц грунта, методы строительства, граничные условия, особенности сопряжения грунта и армирования, жесткость арматуры и дилатансия при низком напряжении являются важными факторами, которые необходимо учитывать. Кусакабе [22] обобщил данные испытаний и указал, что влияние размера частиц на несущую способность основания становится менее заметным при соотношении ( D 50 / B ), которое меньше 1/100.Следовательно, влияние размера частиц в этом исследовании должно быть меньше, поскольку отношение D 50 / B , используемое в модели, составляло 0,0092. Согласно Брансби и Смиту [23], с гладкими боковыми стенками и относительно широким резервуаром, боковое трение и граничные условия не имеют существенного влияния на результаты модели уменьшенного масштаба. Таким образом, внутренние стенки контейнера гладко отполированы, чтобы уменьшить трение о песок, насколько это возможно. Кроме того, чтобы пренебречь влиянием граничных условий, длина резервуара была взята в 6 раз больше ширины основания, а толщина слоя почвы в 7 раз больше ширины основания [24,25].Кроме того, для обеспечения надлежащей жесткости модели резервуара и предотвращения бокового смещения стенок резервуара его борта и верх были усилены за счет установки стальных уголков. Строительные методы, использованные для построения макета модели в лаборатории, были аналогичны полевым требованиям.
Эффект масштаба и подтверждение использования такого армирования с опорой раковины мелкомасштабной модели были обеспечены и сопоставлены с результатами лабораторной модели основания, как было представлено ранее.
Эта часть исследования направлена на изучение масштабного эффекта принятой оболочки-фундамента на усиленный грунт с использованием анализа методом конечных элементов, как указано DeMerchant et al.[26] и Чен и Абу-Фарсах [27]. Модель конечных элементов сначала была проверена результатами лабораторных модельных испытаний фундаментов, представленных в, а затем использовалась для численного исследования реакции на нагрузку и оседание различных размеров фундаментов больших размеров и глубины заделки ( a / B ) на армированных элементах. грунтовые основания. В этом исследовании принятая ширина основания оболочки составляет 2 м, а коэффициент заделки варьируется и принимается, как указано в этом исследовании. Результаты крупномасштабных модельных фундаментов оболочек сравнивались с модельными испытаниями безразмерным образом.Было получено улучшение предельной несущей способности опор корпуса как для малых, так и для больших опор по сравнению с плоскими опорами. Соотношение нагрузки основания оболочки на армированном песке определялось при различной глубине заделки ( a / B ). Коэффициент нагрузки может быть получен из следующего выражения ( Lr = Q ultR / Q ultF ), где Qi ultR — предельная нагрузка на бетонный фундамент на армированном песке, а Q ultF — это максимальная несущая способность плоского фундамента без армирования.показывает изменение отношения нагрузки к коэффициенту заделки как для модельной, так и для аналитической крупномасштабной опоры оболочки в плотном состоянии. Было замечено, что численные результаты натурного фундамента оболочки на армированном песке согласуются с результатами лабораторных испытаний модели и имеют ту же тенденцию. Но есть небольшое расхождение в результатах около 7%. Как видно на этом рисунке, значения численного анализа (полномасштабного) близки к значениям лабораторных тестовых моделей, подтверждая результаты, полученные в обоих исследованиях.Конечно, небольшие различия между экспериментальными (малая модель) и численными значениями (натурные) связаны с ошибками и условиями окружающей среды в лаборатории. В дополнение к изменению уровня напряжения, которое применялось к армированному элементу как в модельном испытании, так и в программе, можно сделать вывод, что текущие результаты модельного испытания могут подтвердить полномасштабный фундамент, представленный DeMerchant et al. [26] и Чен и Абу-Фарсах [27].
Сравнение повышения несущей способности фундамента оболочки на усиленном земляном полотне для модельных испытаний и теоретического анализа крупномасштабного фундамента оболочки.
Выводы
В данной статье геотехническое поведение фундамента из оболочки с однослойным армированием и без него было исследовано экспериментально и по сравнению с плоским основанием. Следующие основные выводы, насколько это возможно, изложены в количественной форме. Несмотря на то, что приведенные таким образом значения применимы к конкретным данным, используемым в анализе, их можно считать показательными для общей тенденции этих результатов.
1.
Клин грунта между оболочкой и грунтом над арматурой эффективно блокируется, и достигается уплотнение земляного полотна, в результате повышается несущая способность основания и уменьшается осадка.
2.
Было обнаружено, что несущая способность основания оболочки на усиленном плотном земляном полотне увеличилась примерно в 2,5 раза по сравнению с плоским основанием, когда коэффициент глубины заделки a / B увеличился с 0,40 до 0,50, и увеличилась в 2,9 раза при увеличении коэффициента глубины заделки с 0,5 до 0,75.
3.
Повышение несущей способности основания оболочки на усиленном рыхлом грунтовом полотне достигнуто до 2.80 раз ровное основание при коэффициенте глубины заделки 0,75.
4.
Увеличение угла сопротивления земляного полотна сдвигу с 31 ° до 41 ° для усиленного основания оболочки снижает коэффициент осадки плоского типа на 200–230% от плоского основания при a / B = 0,75.
5.
Коэффициент осадки основания оболочки на усиленном рыхлом грунтовом полотне уменьшился на 200% от плоского основания при соотношении глубин заделки a / B = 0.75 и уменьшена на 230% для плотного состояния.
6.
Происходит резкое снижение эффективности оболочки при уменьшении угла сдвига и увеличение значений эффективности оболочки с увеличением глубины заделки оболочки.
7.
Эффективность оболочки заметно возрастает при испытаниях, проводимых на основании оболочки на усиленном земляном полотне, по сравнению с основанием оболочки без армирования.
8.
Наличие армированного слоя под носком кожуха значительно изменяет нарушение несущей способности.Клин поверхности разрыва фундамента оболочки с армирующим слоем более глубокий, чем у плоского фундамента и фундамента без арматуры.
9.
Анализ методом конечных элементов был подтвержден результатами модельных испытаний и определяет характер разрушения основания оболочки с армированием и без него.
10.
Рекомендуется для будущей работы обеспечить результаты на крупномасштабной основе в полевых условиях, чтобы сделать общие и исчерпывающие выводы на основе этой рукописи.
Конфликт интересов
Автор заявляет об отсутствии конфликта интересов.
Соответствие этическим требованиям
Эта статья не содержит исследований с участием людей или животных.
Сноски
Экспертная проверка под ответственностью Каирского университета.
Список литературы
1. Куриан Н.П. Экономия гиперболических параболоидальных оснований оболочек. Geotech Eng. 1977; 8: 53–59. [Google Scholar]2.Фарид А, Давуд Р. Цилиндрические оболочки на упругом основании. Всемирный конгресс, ракушечные и пространственные конструкции. Мадрид, Испания; 1979, 1 (3). п. 33–46.
3. Паливал Д.Н., Рай Р.Н. Неглубокая сферическая оболочка на фундаменте Пастернака, подверженная повышенным температурам. J Тонкостенная конструкция. 1986. 5 (1): 343–349. [Google Scholar] 4. Паливал Д.Н., Синха С.Н. Статическое и динамическое поведение мелких сферических оболочек на фундаменте Винклера. J Тонкостенная конструкция. 1986. 4 (2): 411–422. [Google Scholar] 5. Мелерски Э. Тонкостенный фундамент, опирающийся на стохастический грунт.J Struct Eng ASCE. 1988. 114 (8): 2692–2709. [Google Scholar]6. Абдель-Рахман М. Геотехническое поведение оснований из оболочек. Кандидатская диссертация. Факультет гражданского строительства, Университет Конкордия, Монреаль, Канада; 1996.
7. Абдель-Рахман М., Ханна А.М. Максимальная несущая способность треугольных опор на песке. J Geotech Eng ASCE. 1990; 116 (2): 851–1863. [Google Scholar] 8. Махарадж Д.К. Конечно-элементный анализ фундамента конической оболочки. Electron J Geotech Eng — EJGE. 1990; 348: 500–516. [Google Scholar] 9.Хуат Б., Мохамед А. Исследование методом конечных элементов с использованием кода КЭ Plaxis геотехнического поведения основания оболочки. J Comput Sci. 2006. 2 (1): 104–108. [Google Scholar] 10. Кентаро Ю., Андрия В., Мизуки Х. Несущая способность и механизм разрушения различных типов фундаментов на песке. J почва найдена. 2009. 49 (4): 305–314. [Google Scholar] 11. Лата Г.М., Сомванши А. Несущая способность квадратных фундаментов на геосинтетическом армированном песке. Geotext Geomembr. 2009. 27 (2): 81–294. [Google Scholar] 12. Патра К., Дас Б., Аталар С. Несущая способность закладного ленточного фундамента на песке, армированном георешеткой. J Geotex Geomembr. 2010. 23 (1): 454–462. [Google Scholar] 13. Шалиграм П.С. Поведение треугольного ленточного фундамента на геоармированном слоистом песке. Int J Adv Eng Tech IHEAT. 2011. 2 (1): 192–196. [Google Scholar]14. Йоскими Ю., Тохано И. Статистическая значимость относительной плотности. Оценка относительной плотности и ее роли в геотехнических проектах с участием несвязных грунтов: ASTM STP523-EB.7744-1, Лос-Анджелес; 25-30 июня 1972 г.п. 74–84.
15. Androwes KZ. Изменение поведения почвы включениями. Конференция по наземной инженерии, Париж; 1978. стр. 234–45.
16. Абдель-Баки С., Раймонд Г.П. Повышение несущей способности фундамента за счет однослойного армирования, В: Материалы конференции по геосинтетике в Ванкувере; 1994. стр. 356–67.
17. Абу-Фарсах М., Чен К., Шарма Р. Экспериментальная оценка поведения оснований на геосинтетически армированном песке. Почва найдена. 2013. 53 (2): 335–348.[Google Scholar] 18. Ханна А., Абдель-Рахман М. Экспериментальное исследование фундаментов из ракушек на сухом песке. Кандидат Геотек Дж. 1998; 35: 847–857. [Google Scholar] 19. Яхмамото К., Кусуда К. Механизмы разрушения и несущая способность усиленного фундамента. Geotex Geomembr. 2001. 19 (3): 127–162. [Google Scholar] 20. Михаловски Р.Л., Ши Л. Модели деформации армированного песка для фундамента при разрушении. J Geotech Geonviron Eng. 2003. 129 (3): 439–449. [Google Scholar]21. Bringkgreve RB, Vermeer PA. Программа конечных элементов Plaxis для анализа грунтов и горных пород.Версия 7 Plaxis B.V., Нидерланды; 1998.
22. Кусакабэ О. Фонды. В: Тейлор Р.Н., редактор. Геотехническая центрифуга. Блэки Академический и Профессиональный; Лондон: 1995. Глава 6. [Google Scholar] 23. Брансби П.Л., Смит И.А.А. Боковое трение в модельных экспериментах с подпорной стенкой. J Geotech Eng, ASCE. 1975; GT7: 615–632. [Google Scholar]24. Абдель-Баки С., Раймонд Г.П. Армирование грунта для неглубокого фундамента. В: Материалы 2-й инженерно-геологической конференции, Каир; 1993 г.п. 488–99.
25. Раймонд Г.П. Армированный сыпучий грунт для улучшения грунта для цементирования опор пути. ASCE Geotech Special Publ. 1992. 30 (2): 1104–1115. [Google Scholar] 26. ДеМерчант М., Валсангкар А., Шрайвер А. Испытания под нагрузкой плиты на легком заполнителе из расширенного сланца, армированного георешеткой. Geotex Geomembr. 2002. 20 (3): 173–190. Дата публикации в сети: 01.06.2002. [Google Scholar] 27. Чен К., Абу-Фарсах М. Численный анализ для изучения масштабного эффекта неглубокого фундамента на укрепленных грунтах. Гео-границы.2011: 595–604. [Google Scholar] .