Устройство ленточного фундамента.
Наверняка, все знают, что фундамент – основа дома, которой при строительстве уделяется немалое внимание. Все нагрузки от дома приходятся на фундамент и передаются на основание, которое состоит из пластов плотного грунта. Поверхность фундамента – это плоскость, на которой расположены стены сооружения, которые находятся над землёй, либо слегка заглублены, если предусмотрено подвальное помещение. Подошва фундамента – нижняя плоскость, которая имеет общие точки соприкосновения с грунтом.
Что такое ленточный фундамент?
Ленточный фундамент представляет собой железобетонную полосу, которая проходит по периметру сооружения и закладывается как под наружные, так и под внутренние стены, если это необходимо. Если брать во внимание плитный фундамент, то технология строительства ленточного фундамента немного сложнее, так как необходима более массивная опалубка а так же большее количество земляных работ, а если рассматривать столбчатый фундамент, то трудоёмкость ленточного фундамента ниже, материала расходуется меньше и в этом случае можно обходится без крана, к тому же рассчитать столбчатый фундамент намного сложнее.
Ленточные фундаменты – отличное решение:
- для домов, построенных из бетона, камня, кирпича
- для сооружений, которые имеют тяжёлые перекрытия
- в случае неоднородности грунта на площадке для строительства
- если в Ваши планы входит наличие подвала (в этом случае стены ленточного фундамента будут выступать в роли стены подвала)
Виды ленточных фундаментов
Ленточные фундаменты делятся на 2 группы: монолитные и сборные.
Для сооружения монолитного фундамента используют бетон и арматуру. Обязательной является опалубка. Эта конструкция является неподвижной и устанавливается на основе котлована. После этого, чтобы получить монолитный фундамент, его заливают ровным слоем бетона и уплотняют. Такой тип наиболее распространен и обладает серьезными преимуществами:
- Отличается долговечностью
- Устойчив на протяжении всего времени использования здания
- Может идеально совмещаться с конструкцией сооружений разных типов и форм
Чтобы соорудить сборный ленточный фундамент, Вам также понадобятся армированный бетон или железобетонные блоки, которые при кладке следует закрепить, используя толстую строительную проволоку и специальный раствор. Выбрав этот вид ленточного фундамента, Вы сэкономите время, но вложите больше финансовых средств из-за необходимости применения кранового оборудования. Необходимо помнить про не плотность сопряжения плит, из-за которого может случиться протекание.
Кроме двух вышеупомянутых типов ленточных фундаментов можно столкнуться с кирпичными и бутовыми видами. Возведение кирпичного фундамента – довольно-таки трудоёмкое занятие и прочность его намного меньше, чем у монолитного или сборного. Бутовой фундамент (бутобетонный) – прочнейший и самый влагостойкий вид ленточного фундамента, что является прекрасными показателями для построения его на так называемых «мокрых» грунтах. Недостатками являются высокие цены на бутовые камни и сам подбор камней подходящих по размеру.
Как происходит устройство ленточного фундамента?
Если необходимо залить фундамент под малую неответственную постройку (например, уличный камин, забор, бассейн), возможно обойтись своими силами, даже без специальной техники и оборудования, но прочность такого фундамента будет достаточно слабой.
- Для начала необходимо рассчитать размеры и объем ленточного фундамента, количество арматуры и опалубки. Выбрать достаточно ровную плоскость, где вы будете замешивать раствор. Можете использовать с этой целью бетонную стяжку или лист железа. Если в растворе будет присутствовать песок и щебень, то подойдёт также металлический бой с бортами, который применяется при стройке. Замешивание на грунте может привести к попаданию кусочков земли в раствор и появлению пустот в будущем фундаменте и снижению его прочности.
- Далее необходимо засыпать наполнитель. Прочность и наличие пустот между щебнем и камнями будет зависеть от количества песка. Если песка будет не достаточно, то вы рискуете получить много участков открытой структуры в фундаменте.
- В будущем растворе делаете углубление, заливаете в небольшом количестве воду, исключительно для увлажнения цемента и песка, так как щебню не нужна влага. Если вода впиталась, можно смело приступать уже к замешиванию и самой заливке. Тщательное перемешивание – важное условие для крепкой структуры.
- Заливку лучше проводить в один этап. Чтобы поверхность получилась ровной, можно применять натянутую леску, как ориентир. После завершения заливки, выровняйте поверхность мастерком.
Перемешивая песок со щебнем, пытайтесь делать это равномерно. Не обязательно сразу мешать компоненты, можно сначала сделать ровной поверхность наполнителя, а потом добавить слой песка. Так, Вы сможете избежать пустых мест, которые будет трудно мешать с цементом. Количество цемента, необходимого при устройстве, можно рассчитать, зная массу песка. Соотношение песка и цемента составляет 4:1, при маркировке М400.
Ошибки при возведении ленточного фундамента
- Не учтены просадка грунта, уровень грунтовых вод и глубина промерзания почвы
- Использование материалов очень низкого качества с целью экономии (использование цемента более низкого качества, расколотых фундаментных блоков)
- Низкое качество заливочных работ (неправильно вынесенные оси; котлован, вырытый не до нужной отметки; пренебрежение температурными режимами при застывании бетона; снятие опалубки раньше положенного срока)
Строительство ленточного фундамента очень ответственное занятие, стоит уделить должное внимание прохождению всех этапов проводимых работ и выбору материалов , не стоит полагаться на «авось», а всю работу лучше всего поручить профессионалам, это намного выгоднее, чем исправлять ошибки.
Расчет материала на фундамент
Строительный калькулятор расхода материалов для фундамента.
Фундамент является важнейшей частью любой постройки. Именно от того, насколько прочным и надежным является фундамент, зависит прочность и долговечность дома, построенного на нем. Поэтому особенно важно правильно рассчитать, какое количество материалов необходимо использовать для его заливки. Однако это не всегда легко получается даже у специалистов. Но сегодня узнать точное соотношение материалов легче, чем когда-либо – достаточно воспользоваться строительным калькулятором расхода материалов для фундамента.
В первом нашем калькуляторе вы можете рассчитать ленточный фундамент в режиме онлайн.
А здесь можете посчитать, какое количество материала вам потребуется для заливки более надежного и мощного плитного фундамента.
Вам придется лишь заполнить несколько граф, после чего узнаете, сколько нужно будет подготовить тонн щебня, цемента и песка, метров арматуры и досок для опалубки. Благодаря этому исключена вероятность создания некачественного фундамента, а также закупки слишком большого количества строительных материалов.
В первую очередь вам нужно указать периметр фундамента. Узнать его очень легко – достаточно использовать рулетку и провести простейшие вычисления. Кроме фундамента нужно также замерить ширину фундамента, высоту подземной и надземной части. Все эти измерения занимают минимум времени и усилий.
Последним этапом является указание марки бетона. На сегодняшний день при строительстве чаще всего используется бетон марки от М-100 до М-300. Чем больше показатель марки, тем более прочным, долговечным и морозостойким является бетон. Однако стоит учитывать, что для получения бетона высоких марок приходится использовать большее количество цемента и меньшее песка. То есть, стоимость строительных материалов стремительно увеличивается.
Поэтому, если вы хотите избежать лишних затрат при устройстве фундамента, будет полезно обратиться к специалистам и рассказать им о том, какой именно дом вы хотите построить. От выбранного материала и количества этажей дома зависит выбор подходящей марки бетона. Когда подходящая марка бетона выбрана, остается указать её в соответствующей графе.
Если при указании размеров будущего фундамента у вас получается дробное число, вводить его следует при использовании точки, а не запятой, для отделения целой части числа от дробной. В противном случае калькулятор не сможет распознать число и провести нужные расчеты.
Когда все данные введены, остается лишь «Рассчитать» и получить точные данные.
Расчет материалов ленточного фундамента.
Укажите необходимые размеры в миллиметрах
Расчет материала на ленточный фундамент.Расчет материалов для строительства фундамента.
Фундамент для дома расчет материала.
Требуемое количество цемента для изготовления одного кубического метра бетона различное в каждом конкретном случае.
Это зависит от марки цемента, желаемой марки получаемого бетона, размеров и пропорций наполнителей.
Указывается в мешках.
Не стоит повторять, насколько важно при проектировании дома рассчитать количество строительных материалов для фундамента дома.
Ведь стоимость монолитного фундамента доходит до трети стоимости дома.
Что можно узнать:
Площадь основания фундамента (например, для определения количества гидроизоляции, чтобы накрыть готовый фундамент)
Количество бетона для фундамента и плит перекрытия или заливки пола подвала (вот будет весело, когда из-за элементарной ошибки в умножении не хватит бетона)
Арматура — количество арматуры, автоматический расчет ее веса, исходя из ее длины и диаметра
Площадь опалубки и количество пиломатериала в кубометрах и в штуках
Площадь всех поверхностей (для расчета гидроизоляции фундамента) и боковых поверхностей и основания
Добавлен расчет стоимости стройматериалов фундамента.
Так же программа нарисует чертеж фундамента.
Надеюсь, что сервис будет полезен тем, кто строит фундамент своими руками и специалистам-строителям.
Состав бетона.
Пропорции и количество цемента, песка и щебня для приготовления бетона по умолчанию даны справочно, как рекомендуют производители цемента.
Так же как и цена на цемент, песок, щебень.
Однако состав готового бетона сильно зависит от размеров фракций щебня или гравия, марки цемента, его свежести и условий хранения. Известно, что при длительном хранении цемент теряет свои свойства, а при повышенной влажности качество цемента ухудшается быстрее.
Расчет материала на фундамент/
Обратите внимание, что стоимость песка и щебня указывается в программе за 1 тонну. Поставщики же объявляют цену за кубический метр песка, щебня или гравия.
Удельный вес песка зависит от его происхождения. Например, речной песок тяжелее карьерного.
1 кубический метр песка весит 1200—1700 кг, в среднем — 1500 кг.
С гравием и щебнем сложнее. По различным источникам вес 1 кубического метра от 1200 до 2500 кг в зависимости от размеров. Тяжелее — более мелкий.
Так что пересчитывать цену за тонну песка и щебня вам придется самостоятельно или уточнять у продавцов.
Однако расчет все же поможет узнать ориентировочные расходы на строительные материалы для заливки фундамента. Не забудьте еще проволоку для вязки арматуры, гвозди или саморезы для опалубки, доставку строительных материалов, расходы на земляные и строительные работы.
Онлайн калькулятор расчета размеров, арматуры и количества бетона монолитного ленточного фундамента.
Информация по назначению калькулятора.
Онлайн калькулятор монолитного ленточного фундамента предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента. Для определения подходящего типа фундамента, обязательно обратитесь к специалистам.
Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3. 03.01-87 и ГОСТ Р 52086-2003
Ленточный фундамент представляет собой монолитную замкнутую железобетонную полосу, проходящую под каждой несущей стеной строения, распределяя тем самым нагрузку по всей длине ленты. Предотвращает проседание и изменение формы постройки вследствие действия сил выпучивания почвы. Основные нагрузки сконцентрированы на углах. Является самым популярным видом среди других фундаментов при строительстве частных домов, так как имеет лучшее соотношение стоимости и необходимых характеристик.
Существует несколько видов ленточных фундаментов, такие как монолитный и сборный, мелкозагубленный и глубокозагубленный. Выбор зависит от характеристик почвы, предполагаемой нагрузки и других параметров, которые необходимо рассматривать в каждом случае индивидуально. Подходит практически для всех типов построек и может применяться при устройстве цокольных этажей и подвалов.
Проектирование фундамента необходимо осуществлять особенно тщательно, так как в случает его деформации, это отразится на всей постройке, а исправление ошибок является очень сложной и дорогостоящей процедурой.
При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация .
Далее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой справа.
Общие сведения по результатам расчетов.
- Общая длина ленты — Периметр фундамента.
- Площадь подошвы ленты -Площадь опоры фундамента на почву. Соответствует размерам необходимой гидроизоляции.
- Площадь внешней боковой поверхности — Соответствует площади необходимого утеплителя для внешней стороны фундамента.
- Объем бетона — Объем бетона, необходимого для заливки всего фундамента с заданными параметрами. Так как объем заказанного бетона может незначительно отличаться от фактического, а так же вследствие уплотнения при заливке, заказывать необходимо с 10% запасом.
- Вес бетона — Указан примерный вес бетона по средней плотности.
- Нагрузка на почву от фундамента — Распределенная нагрузка на всю площадь опоры.
- Минимальный диаметр продольных стержней арматуры — Минимальный диаметр по СП 52-101-2003, с учетом относительного содержания арматуры от площади сечения ленты.
- Минимальное кол-во рядов арматуры в верхнем и нижнем поясах — Минимальное количество рядов продольных стержней в каждом поясе, для предотвращения деформации ленты под действием сил сжатия и растяжения.
- Минимальный диаметр поперечных стержней арматуры (хомутов) — Минимальный диаметр поперечных и вертикальных стержней арматуры (хомутов) по СП 52-101-2003.
- Шаг поперечных стержней арматуры (хомутов) — Шаг хомутов, необходимых для предотвращения сдвигов арматурного каркаса при заливке бетона.
- Величина нахлеста арматуры — При креплении отрезков стержней внахлест.
- Общая длина арматуры — Длина всей арматуры для вязки каркаса с учетом нахлеста.
- Общий вес арматуры — Вес арматурного каркаса.
- Толщина доски опалубки — Расчетная толщина досок опалубки в соответствии с ГОСТ Р 52086-2003, для заданных параметров фундамента и при заданном шаге опор.
- Кол-во досок для опалубки — Количество материала для опалубки заданного размера.
Рекомендация: Это всего лишь обзорная статья, из нее узнаете о том как сделать расчет материала на фундамент. Вы конечно сможете сделать примерный расчет, но он будет очень далек от истины как небо и земля. Зачем вам это нужно? Не проще ли, и не разумнее ли, обратиться к профессионалам. Пусть они сделают свою работу.
Расчет бетона на ленточный фундамент: формулы, онлайн-калькулятор, примеры
Монолитный фундамент под забор, загородный дом или хозпостройку наиболее надежен, но обходится недешево. Именно поэтому здесь так важен грамотный расчет, который позволит найти баланс между достаточной прочностью и оптимальной стоимостью. Его можно выполнить самостоятельно, доверить профессиональным проектировщикам или использовать для этого онлайн-калькуляторы.
Оглавление:
- Как сделать ленту необходимого размера?
- Определение количества бетона
- Пример расчета
На что влияют вычисления?
Расчет фундамента решает целый ряд задач, главная из которых – вычисление требуемой несущей способности основы. Но чтобы сделать ленту нужного размера, придется также определить и количество стройматериалов:
1. Бетон для фундамента – его объем соответствует геометрическим параметрам основания. Но компоненты смеси для получения монолита требуемой прочности (если вы планируете готовить ее самостоятельно) лучше рассчитать на калькуляторе. Здесь можно будет подобрать оптимальную марку цемента и тип заполнителей.
2. Арматура – длина, диаметр и количество стальных стержней определяются размерами самой ленты. Каркас собирается из 4 продольных прутков, размещаемых попарно вверху и внизу в 5 см от поверхности монолита, и поперечных связей. СНиП рекомендует принимать шаг хомутов равным 23-25 диаметрам арматуры.
3. Опалубка – некоторые онлайн-калькуляторы позволяют подсчитать даже количество и размеры досок для сборки щитов под ленточный фундамент разных габаритов и конфигураций.
Но даже если вы приобретаете бетон с доставкой на ближайшем РБУ, нужно точно знать, какой его объем вам необходим. Платить-то предстоит и за количество ходок автотранспорта. А если для заливки не хватит привезенного раствора, потребуется в спешном порядке заказывать еще одну машину с отдельной оплатой за доставку. Впрочем, делать избыточный запас тоже не следует, ведь доставленную смесь придется все равно куда-то выливать. Обычно ее берут на 10% больше, чем получилось на бумаге.
Расчет количества бетонной смеси
Ленточный фундамент в первую очередь подбирается по площади, на которую передается нагрузка на грунт от постройки. Разные виды почвы способны воспринимать определенное давление, поэтому для начала нужно хотя бы знать, чем они представлены на вашем участке. За точку отсчета берут допустимую нагрузку на м2, умноженную на 1,2 – коэффициент запаса прочности на случай изменения условий эксплуатации фундамента.
Теперь, зная вес и размеры будущей постройки, можно простым делением вычислить ширину ленты. Как правило, она получается около 0,4 м, но монолит всегда должен быть толще несущих стен на 10-15 см. Высота фундамента – это сумма его заглубленной части, опирающейся на плотные слои почвы ниже точки замерзания, и цоколя. Последний обычно делают размером 0,4-0,5 м, но особо строгих требований здесь нет.
Расчет количества бетона для заливки монолитной ленты зависит от уже определенных ее габаритов и схемы основания. Оно может просто проходить по периметру под несущими стенами здания, иметь перемычки, обеспечивающие опору внутренним перегородкам, или вытягиваться в одну линию, как в случае с тяжелым кирпичным забором. Иногда под самонесущие конструкции, не передающие больших нагрузок, монолитный фундамент делают менее мощным, чтобы сэкономить на материалах. Тогда расчет соответствующей части основы выполняют отдельно.
Также в строительстве на слабых грунтах нередко используют ленточный фундамент Т-образного сечения вместо обычного прямоугольного. В любом случае здесь нужно только одно – подсчитать его кубатуру. Для этого применяют простейшую формулу: V = S·L, где: S – площадь монолитной ленты в разрезе, выраженная в м2, L – ее общая длина в метрах.
Параллельно с этим уже можно определить количество основных компонентов смеси для получения бетона нужной прочности. Для этого существуют стандартные таблицы с массовым и объемным соотношением цемента конкретной марки, песка, гравия и воды для затворения. Мы же приводим готовые цифры для 1 м3 бетона разной крепости.
Класс/марка бетона | В15 М200 | В22,5 М300 | В30 М400 | ||||
Цемент | марка | М300 | М400 | М400 | М500 | М400 | М500 |
кг | 354 | 276 | 364 | 295 | 448 | 341 | |
л | 273 | 213 | 280 | 227 | 345 | 263 | |
Щебень | фракция, мм | 20 | 40 | 20 | 40 | 20 | 40 |
кг | 1207 | 1190 | 1207 | 1207 | 1207 | 1224 | |
л | 816 | 804 | 816 | 816 | 816 | 828 | |
Песок | фракция, мм | 2-2,5 | >2,5 | 2-2,5 | 2-2,5 | 2-2,5 | 1,1-1,8 |
кг | 530 | 648 | 522 | 615 | 450 | 584 | |
л | 353 | 432 | 348 | 410 | 300 | 390 | |
ВЦ соотношение | — | 0,62 | 0,75 | 0,60 | 0,70 | 0,49 | 0,58 |
Вода | л | 220 | 207 | 220 | 207 | 220 | 197 |
Плотность раствора | кг/м3 | 2311 | 2321 | 2313 | 2323 | 2325 | 2346 |
В таблице расчет бетона на ленточный тип фундамента марки М200 приведен с учетом заполнителей рядового качества, для раствора от М300 и более – высокого. Для других типов цемента и гравия можно выполнить аналогичные вычисления все в тех же онлайн-калькуляторах. Готовые цифры останется только перемножить на кубатуру ленты – этого достаточно, чтобы определить количество стройматериалов и их суммарную стоимость.
Также вам предстоит подсчитать объем песка и щебня для подушки под ленточный фундамент. Здесь достаточно знать ширину траншеи, выкопанной с учетом толщины опалубки для бетона, и высоту отсыпки. Для легких одноэтажных построек или заборов можно заложить по 10 см песчаного и гравийного слоя. Под тяжелый дом подушка понадобится толще – до 60 см.
Последний этап – подбор арматуры и расчет ее суммарной длины с учетом нахлестов и схемы увязки, а также количества хомутов. Здесь проще воспользоваться функциональными онлайн-калькуляторами, которые одновременно определяют эти величины для выбранного фундамента. Полученным данным вполне можно доверять, поскольку они формируются в соответствии с основными требованиями СНиП.
Пример расчета
Возьмем простой ленточный фундамент для забора длиной 10 м. В каждом отдельном случае нужно учитывать вес ограждения, который зависит от выбранного материала строительства и высоты пролетов. Наша конструкция возводится из керамики, скажем, толщиной в полтора кирпича (38 см). На квадратный метр кладки без учета швов потребуется 189 блоков. На самом деле 153, но для упрощения расчета нагрузок строители принимают подобные допущения, поскольку вес у раствора и керамики примерно одинаковый.
Масса красного кирпича – 3,5 кг (мы выбрали одинарный полнотелый)? отсюда уже можно вывести основные нагрузки:
- Вес 1 м2 кладки: 189х3,5 = 662 кг.
- 1 п.м пролета высотой 2 м: 662х2 = 1324 кг.
- Давление на ленточный фундамент: 1324÷3800 = 0,34 кГс/см2.
Но несмотря на незначительную нагрузку, строители рекомендуют использовать для заборов бетон марки М200. Дальше выбираем габариты фундамента. В нашем случае подойдет мелкозаглубленная, но широкая лента, например, 50х20 см. Для более легких конструкций с хорошей парусностью (из профнастила или шифера) ее лучше сделать узкой и глубоко зарытой в грунт.
Все исходные данные есть, можно выполнять расчет:
- Площадь монолитной ленты в разрезе: 0,2х0,5 = 0,1 м2.
- Объем заливки: 0,1х10 = 1 м3.
Выбираем данные для бетона М200 из приведенной выше таблицы или используем упрощенную пропорцию для компонентов раствора: на 1 часть ПЦ М400 понадобится 2,5 ч щебня фракции 5-20 мм и 4,2 ч песка.
Расчет бетона на ленточный фундамент: онлайн калькулятор
Любая стройка начинается с заложения основания, воспринимающего нагрузку, которую оказывает на него дом или забор. Самым популярным является ленточный фундамент, в состав которого входит бетон и армирующие элементы. Железобетонную ленту закладывают под тяжелые сооружения с массивными перекрытиями. Точный предварительный расчет количества смеси позволяет залить фундамент за один прием, избежать необходимости докупать бетон и тратить деньги на его доставку.
Оглавление:
- Технология расчета для дома
- Фундамент для забора
- Онлайн калькулятор
Факторы, влияющие на расчет бетона на ленточный тип фундамента
Количество бетонной смеси напрямую зависит от линейных размеров основания сооружения. Суммарная длина ленты определяется по проекту: бетон обязательно заливают под наружные стены и несущие простенки. Высота вертикальных граней ленты подбирается с учетом рельефа участка, уровня залегания подпочвенных вод, плотности и пучинистых свойств грунта, а также уровня его промерзания.
Сечение ленты, а затем и ее ширину рассчитывают исходя из характеристик грунта и общей нагрузки на фундамент. Последний параметр определяют как сумму веса сооружения с отделкой, массы жильцов дома, снеговой нагрузки. Расчет площади подошвы выполняют путем деления суммарной нагрузки на табличное значение сопротивления грунта. В формулу включают коэффициент условий работы фундамента – он зависит от сочетания типа грунта и жесткости конструкции.
Полученную опорную площадь умножают на коэффициент надежности. В среднем он составляет 1,2 и соответствует 20%-ному запасу, обеспечивающему снижение давления на основание. Разделив площадь горизонтального сечения ленты на ее высоту, получают искомую величину – ширину ленточного фундамента.
Как самому рассчитать бетон для фундамента
Определить кубатуру смеси можно самостоятельно, применяя простейшие формулы. Для этого нужно знать ширину ленточного фундамента, его высоту и общую длину. Длина ленты определяется как сумма периметра и несущих простенков. Высота складывается из надземной части и глубины заложения, ширину берут из предварительного расчета несущей способности фундамента.
Условно примем ширину равной 0,3 м, высоту – 1,6 м, длину – 40 м. Бетон рассчитывают как объем параллелепипеда:
V = 0,3 х 1,6 х 40 = 19,2 м3.
Чтобы упростить расчет количества бетона и избежать при этом ошибок, можно использовать программу-калькулятор. Для этого готовят стандартные исходные данные:
- схему ленточного основания;
- длину и ширину дома;
- ширину и высоту ленты.
В программе указано, в каких единицах следует выражать линейные параметры. Обычно калькулятор позволяет рассчитать не только бетон: параллельно выполняется расчет профиля, длины и общего веса арматуры, размеров опалубки, объема теплоизоляционных материалов
В качестве примера предлагается определить количество расходных материалов, необходимых для того чтобы заложить основание под дачный однокомнатный домик. В калькулятор вводят параметры из таблицы 1.
Таблица 1
Схема | Квадрат |
Бетон, марка | М200 |
Ширина фундамента | 6 м |
Длина | 6 м |
Высота ленты | 70 см |
Ширина ленты | 40 см |
После введения данных выбирают опции – например, расчет арматуры или опалубки. Есть программы, в которых арматура рассчитывается по умолчанию, на основании размерных параметров и в соответствии со строительными нормами СНиП 52-01-2003.
В результате вычислений калькулятор выдает сформированные в виде таблицы результаты.
Таблица 2
Наименование параметра | Значение параметра | Единица измерения | Примечание |
Суммарная длина ленточного основания | 22,4 | м | Расчет выполнен по осевой линии ленты. |
Площадь подошвы | 8,96 | м2 | Площадь поверхности, на которую опирается фундамент. По ней определяют размеры гидроизоляции. |
Площадь наружной боковой поверхности ленты | 16,8 | м2 | Она равна площади утеплителя, которым фундамент закрывают с наружной стороны. |
Чистый объем бетонной смеси | 6,3 | м3 | Из-за усадки бетон следует заказать с 10-15%-ным запасом. |
Масса раствора | 14,74 | т | Это приблизительная масса с учетом средней плотности раствора марки М200 |
Давление, которое оказывает фундамент на почву | 0,165 | Кгс/см2 | Распределенная нагрузка на единицу площади опоры |
Если выбрана дополнительная опция расчета арматуры, то калькулятор выкладывает следующую информацию: минимальный диаметр продольных арматурных прутьев, число рядов арматуры в каждом поясе, наименьший диаметр поперечных хомутов, шаг арматуры, ее общую длину и вес.
Расчет опалубки предусматривает вычисление кубатуры пиломатериалов, необходимых для создания формы, в которую будет залит бетон. Толщина досок определяется на основании ГОСТ Р 52086-2003, размеры досок и их количество рассчитываются в зависимости от того, насколько велик фундамент.
Расчет объема раствора под ленточный фундамент для ограждения
Этот тип основания используют, чтобы установить забор практически из любого материала. В качестве него используется бетон, кирпич, металл, дерево. Чтобы получить основание высокого качества, учитывают плотность грунта, глубину его промерзания, уровень расположения грунтовых вод. Так как забор считается легким сооружением, в его основание обычно заливают «тощий» бетон марки марки 150. При условии легкого или скального грунта пригодна бетонная смесь марки 100 с невысоким содержанием цемента. На участках со сложным рельефом и рыхлым грунтом желательно использовать 200-й бетон.
Чтобы рассчитать объем смеси, нужно для начала выяснить габариты ленты. Ее длина соответствует протяженности забора, ширина чаще всего составляет 0,4 м. Средняя глубина ленточного фундамента для забора — 0,5 м. Она является оптимальной для деревянных и металлопрофильных ограждений. Для более массивных конструкций делают фундамент глубокого заложения, проходящий ниже уровня промерзания грунта (обычно разница составляет 30 см).
Пример расчета
Требуется изготовить основание под забор из армированных бетонных блоков общей длиной 25 м. Ограждение устанавливается на участке с пылеватым песчаным грунтом, промерзающим на глубину 1,5 м. Бетон для заливки ленты считают так:
Н = 25 х 0,4 х (1,6 + 0,3) = 19 м3.
Если смесь будет изготавливаться самостоятельно, следует помнить: фундамент будет прочным лишь при условии составления рецептуры бетона в соответствии со строительными нормами.
Калькулятор расчета материалов на фундамент дома
Фундамент является важнейшей частью любой постройки. Именно от того, насколько прочным и надежным является фундамент, зависит прочность и долговечность дома, построенного на нем. Поэтому особенно важно правильно рассчитать, какое количество материалов необходимо использовать для его заливки. Однако это не всегда легко получается даже у специалистов. Но сегодня узнать точное соотношение материалов легче, чем когда-либо – достаточно воспользоваться строительным калькулятором расхода материалов для фундамента.
В первом нашем калькуляторе вы можете рассчитать ленточный фундамент в режиме онлайн.
А здесь можете посчитать, какое количество материала вам потребуется для заливки более надежного и мощного плитного фундамента.
Вам придется лишь заполнить несколько граф, после чего узнаете, сколько нужно будет подготовить тонн щебня, цемента и песка, метров арматуры и досок для опалубки. Благодаря этому исключена вероятность создания некачественного фундамента, а также закупки слишком большого количества строительных материалов.
В первую очередь вам нужно указать периметр фундамента. Узнать его очень легко – достаточно использовать рулетку и провести простейшие вычисления. Кроме фундамента нужно также замерить ширину фундамента, высоту подземной и надземной части. Все эти измерения занимают минимум времени и усилий.
Последним этапом является указание марки бетона. На сегодняшний день при строительстве чаще всего используется бетон марки от М-100 до М-300. Чем больше показатель марки, тем более прочным, долговечным и морозостойким является бетон. Однако стоит учитывать, что для получения бетона высоких марок приходится использовать большее количество цемента и меньшее песка. То есть, стоимость строительных материалов стремительно увеличивается.
Поэтому, если вы хотите избежать лишних затрат при устройстве фундамента, будет полезно обратиться к специалистам и рассказать им о том, какой именно дом вы хотите построить. От выбранного материала и количества этажей дома зависит выбор подходящей марки бетона. Когда подходящая марка бетона выбрана, остается указать её в соответствующей графе.
Если при указании размеров будущего фундамента у вас получается дробное число, вводить его следует при использовании точки, а не запятой, для отделения целой части числа от дробной. В противном случае калькулятор не сможет распознать число и провести нужные расчеты.
Когда все данные введены, остается лишь нажать кнопку «Рассчитать» и получить точные данные.
Калькулятор
Расчет количества арматуры и бетона для монолитного ленточного фундамента
Варианты равнопрочной замены металлической на стеклопластиковую арматуру
Понятие равнопрочной замены представляет собой замену арматуры произведенной из стали, на арматуру из композитных материалов, которая имеет такую же прочность и схожие прочие физико-механические показатели. Под равнопрочным диаметром стеклопластиковой арматуры, будем понимать ее такой наружный диаметр, при котором прочность будет равна прочности аналога из металла заданного диаметра. Данные по замене приведены в таблице:
Металлическая арматура класса A-III (A400C)Ø | Арматура композитная полимерная стеклопластиковая (АКС)Ø |
---|---|
6 | 4 |
8 | 5,5 |
10 | 6 |
12 | 8 |
14 | 10 |
16 | 12 |
18 | 14 |
20 | 16 |
Расчет количества арматуры и бетона для монолитного плитного фундамента (плиты, УШП)
Варианты равнопрочной замены металлической на стеклопластиковую арматуру
Понятие равнопрочной замены представляет собой замену арматуры произведенной из стали, на арматуру из композитных материалов, которая имеет такую же прочность и схожие прочие физико-механические показатели. Под равнопрочным диаметром стеклопластиковой арматуры, будем понимать ее такой наружный диаметр, при котором прочность будет равна прочности аналога из металла заданного диаметра. Данные по замене приведены в таблице:
Металлическая арматура класса A-III (A400C) Ø | Арматура композитная полимерная стеклопластиковая (АКС) Ø |
---|---|
6 | 4 |
8 | 5,5 |
10 | 6 |
12 | 8 |
14 | 10 |
16 | 12 |
18 | 14 |
20 | 16 |
Расчет количества арматуры и бетона для буронабивных, свайно-ростверковых и столбчатых фундаментов
Варианты равнопрочной замены металлической на стеклопластиковую арматуру
Понятие равнопрочной замены представляет собой замену арматуры произведенной из стали, на арматуру из композитных материалов, которая имеет такую же прочность и схожие прочие физико-механические показатели. Под равнопрочным диаметром стеклопластиковой арматуры, будем понимать ее такой наружный диаметр, при котором прочность будет равна прочности аналога из металла заданного диаметра. Данные по замене приведены в таблице:
Металлическая арматура класса A-III (A400C)Ø | Арматура композитная полимерная стеклопластиковая (АКС) Ø |
---|---|
6 | 4 |
8 | 5,5 |
10 | 6 |
12 | 8 |
14 | 10 |
16 | 12 |
18 | 14 |
20 | 16 |
Онлайн калькулятор расчета размеров, арматуры и количества бетона монолитного ленточного фундамента
Вычисление объемов количества бетона ленточного монолитного фундамента и арматуры на онлайн счетчике
Рекомендации по использованию калькулятора — счетчика
С помощью счетчика, возможно, определить масштабы опалубки, диаметр, число арматурной проволоки, установить нужный объем и размер бетона.
Проектировку основания дома нужно проводить с особенной тщательностью и определять тип фундамента с квалифицированной помощью специалистов. Если случится деформирование, то это отразится на всем строительном сооружении. Чтобы исправить ошибки придется затратить очень много средств, так как это трудоемкая операция.
При составлении расчетов можно воспользоваться формой с правой стороны для консультации.
Достоинство ленточного фундамента – это его экономность не очень большие затраты на материалы, а также простота и быстрота в его установке. Ленточный фундамент предотвращает опускание и трансформацию сооружения, которое происходит вследствие пучения земли (например, во время заморозков). И представляет собой единый замкнутый прочный профиль из железобетона, который проходит под всеми неотъемлемыми несущими стенами здания, распределяя равномерно нагрузку. По видам он может быть мелкозаглубленный и глубокозаглубленный, монолитный и сборной. Эта форма строительного фундамента обладает всеми нужными рабочими характеристиками и является наиболее популярной из числа остальных, которые используются для возведения частных домов и маленьких построек, а также имеет доступную стоимость.
Имеется значительный нюанс – межкомнатные перегородки не во всех вариантах являются строительными конструкциями несущего вида, вследствие этого под них кладется наиболее легкий фундаментный пласт.
Важным аспектом является верный и безошибочный подсчет перед началом работ.
Общая длина фундаментной ленты – это периметр фундамента, который нужно рассчитывать для того чтобы установить нагрузку на него.
Площадь нижней боковой поверхности – параметр, который соответствует площади битумного утеплителя необходимого для наружной стороны основания дома. Следует учитывать, что наиболее крупные перегрузки будут приходиться на его боковые стены, так как на них станут налегать перекрытия с лагами кровли.
Важно знать! Высота ленточного фундамента всегда должна превышать ширину в два раза.
Площадь подошвы ленты – это площадь всей опоры фундамента на землю. Этот показатель соответствует объемам необходимой гидроизоляции, которая нужна для того, чтобы накрыть готовую конструкцию. А также зная площадь, которую должен занимать фундамент можно подобрать наиболее подходящую основу и определить номинальную площадь.
Объем бетона – параметр необходимо рассчитывать для того чтобы избежать грубых ошибок, так как при заказе бетона его количество может значительно разниться с фактическим.
Важно знать, что при заказе бетона нужно делать запас, который составляет приблизительно 10%.
Вес тяжелого бетона – при расчете калькулятором, вес указывается примерный по средней плотности, от него будут зависеть тип перекрытий дома, а так же другие показатели.
Минимальное допустимое количество рядов стержней рабочей арматуры в верхнем и нижнем поясах заливки – рассчитывается для исключения искривления и сдвига конструкции.
Минимальный допустимый диаметр (Ø) продольных стержней арматуры – показатель рассчитывается с учетом норм СНиП (должны составлять не менее 0,1%) на основании соотношения содержания арматуры к площади разреза ленты . От этого показателя зависит схема армирования.
Минимальный допустимый диаметр(Ø) поперечных стержней стальной арматуры (хомутов) – считается в зависимости от характеристик фундамента и материалов построения, согласно СНиП.
Нагрузка на задействованную почву от фундамента – это распределенная вертикальная нагрузка на всю поверхность опоры и при ее нахождении следует учитывать показатели грунта и свойства материалов.
Величина нахлеста (накид) рабочей арматуры при вязке – этот размер учитывается при определении общей длины.
Важно! При расчетах не нужно забывать о вероятных обрезках и нахлестках, вследствие этого рекомендуется добавлять примерно 10% к полученному значению.
Общая длина арматуры – протяженность рассчитывается с учетом способа армирования
фундамента, длинны стержней, нахлеста, количества стен и прочих показателей.
Важно! Длина арматуры рассчитывается, отталкиваясь из того, что кладутся 4 прутка (по 2 внизу и 2 сверху). Убавлять их количество до 2-3 штук категорически запрещается.
Общий вес рабочей арматуры – масса каркаса, этот показатель понадобится для того чтобы узнать стоимость материала и его доставки.
Шах установки поперечных стержней стальной арматуры (хомутов) – значение необходимо чтобы исключить при заливке скосы и сдвиги,а также для дальнейшего планирования и определения количества стальной арматуры.
Толщина деревянной доски для опалубки рассчитывается для того чтобы доски гарантированно вынесли нагрузку от бетонного раствора, не разрушались и не изгибались, а также данная величина влияет на стоимость закупленного материала.
Количество досок для опалубки — это вычисление количества материала для опалубки заданного объема, который формируется с учетом всех характеристик.
Расчетные модули> Фундаменты> Стеновая опора
Нужно больше? Задайте нам вопрос
Этот модуль обеспечивает анализ единичной полосы непрерывного стенового фундамента с приложенными осевыми, моментными и поперечными нагрузками. Также можно указать перекрывающие нагрузки, которые будут применяться к площади основания (за исключением области, покрытой стеной). Модуль также обеспечивает автоматический расчет допустимого увеличения давления на грунт в зависимости от ширины основания и / или глубины под поверхностью.
Модуль проверяет давление на грунт рабочей нагрузки, устойчивость при опрокидывании, устойчивость при скольжении, устойчивость при подъеме, изгиб опоры и односторонний сдвиг опоры.
Общий
На этой вкладке собраны значения свойств материала, коэффициенты снижения прочности и другие параметры, влияющие на конструкцию.
f’c
Прочность бетона на сжатие в течение 28 суток.
fy
Предел текучести арматуры.
Ec
Модуль упругости бетона.
Плотность бетона
Плотность бетона используется для расчета собственного веса основания, когда выбран этот параметр.
Значения Phi
Введите значения уменьшения емкости, которые будут применяться к Vn и Mn.
Включите вес опоры как постоянную нагрузку
Щелкните [Да], чтобы модуль рассчитал вес основания и применил его как нагрузку, направленную вниз.Собственная масса основания будет умножена на коэффициент статической нагрузки в каждой комбинации нагрузок.
Мин. Соотношение стали — Температура / Усадка Reinf.
Введите минимальное соотношение температуры / усадки стали, рассчитанное с использованием толщины основания. Это вызовет предупреждающее сообщение, если секция недостаточно усилена.
Минимальный коэффициент безопасности при опрокидывании
Введите минимально допустимое отношение момента сопротивления к моменту опрокидывания.Если фактическое передаточное число меньше указанного минимального передаточного числа, появится сообщение о том, что устойчивость при опрокидывании не удовлетворена.
Минимальный запас прочности при скольжении
Введите минимально допустимое отношение силы сопротивления к силе скольжения. Если фактическое передаточное число меньше указанного минимального передаточного числа, будет выдано сообщение о том, что устойчивость скольжения не удовлетворена.
Допустимые значения почвы
Допустимое давление на грунт
Введите допустимое давление на грунт.Это сопротивление рабочей нагрузке, которое будет сравниваться с расчетным давлением грунта при рабочей нагрузке (нагрузки не учитываются при расчете прочности).
Увеличить подшипник за счет веса опоры
Нажмите [Да], чтобы модуль рассчитал вес одного квадратного фута (вид сверху) основания и прибавил его к допустимому значению несущей способности почвы. Это позволяет избежать ущерба грунту из-за собственного веса основания и полезно в ситуациях, когда в инженерно-геологическом отчете указаны допустимые значения чистого давления в опоре.
Пассивное сопротивление скольжению грунта
Введите значение пассивного давления грунта на сопротивление скольжению. Это значение будет использоваться для определения компонента сопротивления скольжению, создаваемого пассивным давлением почвы. Затем сопротивление скольжению из-за пассивного давления добавляется к сопротивлению скольжению из-за трения, чтобы определить общее сопротивление скольжению для каждой комбинации нагрузок.
Коэффициент трения грунт / бетон
Введите коэффициент трения между почвой и основанием, который будет использоваться при расчетах сопротивления скольжению.
Увеличение подшипников почвы
В этом разделе можно указать некоторые размеры, превышение которых автоматически увеличит допустимое давление на грунт.
Глубина основания основания под поверхностью почвы: Расстояние от низа основания до верха почвы. Это значение используется для определения допустимого увеличения давления на грунт и пассивного сопротивления скольжению грунта, но НЕ используется в других расчетах в этом модуле.
Увеличивается в зависимости от глубины основания: Предоставляет метод автоматического увеличения базового допустимого давления на грунт на основе глубины основания ниже некоторой контрольной глубины. Собирает следующие параметры:
Допустимое увеличение давления на фут: Определяет величину, на которую может быть увеличено базовое допустимое давление на грунт на каждый фут глубины ниже некоторой контрольной глубины.
Когда основание опоры ниже: Определяет необходимую глубину, чтобы начать реализацию постепенного увеличения допустимого давления на грунт на основе глубины опоры.
Пример: Предположим следующее: Базовое допустимое давление на грунт = 3 тыс. Фунтов силы. Печная базы является 6′-0″ ниже поверхности почвы. Геотехническим отчет указует, что увеличение 0,15 КСБА давления подшипника допускается для каждой ноги глубины, когда основание глубже, чем 4′ ниже верхней части почвы. Так как вы указали, что опора находится на 6 футов ниже поверхности почвы, модуль автоматически рассчитает скорректированное допустимое давление на грунт, равное 3 тыс.футов + (6 ‘- 4’) * 0,15 тыс.футов = 3.30 тыс. Фунтов
Увеличение в зависимости от ширины основания: Предоставляет метод автоматического увеличения базового допустимого давления на грунт на основе ширины основания, превышающей некоторый контрольный размер. Собирает следующие параметры:
Допустимое увеличение давления на фут: Определяет величину, на которую может быть увеличено базовое допустимое давление на грунт для каждого фута шириной, превышающей некоторый контрольный размер.
Когда максимальная длина или ширина больше чем: Определяет требуемый размер, чтобы начать реализацию постепенного увеличения допустимого давления на грунт на основе ширины опоры.
Пример: Предположим следующее: Базовое допустимое давление на грунт = 3 тыс. Фунтов силы. Ширина опоры составляет 6 футов 0 дюймов. В геотехническом отчете указывается, что увеличение давления почвы на грунт на 0,15 тыс. Футов за фут для каждой ступни допускается, если ширина основания превышает 4 фута-0 дюймов. Модуль автоматически рассчитает скорректированное допустимое давление на грунт, равное 3 тыс. Фунтов / футов + (6 ‘- 4’) * 0,15 тыс. Фунтов стерлингов = 3,3 тыс. Фунтов стерлингов.
Примечание. Увеличение в зависимости от глубины и ширины основания является накопительным.
Размер опоры и арматура
Вкладка «Размеры»
Ширина основания: Определите ширину основания.
Ширина стены: определение ширины поддерживаемой стены.
Смещение центра стены от осевой линии фундамента: задайте размер между осевой линией стены и осевой линией фундамента. Положительные смещения сдвигают стену к правому краю основания.
Толщина основания: Определите толщину основания.
Автоматический расчет размера и толщины опор: Обеспечивает автоматическую процедуру увеличения размеров опор до тех пор, пока давление почвы не будет удовлетворено и односторонний сдвиг не станет приемлемым.
Примечание. Любые приложенные перекрывающие нагрузки не учитываются в области, занимаемой стеной.
Усиливающий язычок
Размер арматурного стержня: укажите размер арматурного стержня, который следует учитывать для стержней, идущих параллельно ширине фундамента.
Шаг арматурных стержней: предоставляет возможность указать явное значение для шага арматурных стержней или указать количество стержней на длине 12 дюймов.
Арматурный стержень от центра до бетонной кромки @ снизу: укажите прозрачную крышку плюс 1/2 диаметра арматурного стержня.
Прикладные нагрузки
Вкладка «Вертикальные нагрузки»
Предоставляет поля ввода для вертикальных нагрузок и давления покрывающих пород. Вертикальные нагрузки указаны в тысячах фунтов на фут, и считается, что они действуют в центре ширины стены.Перекрывающие нагрузки указаны в тысячах фунтов на квадратный фут, и считается, что они действуют на верхнюю поверхность основания, за исключением площади, занимаемой стеной.
Вкладка Moments & Shears
Предоставляет поля ввода для моментов и сдвигов. Моменты указаны в тысячах футов на фут. Ножницы указываются в тысячах фунтов на фут, и считается, что они действуют на высоте, указанной в поле «Приложение сдвига над верхней частью основания».Ножницы создают момент, равный силе сдвига, умноженной на расстояние от нижней части основания до места приложения силы сдвига.
Сочетания нагрузок
Вкладка «Комбинации нагрузок» используется для определения комбинаций нагрузок, которые будут использоваться в расчете. Вкладка «Комбинации нагрузок LRFD» управляет комбинациями, которые используются для проверки конструкции железобетона. Вкладка «Комбинации давления почвы» управляет комбинациями, которые используются для оценки несущего давления почвы.Коэффициент увеличения грунта может применяться к сочетанию нагрузок на основе сочетания нагрузок, как это разрешено инженерно-геологическим отчетом. Вкладка «Комбинации устойчивости» управляет комбинациями нагрузок, которые используются для проверки работоспособности при опрокидывании, скольжении и подъеме.
Эти вкладки позволяют пользователю выбирать из наборов комбинаций нагрузок, которые поставляются с программой, или выбирать из пользовательских наборов комбинаций нагрузок, которые были созданы и сохранены на машине пользователя.Также можно разблокировать выбранный набор комбинаций нагрузок и внести изменения в факторы непосредственно в этом представлении.
Пользователь может контролировать, какие комбинации запускать, а какие игнорировать. Наконец, эти вкладки позволяют пользователю указать, должна ли программа рассматривать алгебраический знак указанных коэффициентов нагрузки при ветровых и сейсмических нагрузках как обратимые или нет. Это может быть удобным способом убедиться, что эти нагрузки исследуются как действующие как в положительном, так и в отрицательном направлении, если это предусмотрено конструкцией.Однако обратите внимание, что если этот параметр выбран, изменение алгебраического знака будет применяться ко ВСЕМ ветровым нагрузкам и / или ВСЕМ сейсмическим нагрузкам, включая горизонтальные И вертикальные нагрузки.
Расчеты
Вкладка результатов
На этой вкладке суммируются контрольные значения (наивысший коэффициент использования) для каждого проектного соображения из всех комбинаций нагрузок, которые были запущены. Для комбинации управляющих нагрузок он представляет Приложенную нагрузку, Допустимую или доступную сопротивляющуюся нагрузку, отношение приложенной нагрузки к мощности и управляющую комбинацию нагрузок, которая обеспечивает это регулирующее отношение.
Вкладка «Давление на грунт»
Для каждой комбинации служебной нагрузки на этой вкладке представлена общая вертикальная нагрузка, результирующий эксцентриситет, давление почвы на левом и правом концах основания, допустимое давление почвы и отношение фактического давления почвы к допустимому.
Вкладка устойчивости при опрокидывании и скольжении
Для каждой комбинации служебной нагрузки на этой вкладке представлены опрокидывающий момент, момент сопротивления и отношение момента сопротивления к моменту опрокидывания относительно левого и правого краев основания.
Он также сообщает о силе скольжения, силе сопротивления и отношении силы сопротивления к силе скольжения.
Упор для изгиба опоры
На этой вкладке представлены результаты расчета изгиба на основе сочетания нагрузок.
Упор для опоры на ножки
На этой вкладке представлены результаты расчета на сдвиг для сочетания нагрузок на основе сочетания нагрузок.
Вкладка 3D
На этой вкладке представлена трехмерная визуализация фундамента:
Вкладка 2D
На этой вкладке представлены виды фундамента в плане и в разрезе:
Проектирование ленточных опор — Руководство по конструкции
Подушечки, комбинированные опоры, ленточные опоры, перевернутые опоры Т-образного типа, ременные опоры и т. Д.чаще используются в качестве фундаментов мелкого заложения. В зависимости от состояния грунта для возведения конструкций используются разные типы фундаментов мелкого заложения.
Ленточные опоры используются при плохих грунтовых условиях в соответствии с рекомендациями инженеров-геотехников.
При установке ленточного фундамента значительно увеличивается несущая поверхность фундамента.
Следовательно, на грунтах с низкой несущей способностью можно использовать эти типы фундаментов.
Есть два метода, которые можно использовать для анализа ленточных фундаментов.
- Жесткий метод анализа
- Гибкий метод анализа
Предполагается, что давление опоры под опорой является постоянным по всей длине и по всей длине опоры.
Площадь опоры = (Общая нагрузка на колонну) / (Допустимое давление на опору)
Приведенное выше уравнение чаще используется для определения площади опоры.
Поскольку нам известны нагрузки на колонну и давление на опору, изгибающие и поперечные силы могут быть найдены с помощью простого анализа.Это можно сделать с помощью программного обеспечения, такого как SAP2000, SAFF, ETAB, или ручных расчетов.
Гибкий анализСчитается, что давление почвы под основанием изменяется по длине основания.
В реальных условиях давление меняется вдоль основания, создавая более высокое давление грунта под колоннами. Использование такого программного обеспечения, как SAP2000, SAFF, ETAB, — самый простой способ выполнить этот тип анализа, поскольку ручные вычисления более точны.
Однако площадь основания рассчитывается по приведенному выше уравнению, которое используется в жестком анализе для поддержания давления грунта под основанием в допустимых пределах.
Основными элементами этого анализа являются колонны, фундамент и грунт.
Нагрузка на колонну может быть добавлена как точечная нагрузка на фундамент, а фундамент можно смоделировать с помощью элементов оболочки, в то время как грунт моделируется с помощью пружинящих элементов. В вышеупомянутом программном обеспечении, определяя реакцию грунтового основания, мы можем моделировать почву как пружинные элементы.
Согласно книге Боуэла по основам, в большинстве случаев мы можем определить реакцию нижнего уровня по следующему уравнению.
Реакция земляного полотна = (SF) x 40 x (Допустимая несущая способность)
Здесь «SF» обозначает коэффициент безопасности, который учитывается при определении допустимой несущей способности.Обычно, когда значение этого коэффициента недоступно, предполагается значение в диапазоне 2–3.
Зная нагрузки на колонну, предполагаемую толщину основания и реакцию земляного полотна, можно найти изгибающие моменты и поперечные силы, необходимые для проектирования основания.
Расчет нагрузок при проектировании колонн и фундаментов | Структурный дизайн
Как рассчитать общие нагрузки на колонну и соответствующее основание?
Эта статья написана по просьбе моих читателей.Студенты-инженеры обычно путаются, когда дело доходит до расчета нагрузок для конструкции колонн и опор. Ручной процесс прост.
Виды нагрузок на колонну
- Собственный вес колонны x Количество этажей
- Собственная масса балок на погонный метр
- Нагрузка стен на погонный метр
- Общая нагрузка на плиту (статическая нагрузка + динамическая нагрузка + собственный вес)
Колонны также подвергаются действию изгибающих моментов, которые необходимо учитывать при окончательном проектировании.Лучший способ спроектировать хорошую конструкцию — использовать передовое программное обеспечение для проектирования конструкций, такое как ETABS или STAAD Pro. Эти инструменты намного опережают ручную методологию проектирования конструкций и настоятельно рекомендуются.
В профессиональной практике мы используем несколько основных допущений при расчетах нагрузок на конструкции.
Вы можете нанять меня для решения ваших задач по проектированию конструкций. Свяжитесь со мной.
Для колонн
Собственный вес бетона составляет около 2400 кг на кубический метр, что эквивалентно 240 кН.Собственный вес стали составляет около 8000 кг на кубический метр. Даже если предположить, что большая колонна размером 230 мм x 600 мм с 1% стали и стандартной высотой 3 метра, собственный вес колонны составляет около 1000 кг на пол, что эквивалентно 10 кН. Итак, в своих расчетах я предполагаю, что собственный вес колонны составляет от от 10 до 15 кН на пол.
Для балок
Расчеты, аналогичные вышеуказанным Я предполагаю, что каждый метр балки имеет размеры 230 мм x 450 мм, исключая толщину плиты.Таким образом, собственный вес может составлять около 2,5 кН на погонный метр.
Для стен
Плотность кирпича колеблется от 1500 до 2000 кг на кубический метр. Для стены толщиной 6 дюймов, высотой 3 метра и длиной 1 метр, мы можем рассчитать нагрузку на погонный метр, равную 0,150 x 1 x 3 x 2000 = 900 кг, что эквивалентно 9 кН / метр. С помощью этой методики можно рассчитать нагрузку на погонный метр для любого типа кирпича.
Для блоков из автоклавного газобетона, таких как Aerocon или Siporex, вес на кубический метр составляет от 550 до 700 кг на кубический метр.При использовании этих блоков для строительства нагрузка на стену на погонный метр может составлять всего 4 кН / метр , что может привести к значительному снижению стоимости строительства.
для плиты
Предположим, что плита имеет толщину 125 мм. Теперь каждый квадратный метр плиты будет иметь собственный вес 0,125 x 1 x 2400 = 300 кг, что эквивалентно 3 кН. Теперь предположим, что чистовая нагрузка составляет 1 кН на метр, а наложенная временная нагрузка — 2 кН на метр. Таким образом, мы можем рассчитать нагрузку на плиту примерно от 6 до 7 кН на квадратный метр.
Фактор безопасности
В конце, после расчета всей нагрузки на колонну, не забудьте добавить коэффициент запаса прочности. Для IS 456: 2000 коэффициент безопасности равен 1,5.
Вы можете использовать приложение RCC Column Design для расчета стали, необходимой для расчетной осевой нагрузки, используя этот метод. СвязанныеBentley — Документация по продукту
MicroStation
Справка MicroStation
Ознакомительные сведения о MicroStation
Справка MicroStation PowerDraft
Ознакомительные сведения о MicroStation PowerDraft
Краткое руководство по началу работы с MicroStation
Справка по синхронизатору iTwin
ProjectWise
Справка службы автоматизации Bentley
Ознакомительные сведения об услуге Bentley Automation
Сервер композиции Bentley i-model для PDF
Подключаемый модуль службы разметкиPDF для ProjectWise Explorer
Справка администратора ProjectWise
Справка службы загрузки данных ProjectWise Analytics
Коннектор ProjectWise для ArcGIS — Справка по расширению администратора
Коннектор ProjectWise для ArcGIS — Справка по расширению Explorer
Коннектор ProjectWise для ArcGIS Справка
Коннектор ProjectWise для Oracle — Справка по расширению администратора
Коннектор ProjectWise для Oracle — Справка по расширению Explorer
Коннектор ProjectWise для справки Oracle
Коннектор управления результатами ProjectWise для ProjectWise
Справка портала управления результатами ProjectWise
Ознакомительные сведения по управлению поставками ProjectWise
Справка ProjectWise Explorer
Справка по управлению полевыми данными ProjectWise
Справка администратора геопространственного управления ProjectWise
Справка ProjectWise Geospatial Management Explorer
Ознакомительные сведения об управлении геопространственными данными ProjectWise
Модуль интеграции ProjectWise для Revit Readme
Руководство по настройке управляемой конфигурации ProjectWise
Справка по ProjectWise Project Insights
ProjectWise Plug-in для Bentley Web Services Gateway Readme
ProjectWise ReadMe
Матрица поддержки версий ProjectWise
Веб-справка ProjectWise
Справка по ProjectWise Web View
Справка портала цепочки поставок
Услуги цифровых двойников активов
PlantSight AVEVA Diagrams Bridge Help
Справка по мосту PlantSight AVEVA PID
Справка по экстрактору мостов PlantSight E3D
Справка по PlantSight Enterprise
Справка по PlantSight Essentials
PlantSight Открыть 3D-модель Справка по мосту
Справка по PlantSight Smart 3D Bridge Extractor
Справка по PlantSight SPPID Bridge
Управление эффективностью активов
Справка по AssetWise 4D Analytics
AssetWise ALIM Web Help
Руководство по внедрению AssetWise ALIM в Интернете
AssetWise ALIM Web Краткое руководство, сравнительное руководство
Справка по AssetWise CONNECT Edition
AssetWise CONNECT Edition Руководство по внедрению
Справка по AssetWise Director
Руководство по внедрению AssetWise
Справка консоли управления системой AssetWise
Анализ моста
Справка по OpenBridge Designer
Справка по OpenBridge Modeler
Строительное проектирование
Справка проектировщика зданий AECOsim
Ознакомительные сведения AECOsim Building Designer
AECOsim Building Designer SDK Readme
Генеративные компоненты для справки проектировщика зданий
Ознакомительные сведения о компонентах генерации
Справка по OpenBuildings Designer
Ознакомительные сведения о конструкторе OpenBuildings
Руководство по настройке OpenBuildings Designer
OpenBuildings Designer SDK Readme
Справка по генеративным компонентам OpenBuildings
Ознакомительные сведения по генеративным компонентам OpenBuildings
Справка OpenBuildings Speedikon
Ознакомительные сведения OpenBuildings Speedikon
OpenBuildings StationDesigner Help
OpenBuildings StationDesigner Readme
Гражданское проектирование
Помощь в канализации и коммунальных услугах
Справка OpenRail ConceptStation
Ознакомительные сведения по OpenRail ConceptStation
Справка по OpenRail Designer
Ознакомительные сведения по OpenRail Designer
Справка по конструктору надземных линий OpenRail
Справка OpenRoads ConceptStation
Ознакомительные сведения по OpenRoads ConceptStation
Справка по OpenRoads Designer
Ознакомительные сведения по OpenRoads Designer
Справка по OpenSite Designer
Файл ReadMe OpenSite Designer
Инфраструктура связи
Справка по Bentley Coax
Bentley Communications PowerView Help
Ознакомительные сведения о Bentley Communications PowerView
Справка по Bentley Copper
Справка по Bentley Fiber
Bentley Inside Plant Help
Справка по OpenComms Designer
Ознакомительные сведения о конструкторе OpenComms
Справка OpenComms PowerView
Ознакомительные сведения OpenComms PowerView
Справка инженера OpenComms Workprint
OpenComms Workprint Engineer Readme
Строительство
ConstructSim Справка для руководителей
ConstructSim Исполнительное ReadMe
ConstructSim Справка издателя i-model
Справка по планировщику ConstructSim
ConstructSim Planner ReadMe
Справка стандартного шаблона ConstructSim
ConstructSim Work Package Server Client Руководство по установке
Справка по серверу рабочих пакетов ConstructSim
ConstructSim Work Package Server Руководство по установке
Справка управления SYNCHRO
SYNCHRO Pro Readme
Энергетическая инфраструктура
Справка конструктора Bentley OpenUtilities
Ознакомительные сведения о Bentley OpenUtilities Designer
Справка по подстанции Bentley
Ознакомительные сведения о подстанции Bentley
Справка подстанции OpenUtilities
Ознакомительные сведения о подстанции OpenUtilities
Promis.e Справка
Promis.e Readme
Руководство по установке Promis.e — управляемая конфигурация ProjectWise
Руководство по настройке подстанции— управляемая конфигурация ProjectWise
Геотехнический анализ
PLAXIS LE Readme
Ознакомительные сведения о PLAXIS 2D
Ознакомительные сведения о программе просмотра вывода PLAXIS 2D
Ознакомительные сведения о PLAXIS 3D
Ознакомительные сведения о программе просмотра 3D-вывода PLAXIS
PLAXIS Monopile Designer Readme
Управление геотехнической информацией
Справка администратора gINT
Справка gINT Civil Tools Pro
Справка gINT Civil Tools Pro Plus
Справка коллекционера gINT
Справка по OpenGround Cloud
Гидравлика и гидрология
Справка Bentley CivilStorm
Справка Bentley HAMMER
Справка Bentley SewerCAD
Справка Bentley SewerGEMS
Справка Bentley StormCAD
Справка Bentley WaterCAD
Справка Bentley WaterGEMS
Управление активами линейной инфраструктуры
Справка по услугам AssetWise ALIM Linear Referencing Services
Руководство администратора мобильной связи TMA
Справка TMA Mobile
Картография и геодезия
Справка карты OpenCities
Ознакомительные сведения о карте OpenCities
OpenCities Map Ultimate для Финляндии Справка
Справка по карте Bentley
Справка по мобильной публикации Bentley Map
Ознакомительные сведения о карте BentleyПроектирование шахты
Справка по транспортировке материалов MineCycle
Ознакомительные сведения по транспортировке материалов MineCycle
Моделирование мобильности и аналитика
Справка по подготовке САПР LEGION
Справка по построителю моделей LEGION
Справка API симулятора LEGION
Ознакомительные сведения об API симулятора LEGION
Справка по симулятору LEGION
Моделирование и визуализация
Bentley Посмотреть справку
Ознакомительные сведения о Bentley View
Анализ морских конструкций
SACS Close the Collaboration Gap (электронная книга)
Ознакомительные сведения о SACS
Анализ напряжений труб и сосудов
AutoPIPE Accelerated Pipe Design (электронная книга)
Советы новым пользователям AutoPIPE
Краткое руководство по AutoPIPE
AutoPIPE & STAAD.Pro
Завод Дизайн
Ознакомительные сведения об экспортере завода Bentley
Bentley Raceway and Cable Management Help
Bentley Raceway and Cable Management Readme
Bentley Raceway and Cable Management — Руководство по настройке управляемой конфигурации ProjectWise
Справка по OpenPlant Isometrics Manager
Ознакомительные сведения о диспетчере изометрических данных OpenPlant
Справка OpenPlant Modeler
Ознакомительные сведения для OpenPlant Modeler
Справка по OpenPlant Orthographics Manager
Ознакомительные сведения для менеджера орфографии OpenPlant
Справка OpenPlant PID
Ознакомительные сведения о PID OpenPlant
Справка администратора проекта OpenPlant
Ознакомительные сведения для администратора проекта OpenPlant
Техническая поддержка OpenPlant Support
Ознакомительные сведения о технической поддержке OpenPlant
Справка PlantWise
Ознакомительные сведения о PlantWise
Реализация проекта
Справка рабочего стола Bentley Navigator
Моделирование реальности
Справка консоли облачной обработки ContextCapture
Справка редактора ContextCapture
Файл ознакомительных сведений для редактора ContextCapture
Мобильная справка ContextCapture
Руководство пользователя ContextCapture
Справка Декарта
Ознакомительные сведения о Декарте
Структурный анализ
Справка по концепции RAM
Справка по структурной системе RAM
STAAD Close the Collaboration Gap (электронная книга)
STAAD.Pro Help
Ознакомительные сведения о STAAD.Pro
STAAD.Pro Physical Modeler
Расширенная справка по STAAD Foundation
Дополнительные сведения о STAAD Foundation
Детализация конструкций
Справка ProStructures
Ознакомительные сведения о ProStructures
ProStructures CONNECT Edition Руководство по внедрению конфигурации
ProStructures CONNECT Edition Руководство по установке — Управляемая конфигурация ProjectWise
Дизайн фундамента | Tekla Tedds
Фундамент — одна из самых важных частей конструкции и одна из самых дорогих.Несложные, конструктивные и экономичные фундаменты являются основой успешного проектирования конструкций как на простых, так и на сложных участках. Tedds повышает производительность и качество строительства и строительства, заменяя повторяющиеся трудоемкие ручные расчеты автоматизированными расчетами конструкции фундамента. Это делает проектирование фундамента более эффективным, так что вы можете надежно создавать простые, но безопасные конструкции, которые ускоряют строительство в земле.
Анализ и проектирование опор
Tedds поддерживает анализ и проектирование опор для Еврокода и США.Эти расчеты позволяют быстро проверить результаты анализа и проектирования или только анализа подушечного или ленточного фундамента из железобетона или простого бетона.
Анализ свай
Чтобы ускорить время проектирования фундамента, этот расчет анализа свай для Еврокода и США выполняет статический анализ стойкости одиночных свай, забитых или пробуренных, в пластах из нескольких геоматериалов. Стальные, бетонные или деревянные сваи можно анализировать на сжимающие и растягивающие осевые нагрузки и боковые нагрузки.Расчет боковой нагрузки предназначен только для коротких жестких свай.
Конструкция заглушки
Этот расчет свайных заглушек для Еврокода и США проверяет конструкцию заглушек свай, поддерживающих одну колонну до 9 свай. Колонна может подвергаться осевому сжатию или растяжению, сдвигающим нагрузкам и двухосному изгибу. Возможные варианты нагрузки включают постоянную, вынужденную, снеговую и ветровую для всех типов нагрузки. Могут быть определены постоянные и наложенные дополнительные нагрузки. Стальные, бетонные или деревянные сваи можно определить по прочности на сжатие, растяжение и сдвиг.Определенные мощности сравниваются с результатами анализа.
Бетонная плита / плита на грунте
Расчета Этих конкретного быстро оценивает способность элементов плота для поддержки различных механизмов загрузки без превышения допустимого давления подшипника. Он также определяет количество арматуры, необходимой для поддержки нагрузок при перекрытии теоретических круговых углублений в грунте, которые, как предполагается, образуются под плотом.
Конструкция стальных шпунтовых свай
Этот расчет для проектирования стальных шпунтовых свай Еврокод и США проверяет устойчивость консольной или подпертой / связанной стены из стальных шпунтовых свай. Он определяет требуемую минимальную длину заделки, а затем рассчитывает минимальный требуемый модуль упругости пластического сечения на метр длины стены. При необходимости расчет определит усилие на стяжке / стойке.
Получите БЕСПЛАТНУЮ 45-дневную полную пробную версию здесь
Несущая способность грунта — виды и расчеты
Несущая способность почвы определяется как способность почвы выдерживать нагрузки, исходящие от фундамента.Давление, которое почва может легко выдержать под нагрузкой, называется допустимым опорным давлением.
Виды несущей способности грунтовНиже приведены некоторые типы несущей способности грунта:
1. Предельная несущая способность (q
u )Общее давление у основания фундамента, при котором грунт разрушается, называется предельной несущей способностью.
2. Предел несущей способности (q
nu )Если пренебречь давлением покрывающих пород из предельной несущей способности, мы получим чистую предельную несущую способность.
Где
= удельный вес грунта, D f = глубина фундамента3. Чистая безопасная несущая способность (q
нс )Если рассматривать только разрушение при сдвиге, конечная полезная несущая способность, разделенная на определенный коэффициент безопасности, даст чистую безопасную несущую способность.
q ns = q nu / F
Где F = коэффициент безопасности = 3 (обычное значение)
4. Полная допустимая несущая способность (q
с )Если предельную несущую способность разделить на коэффициент безопасности, получится полная безопасная несущая способность.
q s = q u / F
5. Чистое безопасное расчетное давление (q
np )Давление, с которым грунт может выдерживать нагрузку без превышения допустимой осадки, называется чистым безопасным оседающим давлением.
6. Допустимое рабочее давление подшипника (q
на )Это давление, которое мы можем использовать при проектировании фундаментов. Это равно чистому безопасному давлению в подшипнике, если q np > q нс. В обратном случае оно равно чистому безопасному расчетному давлению.
Расчет несущей способности
Для расчета несущей способности грунта существует очень много теорий. Но все теории заменяются теорией несущей способности Терзаги.
1. Теория несущей способности Терзаги
Теория несущей способности Терзаги полезна для определения несущей способности грунтов под ленточным фундаментом. Эта теория применима только к фундаментам мелкого заложения. Он рассмотрел некоторые предположения, которые заключаются в следующем.
- Основание ленточного фундамента грубое.
- Глубина опоры меньше или равна ее ширине, т. Е. Неглубокая опора.
- Он пренебрег прочностью грунта на сдвиг над основанием фундамента и заменил его равномерной надбавкой. (D f )
- Нагрузка, действующая на опору, равномерно распределена и действует в вертикальном направлении.
- Он предположил, что длина основания бесконечна.
- Он считал уравнение Мора-Кулона определяющим фактором прочности почвы на сдвиг.
Как показано на рисунке выше, AB является основанием фундамента. Он разделил зоны сдвига на 3 категории. Зона -1 (ABC), которая находится под основанием, действует так, как если бы она была частью самого основания. Зона -2 (CAF и CBD) действует как зоны радиального сдвига, которые подпадают под наклонные кромки AC и BC. Зона -3 (AFG и BDE) называется пассивными зонами Ренкина, за которые взимается дополнительная плата (y D f ), исходящая от верхнего слоя почвы.
Из уравнения равновесия,
Нисходящие силы = восходящие силы
Нагрузка от опоры x вес клина = пассивное давление + сцепление x CB sin
Где P p = результирующее пассивное давление = (P p ) y + (P p ) c + (P p ) q
(P p ) y — это , полученное с учетом веса клина BCDE и нулевой связностью и надбавкой.
(P p ) c — это , полученный с учетом сплоченности и пренебрежением весом и надбавкой.
(P p ) q получается с учетом надбавки и пренебрежением весом и сплоченностью.
Следовательно,
Путем замены,
Итак, в итоге получаем q u = c’N c + y D f N q + 0,5 y B N y
Приведенное выше уравнение называется уравнением несущей способности Терзаги.Где q u — предельная несущая способность, а N c , N q , N y — коэффициенты несущей способности Терзаги. Эти безразмерные коэффициенты зависят от угла сопротивления сдвигу ().
Уравнения для определения коэффициентов несущей способности:
Где
Kp = коэффициент пассивного давления грунта.
Для различных значений
коэффициенты несущей способности при общем разрушении при сдвиге приведены в таблице ниже.Nc | Nq | Ny | |
0 | 5,7 | 1 | 0 |
5 | 7,3 | 1,6 | 0,5 |
10 | 9,6 | 2,7 | 1,2 |
15 | 12,9 | 4,4 | 2,5 |
20 | 17,7 | 7,4 | 5 |
25 | 25.1 | 12,7 | 9,7 |
30 | 37,2 | 22,5 | 19,7 |
35 | 57,8 | 41,4 | 42,4 |
40 | 95,7 | 81,3 | 100,4 |
45 | 172,3 | 173,3 | 297,5 |
50 | 347,5 | 415,1 | 1153,2 |
Наконец, для определения несущей способности под ленточным фундаментом мы можем использовать
q u = c’N c + D f N q + 0.5 Б Н y
По модификация вышеприведенного уравнения, уравнения для квадратных и круглых фундаментов также даны, и они есть.
Для квадратного фундамента
q u = 1,2 c’N c + D f N q + 0,4 B N y
Для круглой опоры
q u = 1,2 c’N c + D f N q + 0.3 Б Н y
2. Теория несущей способности Хансена
Для связных грунтов значения, полученные с помощью теории несущей способности Терзаги, превышают экспериментальные значения. Но, тем не менее, он показывает те же значения для несвязных грунтов. Поэтому Хансен изменил уравнение, приняв во внимание факторы формы, глубины и наклона.
Согласно Хансену
q u = c’N c Sc dc ic + D f N q Sq dq iq + 0.5 B N y Sy dy iy
Где Nc, Nq, Ny = коэффициенты несущей способности Хансена
Sc, Sq, Sy = факторы формы
dc, dq, dy = коэффициенты глубины
ic, iq, iy = коэффициенты наклона
Коэффициенты несущей способности рассчитываются по следующим уравнениям.
Для различных значений
коэффициенты несущей способности Хансена рассчитываются в таблице ниже.Nc | Nq | Нью-Йорк | |
0 | 5.14 | 1 | 0 |
5 | 6,48 | 1,57 | 0,09 |
10 | 8,34 | 2,47 | 0,09 |
15 | 10,97 | 3,94 | 1,42 |
20 | 14,83 | 6,4 | 3,54 |
25 | 20.72 | 10,66 | 8,11 |
30 | 30,14 | 18,40 | 18,08 |
35 | 46,13 | 33,29 | 40,69 |
40 | 75,32 | 64,18 | 95,41 |
45 | 133,89 | 134,85 | 240,85 |
50 | 266.89 | 318,96 | 681,84 |
Коэффициенты формы для различных форм основания приведены в таблице ниже.
Форма опоры | SC | кв. | Sy |
Непрерывный | 1 | 1 | 1 |
прямоугольный | 1 + 0,2B / л | 1 + 0,2B / л | 1-0.4B / L |
Квадрат | 1,3 | 1,2 | 0,8 |
Циркуляр | 1,3 | 1,2 | 0,6 |
Коэффициенты глубины учитываются в соответствии со следующей таблицей.
Коэффициенты глубины | Значения |
постоянного тока | 1 + 0,35 (Д / Б) |
dq | 1 + 0.35 (Д / В) |
dy | 1.0 |
Аналогичным образом учитываются коэффициенты наклона из таблицы ниже.
Факторы наклона | Значения |
ic | 1 — [H / (2 c B L)] |
iq | 1 — 1,5 (В / В) |
iy | (iq) 2 |
Где H = горизонтальная составляющая наклонной нагрузки
B = ширина опоры
L = длина опоры.
Расчет конструкции изолированного основания
ВВЕДЕНИЕ
Фундаменты — это основания, уложенные на почву, поверх которых возводится конструкция. Таким образом, это фундамент, на котором стоит здание или любое подобное сооружение. Они сделаны из бетона с армированием внутри и залиты в вырытую канаву или водовод. Перед тем, как фундамент будет построен, проводится испытание для оценки несущей способности грунта, чтобы определить тип фундамента, который будет построен.
Ниже приведены типы опор, и для лучшего понимания определена ситуация, в которой они применяются:
1. Изолированная опора
2. Комбинированная опора
3. Плотная опора
4. Свайная опора
Если почва мягкая или глинистая, она не сможет удерживать конструкцию, если не будет обеспечен прочный фундамент. В такой ситуации предпочтение отдается свайному фундаменту. Это связано с тем, что свайный фундамент передает нагрузку за счет торцевых опор и поверхностного трения.Если грунт достаточно прочен, предпочтительнее изолированное основание. Как правило, в жилых домах предпочтение отдается изолированным и комбинированным опорам. Если расстояние между изолированными опорами таково, что концы соприкасаются друг с другом или перекрываются, то это означает, что расстояние между колонной и фундаментом невелико. Следовательно, в таких случаях предпочтительнее комбинированное основание, так как оно делает конструкцию устойчивой и экономичной. В других случаях, если грунт на небольшой глубине слабый, то вместо свайного фундамента строят плотный фундамент, так как он может эффективно распределять нагрузки под конструкцией.Кроме того, наличие вторичных и первичных балок делает конструкцию более устойчивой в фундаменте плота.
Здесь мы взяли пример, чтобы показать, как выполняются расчеты для изолированного основания. Принимаются размеры колонны, марка бетона и стали, расчетная осевая нагрузка, расчетный изгибающий момент конструкции и несущая способность грунта. Кроме того, мы предположили, что плоская подошва из кирпича 75 мм, а также PCC с маркой M 10 в качестве марки бетона в PCC. В SBC увеличивается на 25%, так что основание может быть рассчитано на более высокую стоимость.Поскольку основание становится безопасным для более высокого значения SBC, естественно, оно будет безопасным для любого значения ниже этого.
Ниже приведены этапы проектирования фундамента:
1. Пропорция опоры для колонны
2. Проверка изгибающего момента
3. Проверка одностороннего сдвига
4. Проверка двустороннего сдвига
5 . Проверить напряжение подшипника
6. Проверить длину развертки
Наконец, была показана подробная схема для ясного видения конструкции фундамента.Если какая-либо информация отсутствует, то это предполагается для лучшего расчетного подхода.
РАЗМЕР НОЖНИКОВ КОЛОННЫ:
Столбец B:
Максимальная расчетная осевая нагрузка = 1292,265 кН
Расчетный изгибающий момент = 109,095 кНм
Бетонная смесь = M20
Нормативная прочность арматуры = 500 Н / мм 2
Размер колонны = 500 мм × 500 мм
Безопасная несущая способность грунта = 120 кН / м 2 (Принято)
Увеличивая на 25% берем S.До н.э. как 150 кН / м 2
Итак, Заданная осевая нагрузка на колонну = 1292,265 кН
Добавьте 10% для собственного веса = 129,2 кН
Итого = 1421,465 кН
Проверка изгибающего момента:
Проверка одностороннего сдвига
Проверка двустороннего сдвига
Проверка напряжения подшипника
Проверка длины развертки