Применение стеклопластиковой арматуры: СТЕКЛОПЛАСТИКОВАЯ АРМАТУРА — ОБЛАСТЬ ПРИМЕНЕНИЯ

Содержание

Области применения стеклопластиковой арматуры | Статьи

Чаще всего застройщики предпочитают придерживаться классических решений в выборе строительного материала. Появление стеклопластиковой арматуры разрушило этот стереотип!

Основные области, где чаще всего применяется это сырье на сегодняшний день:

  • армирование фундаментов зданий промышленного, коммерческого, жилого назначения;
  • приморские сооружения / укрепление береговой линии;
  • бетонирование наземных стоянок;
  • ландшафтный дизайн;
  • укрепление напольного покрытия в доме.

Этот вид полимера способен выдерживать серьезные механические нагрузки. Плюс ко всему, материал не теряет своих технических свойств при скручивании в бухты.

Помимо вышеописанного, можно выделить еще некоторые, более редкие области применения стеклопластиковой арматуры:

  • дорожные и гидросооружения;
  • объекты гражданского и агропромышленного назначения;
  • архитектурные и декоративные строения.

Армирование стеклопластиковой арматурой

Композитная стеклопластиковая арматура является оптимальным материалом при кладке ленточных фундаментов. Работы с ней можно вести в любое время года – композит отлично выдерживает повышенную влажность и пониженные температуры. Применение стеклопластиковой арматуры в армировании перекрытий ускоряет процесс работы и увеличивает показатели звуко- и теплоизоляции сооружений. Для обеспечения достаточной прочности рекомендуется использовать цельные композитные прутья одного размера. При разработке схемы армирования, лучше обращаться к специалистам.

Дорожное строительство

Применение стеклопластиковой арматуры в строительстве дорог очень востребовано. Материал устойчив к влиянию агрессивных сред, неприхотлив к условиям эксплуатации, стоек к перепаду температур. Эти особенности сырья незаменимы при возведении трасс и магистралей, городских дорог.

Если сравнивать затраты на приобретение металлической арматуры, стеклопластик значительно уступает с финансовой точки зрения.

Данный вид строительного материала помогает предотвратить разрыв и проседание дорожного полотна, образование трещин и другие негативные последствия разрушительного характера.

Стеклопластиковое сырье применимо при армировании железнодорожных шпал, укрепления бордюров и тротуарных плит.

Стеклопластиковая арматура в дачном строительстве

Материал словно специально создан для армирования фундаментов небольших построек, приусадебных строений (летняя кухня, беседка, мангал, баня).

На даче нередко требуется создать площадку для автостоянки, крытого навеса. Прочный и надежный бетонный фундамент, армированный стеклопластиком, — отличное решение в данном случае. Также строительный материал можно использовать в комплексе с иным сырьем для создания теплиц и парников.

Нужны крепкие опоры для огорода или сада? И здесь уместно использовать стеклопластик. С его помощью легко создать колышки для декоративных кустарников и грядок с овощами.

Армированная конструкция удачно вписывается в дизайн приусадебного участка. Обслуживание строений, выполненных за счет данного материала, не требует специального оборудования.

Применение стеклопластиковой арматуры. Основные характеристики.

Стеклопластик (базальтопластик) – это материал композиционного порядка, который состоит из специального стеклянного (базальтового) наполнителя, а также из синтетического полимерного связующего.

Наполнителем, выполняющим армирующую и скрепляющую функции, служат главным образом стеклянные волокна, изготовленные в виде нитей и жгутов (ровингов). Данное стекловолокнообрабатывается специальным связующим материалом (это могут быть смолы: полиэфирная, эпоксидная смолы и т.д.), который способен повысить прочность арматуры на сдвиг, а также повысить сопротивляемость влаге и воздействию химических веществ.

В современном строительстве композитная арматура находит сегодня все больше и больше места. Применение стеклопластиковой арматуры проникло во многие строительные сферы. Причина такой популярности этого материала, с одной стороны, кроется в его высокой удельной прочности

(отношении коэффициента прочности к удельной массе), а с другой стороны, в таких показателях, как высокая коррозионная стойкость, морозостойкость и низкая теплопроводность. Таковы базовые характеристики стеклопластиковой арматуры – они говорят сами за себя.

Конструкции, где используется арматура из стеклопластика, неэлектропроводны, что имеет особую важность для исключения блуждающих токов в материалах.

Применение композитной арматуры

Стеклопластиковая композитная арматура успешно применяется во многих областях строительства.

К примеру, данную арматуру в соответствии с требованиями документации проектов применяют в дорожном и промышленно – гражданском строительстве, а также в ненапряженных и в преднапряженных конструкциях.

Применение данного материала актуально для бетонных конструкций, работающих при регулярных воздействиях температур не выше 100 С˚ и не ниже минус -70 С˚. Бетонные конструкции могут быть из тяжелого, мелкозернистого бетона, из легкого и ячеистого, а также из поризованного, напрягающего бетона.

Производство стеклопластиковой арматуры предусматривает широкий спектр возможного применения этого материала.

1. Арматура из стеклопластика отлично подойдет в качестве армирующего материала для гибких связей слоистой кладки кирпичных зданий.

2. Базальт применяют для дюбелей, крепящих наружную теплоизоляцию стен зданий.

3. Применяется в производстве сеток и стержней для укрепления несущей способности конструкций армокирпичного порядка.

4. Используется в различных конструкциях, изготовленных на основе гипсовых вяжущих материалов.

5. Применение в автомобильных дорогах, подпорных стенах и откосах.

6. Для ремонта железобетонных и кирпичных конструкций.

7. Когда стеклопластиковая арматура используется вместо стальной арматуры категории AIII (А400), это позволяет применять равную по коэффициенту прочности арматуру, но при этом меньшего диаметра.

8. Базальтопластиковая арматура в конструкциях троекратно или двукратно повышает срок службы конструкций. Это продление срока службы ощутимо по сравнению с металлической арматурой, особенно когда конструкция периодически подвергается воздействию агрессивных сред, содержащих также хлористые соли или вещества кислотно-щелочной категории.

В целом, арматура из стеклопластика может использоваться в разных режимах температур, но сам по себе ежедневно растущий спрос на нее обусловлен, главным образом, тем, что данная арматура практически не подвергается коррозии и в виду этого параметра и ряда других, имеет более длительный срок службы. Производители стеклопластиковой арматуры, что называется, попали «в струю», и на сегодня этот материал, безусловно, входит в список лидирующих по прочности и долговечности. И о прочности и популярности свидетельствуют не только сами по себе тысячи удачно построенных конструкций, но и отзывы о стеклопластиковой арматуре от пользователей жилья и самих строителей.

Сегодня можно выделить ряд областей, в которых применение композитной арматуры будет более предпочтительным, чем использование металлического аналога. И так, купить стеклопластиковую арматуру и использовать ее куда выгоднее металлической можно для строительства бетонных армированных емкостей и хранилищ химических производств, а также для систем канализации и водоочистки. Также композитная арматура удобна для укрепления дорожного полотна и прекрасно подойдет при возведении фундаментов и выполнения прочих, схожих с этой процедурой, иных строительных работ. Также базальтовая арматура нашла применение при проведении различных восстановительных и реставрационных работ, а также в ремонтных работах.

Еще особо стоит отметить, что методика изготовления арматуры из стеклопластика постоянно развивается. Так что ежегодно качество материала, поступающего на строительный рынок, непрерывно улучшается, что, безусловно, положительно отражается на эксплуатационных и технических характеристикахматериала. В свою очередь, и сама продажа стеклопластиковой арматуры, как экономический процесс, постоянно подтягивается на новый уровень.


Использование и применение композитной арматуры

Инновационные технологи все больше внедряются в сферу гражданского и промышленного строительства. Применение композитной арматуры, одного из самых прочных и легких материалов, затрагивает все сегменты строительства – от жилых домов и временных сооружений для производства железнодорожных шпал и армирования промышленных полов.

Использование композитной арматуры в строительстве

Оптимальные технические и эксплуатационные свойства материала, а также малый вес композитной арматуры обуславливают ее широкое применение в разных областях строительной сферы.

Малоэтажное жилищное строительство:

  • Армирование железобетонных и кирпичных конструкций;
  • Обустройство всех типов фундаментов и сооружений, которые частично или полностью расположены ниже нулевой отметки уровня грунта;
  • С применением композитной арматуры разного диаметра выполняют усиление горизонтальных перегородок, улучшение показателей жесткости полов из древесных материалов.

Строительство промышленных/производственных объектов:

  • Фундаментные работы разного масштаба – использование композитной арматуры соответствующего диаметра обеспечивает полноценное армирование монолитных, плитных фундаментов и усиление верхнего уровня свайных оснований;
  • Усиление напряженных/обычных конструкций из ЖБИ, кирпича и блоков без создания дополнительной нагрузки на фундамент и несущие перегородки;
  • Пластичность с одновременной жесткостью, а также малый вес композитной арматуры обеспечивает повышенную прочность и долговечность промышленных полов.

Рассчитайте стоимость композитной арматуры.

Применение неметаллической арматуры в разных областях деятельности

Жилищное, промышленное строительство является основной, но не единственной сферой использования композитной арматуры разного диаметра. Характеристики неметаллических армирующих материалов делают их практически незаменимыми при выполнении обширного спектра работ.

Устройство объектов инфраструктуры:

  • Применение композитной арматуры для фундамента;
  • Изготовление опор (ЛЭП и осветительных), а также изолирующих траверсов;
  • Обустройство канализационных, водопроводных и мелиоративных систем;
  • Создание поясов сейсмоустойчивости для всех типов зданий/сооружений.

Прибрежное и портовое строительство:

  • Усиление береговой линии;
  • Обустройство доков, причалов, пирсов, припортовых/морских сооружений с применением композитной арматуры позволяет придать конструкциям качественно новые прочностные характеристики.

Дорожное строительство и мостостроение:

  • Армирование дорожных полотен, плит, ограждений, поребриков, крышек канализационных люков;
  • Благодаря высокой прочности и малому весу композитной арматуры этот материал широко применяют при строительстве и ремонте мостов разной конструкции.

Эксклюзивное использование композитной арматуры

В процессе строительства, ремонта и реконструкции специфических конструкций, которые эксплуатируются в условиях ускоренного окисления и разрушения (коррозии) прутов стальной арматуры и бетона, использование неметаллической арматуры является единственным вариантом продления срока службы сооружения. Применение композитной арматуры с разным диаметром актуально:

  • При строительстве сооружений с постоянным воздействием агрессивных сред (кислоты, щелочи) – коллекторы, отстойники, подземные резервуары для хранения концентрированных газов, жидких удобрений, хлористых солей;
  • При обустройстве тонкостенных конструкций – шумоизолирующие панели, архитектурные сооружения, ограды.

Закажите стеклопластиковую арматуру в компании Пласт-Композит.

Применение стеклопластиковой аратуры. Иркутск Ангарск

АРМАТУРА СТЕКЛОПЛАСТИКОВАЯ

Стеклопластиковая арматура, которая появилась на строительном рынке относительно недавно, имеет как достоинства, так и недостатки, о которых обязательно должен быть осведомлен потребитель. Несмотря на заверения производителей в том, что данная продукция является полноценной заменой металлической арматуры, не во всех ситуациях ее применение можно считать обоснованным.

Что собой представляет арматура из стеклопластика


Так называемая композитная арматура – это стержень из стеклопластика, вокруг которого намотана углепластиковая нить, служащая не только для усиления конструкции такого изделия, но и для обеспечения его надежного сцепления с бетонным раствором. У арматуры данного типа есть как плюсы, так и минусы, и к ее использованию следует подходить очень взвешенно.

Элементами для фиксации углепластиковых арматурных прутков между собой служат пластиковые хомуты. Удобно, что для соединения элементов такой арматуры не требуется использование сварки, что, несомненно, является большим плюсом.

Оценивая целесообразность использования стеклопластиковой арматуры, необходимо рассмотреть все плюсы и минусы ее применения в отдельных ситуациях. Такой подход позволит обеспечить высокую эффективность этого материала как средства укрепления строительных конструкций различного назначения.

Если не учитывать характеристики стеклопластиковой арматуры и не сопоставлять их с параметрами аналогичных изделий, изготовленных из металла, можно нанести серьезный вред будущей строительной конструкции или элементам отделки. Именно поэтому прежде чем приступать к выбору элементов для армирования конструкций из бетона, следует разобраться, в каких случаях применение тех или иных изделий является более целесообразным.

Основные преимущества


Среди преимуществ, которыми отличается углепластиковая арматура, стоит выделить следующие.

  • Важным преимуществом стеклопластиковой арматуры является ее небольшой удельный вес, что дает возможность использовать ее для армирования легких конструкций из ячеистого бетона и некоторых других строительных материалов. Это позволяет значительно снизить вес конструкций, которые армируются с ее помощью. Между тем вес обычной бетонной конструкции при использовании стеклопластиковой арматуры снизится незначительно, так как сам строительный материал обладает внушительной массой.

  • Низкая теплопроводность также относится к преимуществам стеклопластиковой арматуры. При использовании такой арматуры в бетонных конструкциях не образуется мостиков холода (чего нельзя сказать об армирующих элементах из металла), что значительно улучшает их теплоизоляционные параметры.

  • Высокая гибкость стеклопластиковой арматуры позволяет отгружать ее заказчику в бухтах, а не нарезанной отдельными прутками. Благодаря компактной форме упаковки транспортировать такую арматуру значительно проще, для чего можно использовать багажник любого легкового автомобиля, а это серьезно сокращает расходы на доставку материала к месту выполнения строительных работ. Использование армирующих элементов, которые отгружаются не нарезанными прутками, а в бухтах, позволяет также снизить расходы материала за счет уменьшения количества нахлестов. Это положительным образом сказывается как на прочностных характеристиках будущей бетонной конструкции, так и на ее стоимости, что особенно важно при выполнении строительных работ.

  • Достаточно спорным считается такое преимущество стеклопластиковой арматуры, как ее долговечность внутри бетонной конструкции. Арматура из металла, находясь в изолированном состоянии, также не подвергается негативному влиянию внешних факторов, что обеспечивает долговечность ее использования.

  • Углепластиковая арматура – это диэлектрический материал, что является преимуществом изделий из данного материала. Проводящая электрический ток металлическая арматура больше подвержена коррозии, что негативным образом сказывается на ее долговечности.

  • По сравнению с армирующими элементами из металла, стеклопластиковые изделия не подвержены воздействию химически активных сред. Такое преимущество стеклопластиковой арматуры особенно актуально в случаях возведения строений в зимнее время, когда в бетон добавляются различные солевые растворы, ускоряющие процесс застывания.

  • Являясь диэлектриком, углепластиковая арматура не создает радиопомех внутри здания, в отличие от металлических прутков. Такое преимущество важно тогда, когда в бетонной конструкции имеется много армирующих элементов. В противном случае использование композитной арматуры не станет минусом, но будет не столь актуально.

Сферы применения стеклопластиковой арматуры


Арматура, изготовленная из композитных материалов, правила укладки которой несложно изучить по соответствующим видео, используется и в капитальном, и в частном строительстве. Поскольку капитальное строительство осуществляется силами квалифицированных специалистов, которые хорошо знакомы с нюансами и недостатками применения тех или иных строительных материалов, остановимся на особенностях использования такого материала при возведении частных малоэтажных строений.

 

  • Арматура, изготовленная из композитных материалов, успешно используется для укрепления фундаментных конструкций следующих типов: ленточных, высота которых больше, чем глубина промерзания почвы, и плитных. Применение арматуры из углепластика для укрепления фундаментов целесообразно лишь в тех случаях, когда строение возводится на хорошем грунте, где бетонные основания не будут подвергаться нагрузкам на излом, которые стеклопластиковые элементы могут просто не выдержать.

  • При помощи стеклопластиковой арматуры укрепляют стены, кладка которых выполняется из кирпича, газосиликатных и других блоков. Следует отметить, что в качестве связующего элемента стен композитная арматура очень популярна среди частных застройщиков, которые используют ее не только для укрепления кладки несущих конструкций, но и для обеспечения их связки с облицовочными перегородками.

  • Этот материал активно используется и для связки элементов многослойных панелей. Структура последних включает в себя слой утеплителя и бетонные элементы, которые и связываются между собой при помощи стеклопластиковой арматуры.

  • Благодаря тому, что арматура рассматриваемого типа лишена такого недостатка, как подверженность коррозии, ее часто используют для укрепления различных гидротехнических сооружений (к примеру, плотин и бассейнов).

  • В тех случаях, когда необходимо эффективно увеличить жесткость клееных деревянных балок, их также укрепляют при помощи стеклопластиковой арматуры.

  • Используется этот материал и в дорожном строительстве: с его помощью укрепляют слой асфальтового полотна, который подвергается повышенным нагрузкам в процессе своей эксплуатации.

СОПУТСТВУЮЩАЯ ПРОДУКЦИЯ

press to zoom

press to zoom

press to zoom

press to zoom

press to zoom

1/2

ОФОРМИТЬ ЗАКАЗ

Отправить заявку

г.Ангарск. п.Юго-Восточный

Ангарск  (8-3955) 633-773

Иркутск  (8-3952) 733-105

                (8-3952) 668-993

Моб.тел. 8-964-222-38-38

E-mail: [email protected]

Варианты применения стеклопластиковой арматуры

Композитная арматура – продукт современных технологий, обладающий отличными техническими характеристиками и являющийся достойной альтернативой традиционной стальной арматуре. Она широко применяется при закладке фундаментов, организации дорожного полотна, строительстве морских и портовых сооружений.

Достоинства стеклопластиковой арматуры

В настоящие дни большая востребованность арматуры из стеклопластика (АСК) в организации гражданского и промышленного строительства обуславливается ее следующими характеристиками:

  • высокая коррозийная стойкость;
  • низкая теплопроводность;
  • низкий удельный вес;
  • высокая прочность, превышающая аналогичные показатели стальной арматуры;
  • диэлектричность.

Главным недостатком традиционной стальной арматуры является низкая устойчивость к коррозии, что значительно ограничивает ее применение при строительстве морских сооружений. Поверхностное стеклопластиковое армирование способно решить эту проблему. Использование АСК в целях армирования бетонных конструкций имеет большие перспективы, что подтверждается многочисленными исследованиями.

Виды стеклопластикового армирования

Армирование конструкций стеклопластиком бывает трех основных видов: внутреннее, внешнее и комбинированное.

Внутреннее армирование АСК

Этот вид армирования используется в конструкциях, в которых среда агрессивна по отношению к арматуре, а не к бетону. Это затрудняет применение стальной арматуры. Внутреннее армирование подразделяется на:

  • Дискретное – осуществляется стеклопластиковыми стержнями, которые равнозначны стальным по прочности;
  • Дисперсное – в этом случае в бетонную смесь добавляются рубленное стеклопластиковое волокно. Волокна распределяются в бетоне либо хаотично, либо в определенном направлении.

Внешнее армирование АСК

Внешнее армирование применяется при возведении конструкций, когда среда является агрессивной по отношению к бетону. Оно заключается в использовании листовой арматуры, которая образует на бетоне защитную водо- и воздухонепроницаемую оболочку.

Внешнее армирование подразделяется на:

  • Сплошное – производится наложением листового материала сплошным способом;
  • Дискретное – осуществляется как армирование отдельными полосками или сетками.

Бетонные конструкции в стеклопластиковой оболочке изготавливаются двумя способами:

  • Оболочка из АСК наносится на высушенные бетонные конструкции посредством обматывания;
  • Оболочка подготавливается заранее и заливается бетонной смесью.

Комбинированное армирование АСК

Если внешнего армирования недостаточно для сопротивления механическим нагрузкам, то она дополняется внутренней стержневой арматурой, пластиковой или стальной.

Натяжение стеклопластиковой арматуры

Модуль деформации стеклопластиковой арматуры в 4-5 раз меньше, чем у стальной, поэтому целесообразно использовать АСК только в предварительно напряженных бетонных конструкциях.

Существует три способа предварительного напряжения:

Натяжение на упоры – стеклопластиковые стержни вытягиваются на необходимую величину с помощью специальных приспособлений, затем производится бетонирование и термовлажная обработка бетона для ускорения его отвердения;

Натяжение на бетон – в бетоне прокладываются специальные каналы для АСК, арматура натягивается с помощью гидравлических домкратов, и для ее фиксации в каналы вводится петролатум;

Непрерывная навивка – этот способ заключается в навивке на бетонные изделия лент или гибких стержней из стеклопластика. Широкого использования в современном строительстве он не нашел.

Влияние температурных колебаний на прочность стеклопластиковой арматуры

Показатель прочности АСК пропорционально изменяется в зависимости от изменений температуры:

  • При снижении температуры до -40°С прочность АСК увеличивается примерно на 40%;
  • При повышении температуры от +20°С до +300°С прочность АСК постепенно снижается на 60%.

Изменения показателей прочности АСК вследствие колебания температур являются обратимыми.

Использование стеклопластиковой арматуры при ремонте ЖБК

Восстановление железобетонных конструкций обычно проводится достаточно трудоемкими и затратными способами, требующими остановки производства. По сравнению с ними внешнее армирование из стеклопластика может быть осуществлено в короткие сроки. Благодаря его высокой прочности и антикоррозийным свойствам, подобный метод восстановления несущих элементов железобетонных конструкций признается наиболее рациональным.

Использование стеклопластиковой арматуры не только существенно увеличивает срок эксплуатации ЖБК, но и позволяет избежать затрат на капитальный ремонт сооружений.


Область применения стеклопластиковой арматуры

Где применяется стеклопластиковая арматура

Арматура из композитных материалов – продукт новых технологий, технические характеристики которого позволяют с успехом применять его в качестве альтернативы традиционной стальной арматуре при строительстве фундаментов, морских и портовых сооружений, армировании бетонных емкостей, а также при организации дорожного полотна и настилов автодорожных мостов.

Стеклопластиковая арматура применение. Применение композитной арматуры

Дорожное  полотно  и  ограждения


 

Фундаменты

 

Армирование производственных полов


СТЕКЛОПЛАСТИКОВАЯ АРМАТУРА ДЛЯ БЕТОНА

На сегодняшний день арматура из стеклопластика (АСП) широко применяется в гражданском и промышленном строительстве. Это обусловлено целым рядом факторов:

  1. низкий удельный вес АСП;

  2. высокая коррозийная стойкость;

  3. низкая теплопроводность композитных материалов;

  4. высокая прочность АСП, в несколько раз превышающая прочность стальной арматуры;

  5. диэлектричность стеклопластиковой арматуры.

Как известно, главный недостаток традиционной арматуры из низкоуглеродистой стали – это низкий показатель устойчивости к коррозии, что ограничивает ее использование при строительстве морских сооружений и конструкций, находящихся в зоне переменного уровня воды.

Применение поверхностного стеклопластикового армирования способно решить проблему долговечности морских сооружений — в таком случае бетон не подвергается воздействию агрессивной среды. Перспективы использования АСП для армирования бетонных конструкций рассмотрены во многих исследовательских работах отечественных НИИ (например, НИИЖБ, ХИСИ СибНИИЭ и т.д.), а также подтверждены многолетним опытом зарубежных стран.

СТЕКЛОПЛАСТИКОВОЕ АРМИРОВАНИЕ

Армирование конструкций стеклопластиковой арматурой бывает трех основных видов: внутренним, внешним и комбинированным.

1. Внутреннее армирование АСП.

Основная область применения – для армирования конструкций, в которых среда агрессивна к арматуре, а не к бетону, что затрудняет использование стальной арматуры.

Внутреннее неметаллическое армирование бывает:

Дискретным – армирование осуществляется стеклопластиковыми стержнями, равнозначными стальным по прочности. Дисперсным – армирование производится путем добавления в бетонную смесь рубленных стеклопластиковых волокон (фибр). В таком случае волокна распределяются в бетоне хаотично, однако при использовании специальных мер можно добиться того, что фибры будут иметь определенное направление.

2. Внешнее армирование АСП.

Основная область применения – при строительстве сооружений, где среда является агрессивной к бетону.

Внешнее армирование основано на использовании внешней листовой арматуры, создающей защитную воздухонепроницаемую и водонепроницаемую оболочку для бетона и выполняющую свою непосредственную армирующую функцию.

Внешнее армирование АСП бывает:

Сплошным – выполняется при помощи сплошного листового материала;

Дискретным – осуществляется с использованием отдельных полосок или сеток. Бетонные конструкции в стеклопластиковых оболочках изготавливаются двумя основными способами.

В первом случае оболочка из АСП наносится на предварительно высушенные бетонные элементы путем обматывания, а во втором – стеклопластиковая оболочка изготавливается заранее, а впоследствии заливается бетонной смесью.

3. Комбинированное армирование АСП.

При возведении конструкций, в которых для восприятия механических нагрузок недостаточно только внешнего армирования, дополнительно может применяться внутренняя стержневая арматура, причем она может быть как пластиковой, так и стальной.

ПРЕДВАРИТЕЛЬНОЕ НАПРЯЖЕНИЕ СТЕКЛОПЛАСТИКОВОЙ АРМАТУРЫ 

Применение АСП целесообразно только в предварительно напряженных конструкциях, так как модуль деформации стеклопластиковых стержней в несколько раз меньше (в 4-5 раз), чем металлических. В случаях с арматурой из стеклопластика чаще всего применяются три основных способа предварительного напряжения бетонных конструкций:

  • Натяжение на упоры.

Данный способ предполагает вытягивание арматуры на нужную величину при помощи специальных приспособлений с последующим бетонированием и термовлажностной обработкой бетона для более быстрого отвердения.

  • Натяжение на бетон.

При натяжении стеклопластиковой арматуры на бетон в последнем проделываются специальные каналы для прокладки АСП. Натяжение арматуры осуществляется при помощи гидравлических домкратов. Для закрепления арматуры в каналы инъецируется петролатум.

  • Непрерывная навивка.

Данный способ, который, к слову сказать, не нашел широкого применения в современном строительстве, заключается в навивке на бетонное изделие гибких стержней или лент из стеклопластика.

ВЛИЯНИЕ ТЕМПЕРАТУР НА ПРОЧНОСТЬ СТЕКЛОПЛАСТИКОВОЙ АРМАТУРЫ

Показатель прочности АСП изменяется пропорционально изменению температуры:

  • При понижении температуры до -40 градусов по Цельсию прочность стеклопластиковой арматуры увеличивает приблизительно на 40%
  • При увеличении температуры свыше +20 градусов по Цельсию (вплоть до +300) прочность АСП постепенно уменьшается на 60%.

Изменение характеристик прочности АСП, происходящие вследствие колебания температур в пределах -40…+300 градусов Цельсия, являются обратимыми.

СТЕКЛОПЛАСТИКОВАЯ АРМАТУРА И РЕМОНТ ЖКБ 

Традиционно для восстановления ЖБ конструкций используются достаточно трудоемкие и затратные методы, зачастую требующие остановки производства. В сравнении с ними, внешнее стеклопластиковое армирование отличается не только повышенной коррозийной стойкостью и высокой прочностью, но и малыми сроками ремонтных работ. Именно эти показатели обуславливают рациональность применения ПАК для восстановления и усиления несущих элементов ЖБ сооружений.

В завершении стоит отметить, что использование стеклопластиковой арматуры, благодаря ее высокой коррозийной стойкости, не только существенно продлевает срок эксплуатации бетонных конструкций, но и практически ликвидирует затраты на капитальные ремонты сооружений.

Виды композитной арматуры 

Разработка и внедрение композитной арматуры решает многие проблемы строительства. Позволяет снизить металлоемкость строительства, уменьшить вес строительных конструкций, соответственно снизить себестоимость строительства. В зависимости от того, какой тип волокон используется для производства, арматуру разделяют на виды: 

— арматура стеклопластиковая (АСП). В основе которой стекловолокно пропитанное смолами термореактивными. Арматура стеклопластиковая (АСП) обладает малым удельным весом и при этом обладает высокими прочностными характеристиками при растяжении. Она не подвержена коррозии и не вступает в химические реакции в кислотной и щелочных средах.

— арматура базальтопластиковая (АБП). В её основе базальтовое (каменное) волокно пропитанное связующим из термореактивных смол. Арматура базальтовая обладает почти теми же характеристиками, что и стеклопластиковая. Отличительной особенностью базальтовой арматуры является то, что она более устойчива к агрессивному воздействию кислотных и щелочных сред. Термостойкость арматуры базальтовой такая же, как и стеклопластиковой. Не зависимо от того, что волокно базальтовое материал огнестойкий, полимерное связующее, которым он пропитан при температуре свыше 160 градусов начинает разлагаться.

— арматура углепластиковая (АУП). Изготавливается из углеводородных волокон. Арматура углепластиковая в настоящее время в строительстве используется мало. Для того, чтобы упорядочить производство арматуры композитной разработан ГОСТ 31938-2012 “Арматура композитная полимерная”. Арматура изготавливается в виде прутков диаметрами от 4 до 32 мм. При изготовлении арматуры композитной ее поверхности покрывают песком или по всей длине формируются ребра в виде навитой спирали, которые обеспечивают надежное соединение с бетоном. Чем отличается арматура композитная от стальной?

— Композитная арматура в 4 – 5 раз легче арматуры из стали, что значительно сокращает транспортные расходы.

— Предел прочности арматуры композитной арматуры при растяжении составляет 1200 – 1300 МПа. У арматуры стальной он 390 МПа.

— Композитная арматура не пропускает тепло. При армировании ограждающих конструкций стен и покрытий мостики холода не образуются.

— Композитная арматура не взаимодействует с кислотными и щелочными средами, что позволяет использовать арматуру композитную в гидротехническом, дорожном строительстве, строительстве объектов химической промышленности.

— Композитная арматура является хорошим диэлектриком и кроме того не взаимодействует с магнитными полями, что открывает перспективу использования арматуры композитной для проектирования и строительства специальных сооружений.

— Долговечность. Композитная арматура не подвержена коррозии и не разлагается под воздействием кислотных и щелочных сред.

Безусловно, существует ряд ограничений для проектирования конструкций армированных композитной арматуры.

— Не свариваемость, что существенно ограничивает её использование, особенно в сборных железобетонных конструкциях. 

— Большое линейное удлинение при растяжении, что ограничивает применение композитной арматуры без предварительного напряжения в несущих конструкциях.

— Низкий предел огнестойкости обусловленный применением полимерного связующего в составе композитной арматуры.

Эти характеристики в совокупности с низкой стоимостью делают привлекательным использование арматуры композитной с инженерной, а так же с экономической точек зрения.

Применение композитной арматуры в конструкциях и изделиях из бетона, методы их расчета регламентированы в СНиП 52-01-2003 “Бетонные и железобетонные конструкции”. Арматура композитная используется для строительства и гражданских и промышленных объектов. Наиболее активно она используется в строительстве малоэтажных зданий и коттеджей при армировании фундаментов, стен, колонн, бетонных оснований и покрытий. При строительстве дорог сетками из композитной арматуры укрепляют откосы и основания дорог. Эффективно использование композитной арматуры для производства берегоукрепительных работ и строительства гидротехнических сооружений.

Композитная арматура. Стекло прочнее металла?

В истории человечества технологии производства строительных материалов никогда не стояли на месте, различными темпами двигаясь вперёд, отвечая на потребности растущего населения. В приоритете всегда ставилась быстрота изготовления и монтажа изделий, долговечность, а также уменьшение их стоимости путём использования более дешёвых ресурсов. Исключением не стало изобретение и применение композитной арматуры. Когда в далёких шестидесятых годах двадцатого века первые образцы этого уникального строительного материала поступили на стройку, немногие верили, что пришла замена, казавшейся тогда незыблемой традиционной стальной арматуре. Но как показало время, их сомнения не подтвердились. Композитная арматура заняла достойную нишу и широко используется в наши дни во всём мире. Основной компонент этой арматуры – стеклоровинг, который представляет собой прядь белого цвета, состоящую из некрученых нитей стекловолокна. Эти нити связанны между собой полимером на основе эпоксидной смолы.

Для удобства доставки арматуру скручивают в бухту, длина которой может зависеть от пожеланий заказчика. Композитная арматура устойчива к деформации и достаточно гибкая, что позволяет ей при разматывании бухты выпрямляться, как пружина, и за недолгое время принять свой первоначальный вид. Композитная арматура имеет несомненное преимущество над своим металлическим аналогом. Композитная арматура не знакома с коррозией, электропроводностью и усталостью металлов, её вес меньше примерно в 5 раз, что при компактных размерах не создаёт лишних хлопот при транспортировке и погрузочно-разгрузочных работах. При испытаниях на разрыв она обошла на прочность многие классы стальной арматуры. Среди других достоинств этой арматуры следует выделить её кислостойкость и защиту от воздействия морской воды, практически полное отсутствие теплопроводности, радиопрозрачность. Композитная арматура не теряет своих свойств при сверхнизких или сверхвысоких температур (их диапазон колеблется от -70 до +90 градусов по Цельсию), а также под воздействием электромагнитных полей. Конструкции, построенные с её помощью, служат в среднем 70 лет, что в два раза выше, чем при использовании стальной арматуры.

Композитная арматура используется повсеместно при строительстве различных сооружений. Благодаря износостойким качествам и защите от едких жидкостей, ей отдают предпочтение при возведении морских и береговых сооружений, в некоторых компонентах химической инфраструктуры, дабы снизить вероятность утечки вредных веществ. С годами она всё больше находит своё применение при восстановительных и ремонтных работах, в дорожном и железнодорожном строительстве, при возведении мостов, домов, узлов канализации и водоканала. Со временем этот список только удлиняется, так как композитная арматура находит всё новые области своего применения.

В наши дни технология производства композитной арматуры настолько высока, что позволило не только существенно снизить затраты на её изготовление, но и превзойти по дешевизне металлического аналога. Поэтому многие заказчики, уже оценившие преимущества этого материала, оставляют только положительные отзывы, что, несомненно, ведёт к ещё большему наращиванию использования именно этого вида арматуры в различных областях промышленного и гражданского строительства.

Композитная стеклопластиковая арматура назначение, технические характеристики, свойства и область применения 

Назначение

Композитная стеклопластиковая арматура – вид строительной арматуры, она производится в виде стержней разной длинны, имеющих внешнее сечение в виде спирали. Изготавливается из стекловолокна и связующих смол. Волокно обеспечивает необходимую прочность, а смола связывает волокна между собой.

Внедрение в технологию строительства данной арматуры не только снижает стоимость работ до 50%, но также увеличивает срок эксплуатации объекта. Достоинством данной арматуры является высокая прочность и малый удельный вес. Поэтому такая арматура является сильным конкурентом простой металлической арматуры. Стеклопластиковая арматура обладает рядом физико-механических качеств позволяющих использовать ее в очень агрессивных средах. Со временем материал не ржавеет, не разрушается при контакте с бетоном. Благодаря своим плюсам, композитная стеклопластиковая арматура практически вытеснила металлическую во многих областях строительства: армирование ленточных и монолитных фундаментов в малоэтажном строительстве, армировании бетонной стяжки пола. Она нашла применение во многих уголках нашей планеты. Используется при строительстве небоскребов в странах Востока, стройплощадках Европы, а в Японии — это основной вид арматуры при строительстве зданий, к которым предъявляют повышенные требования к сейсмической устойчивости.

Технические характеристики 

Характеристики Арматура композитная полимерная стеклопластиковая (АКС)
Материал Стеклоровинг, связанный полимером на основе эпоксидной смолы
Предел прочности при растяжении, МПа 1000-1300
Модуль упругости, Мпа 50 000
Относительное удлинение, % 2,2
Плотность, т/м3 1,9
Коэффициент линейного расширения αх*10-5/°C 9-12
Временное сопротивление при растяжении, МПа От 750
Коррозионная стойкость к агрессивным средам Нержавеющий материал, первой группы химической стойкости, в том числе к щелочной среде бетона
Теплопроводность Нетеплопроводна
Электропроводность Неэлектропроводна — диэлектрик
Выпускаемые профили, мм 4 — 24
Длина Возможна любая длина стержней и поставка в бухтах.
Экологичность Имеется санитарно-эпидемиологическое заключение, не выделяет вредных и токсичных веществ
Долговечность Прогнозируемая долговечность не менее 100 лет
Параметры равнопрочного арматурного каркаса при нагрузке 25 т/м2 При использовании арматуры 8 АКС размер ячейки 23 x 23 см. вес 0,61 кг/м2. Уменьшение веса в 9 раз.


Свойства

— Композитная арматура в 9 раз легче классической арматуры из металла, при этом ее прочностные характеристики лучше в 3 раза. Это дает возможность уменьшать диаметр, сохраняя все необходимые характеристики.

— Стеклопластиковая арматура имеет долгий срок эксплуатации. Срок годности арматуры из композитных материалов практически не ограничен. По мнению экспертов, данная арматура способна сохранять свои технические характеристики в возведенном объекте не менее 80-100 лет. Это позволяет минимизировать ремонтные работы и повысить срок эксплуатации готового объекта.

— Устойчивость к химическим воздействиям. Стеклопластиковая арматура не реагирует на воздействие щелочной и кислотных сред. В процессе ее эксплуатации не происходит окисление, и соответственно нет проявлений коррозии. Это позволяет избавиться от появления трещин и разрушения бетонных конструкций в следствии внутренних напряжений. Такие напряжения появляются при коррозии металлической арматуры.

— Не является источником электромагнитных помех. Имеет низкий коэффициент теплопроводности.

— Стеклопластиковая арматура, благодаря своим уникальным диэлектрическим и теплопроводным свойствам широко используется при возведении жилых домов. Армирование бетонных конструкций материалом с хорошими диэлектрическими свойствами позволяет избавиться от возможных электромагнитных помех, после введения здания в эксплуатацию. Низкий коэффициент теплопроводности, дает возможность экономить на отоплении зданий, так как стеклопластиковая арматура не создает «мостки холода» и не увеличивает потери тепла.

— Стоимость стеклопластиковой арматуры в 1.5 — 2 раза ниже, чем стоимость стальной арматуры равнопрочностного диаметра. Большая экономия при строительстве достигается за счет уменьшения стоимости как самого материала, так и стоимости его доставки и монтажа. Стеклопластиковую арматуру легко разгружать, при этом не требуется специальная техника или большое количество рабочих.

— Простота в доставке. Стеклопластиковая композитная арматура реализуется бухтами диаметр которых составляет порядка 1 метра. Вес такой бухты колеблется от 7 до 10 кг. Так упаковываются все виды арматуры, диаметр прутков которых не более 10 мм. Это позволяет перевозить стеклопластиковую арматуру в легких грузовиках, или даже в багажнике легкового автомобиля. Стальную арматуру перевозят в грузовых автомобилях с длинным кузовом, при этом для ее загрузки и разгрузке необходима специальная техника.

— Стеклопластиковая арматура обладает высокими противопожарными характеристиками. Данный материал не горит. Ее можно эксплуатировать внутри бетона в широком диапазоне температур от -70 до +600 градусов по шкале Цельсия. Если на арматуру в течении длительного времени воздействовать температурой более 200 градусов, то она, как и бетон, потеряет свои эксплуатационные свойства.

— Арматура изготовляется в прутах необходимой длинны. Это позволяет значительно экономить на остатках, и оптимизировать условия монтажа.

— Стеклопластиковая арматура имеет близкий к бетону коэффициент расширения. Благодаря этому она не разрушает бетон при повышении температуры, что повышает срок эксплуатации сооружения.

— Прочностные характеристики и внутренне напряжение в прутках не изменяются при изгибе стеклопластиковой арматуры. Поэтому, при развертывании бухты, пруток принимает свою первоначальную прямую форму. Это значительно ускоряет и облегчает монтажные работы, и дает возможность экономить на хранении и перевозке.

— Простота в монтаже. Арматуру можно «вязать» применяя минимальное количество подсобных инструментов и дополнительных материалов. Резать стеклопластик можно с помощью болгарки, торцовки или даже ножниц и кусачек.

Область применения


  • Стеклопластиковая арматура используется при возведении различных зданий и сооружений, в соответствии с техническим заданием сформулированным в проекте строительства:

  • — При строительстве производственных и гражданских зданий при армировании фундаментов, стяжек и стен.

  • — Для укрепления автомагистралей и дорог местного значения внутри дорожного полотна.

  • — Практически любых зданий и сооружений из бетона в качестве стержней и сеток в различных конструкциях.

  • — При возведении кирпичных многослойных стен.


Надо отметить, что стеклопластиковая арматура наиболее актуально там, где имеется химически активная среда, и где применение металлической арматуры значительно ухудшает качественные характеристики возводимого сооружения. Ее использование оправдано при возведении портовых сооружений и для укрепления линии побережья и рек.

  • — При строительстве канализационных и мелиорационных сооружений.

  • — При строительстве сооружений с повышенными требованиями к химической устойчивости.

  • — При проведении работ по внешнему утеплению зданий.

  • — При производстве бетонных изделий с внутренним преднапряжением.

  • — При реконструкции или возведении зданий с повышенной сейсмоустойчивостью.
Арматура из стеклопластика

— почему арматура из стеклопласта, а не из стали

Арматура из композитного материала, армированная стекловолокном из полимера (GFRP), является решением проблемы коррозии железобетонных конструкций. Стекловолоконная арматура — отличная замена обычным типам стальной арматуры, и вот почему?

Ограничение для стальной арматуры:

  • Heavy (Увеличение логистических затрат, а также увеличение веса конструкции, что влияет на собственную частоту бетонной конструкции)

  • Коррозийный (даже ржавчина из нержавеющей стали, хотя она в 2-4 раза дороже, чем стеклопластик)

  • Очень высокая жесткость (конструкция становится очень жесткой и жесткой)

  • Очень ограниченное сопротивление усталости (циклическое нагружение)

  • Высокая теплопроводность и электрическая проводимость

  • Очень высокая плата за обслуживание черной стальной, оцинкованной арматуры и арматуры с эпоксидным покрытием

  • Еще

    ? !!!

Арматура MST-BAR® и MFX-BAR® GFRP, композитная арматура, арматура из стекловолокна очень подходят для использования там, где стальная арматура ограничена своими свойствами.Там, где коррозия представляет собой проблему, например, во влажных, прибрежных и холодных странах, MST-BAR® и MFX-BAR® могут использоваться для устранения проблемы коррозии и всех затрат, связанных с коррозией и техническим обслуживанием.

Первоначальная стоимость использования MST-BAR® и MFX-BAR® на ранней стадии проекта может не увеличивать стоимость проекта, если необходимо учитывать надлежащий дизайн и факторы. Использование арматуры из стеклопластика может снизить стоимость проекта до 5%, а конструкция не требует капитального ремонта в течение следующих 100 лет.

Арматура MST-BAR® и MFX-BAR® GFRP устраняет ограничение стального стержня:

  • Легкий вес (на 4 легче)

  • Более низкая жесткость по сравнению со сталью (позволяет сделать конструкции менее жесткими)

  • Тепловая и электрическая изоляция

  • 100% коррозионная стойкость к щелочам и кислой среде

  • Отсутствие обслуживания в течение 100 лет

КОД ДИЗАЙНА

Арматура

FRP ведет себя не так, как стальная арматура, поскольку механические свойства в некоторых случаях отличаются.Арматура из стеклопластика имеет более высокую прочность, но более низкий модуль упругости, поэтому прямая замена стали не всегда возможна с использованием арматуры из стеклопластика и требуемых норм проектирования.

При проектировании арматуры из стеклопластика требуются следующие коды проектирования:

Канада

CSA

ISIS

США

ACI

  • ACI 440.1R-06

  • ACI 440R-07

  • ACI 440.5-08

  • АКИ 440.6-08

  • ААШТО ГФРП-1

На видео выше мы видели, что MST-BAR поднялся до 250 кН по сравнению со стальной арматурой, оторвавшейся от бетона при 78 кН, но почему?

  • MST-BAR не изменяет площадь поперечного сечения при растяжении

  • Коэффициент Пуассона очень низкий в MST-BAR

  • Интегральные ребра MST-BAR так хорошо сцепляются с цементным материалом

Как мы можем этим воспользоваться?

Чтобы предотвратить соскальзывание стальной арматуры с бетона, вам необходимо создать анкерное крепление, которое часто в стальной арматуре означает изгиб хвостовой части стержня в форме крюка или L-образной формы.

С MST-BAR № 5 (15 мм) с длиной заделки 100–120 мм вы можете достичь допустимого усилия отрыва 160 кН (36000 фунтов силы), что примерно на 65% выше, чем предел текучести стальной арматуры. Это означает, что прямой MST-BAR может иметь на 65% большую пропускную способность, чем сборный гнутый кусок стального стержня.

Мы что-то забыли? спросите нашего эксперта или просмотрите ответы на часто задаваемые вопросы

Дороги общего пользования — сталь против арматуры Gfrp? , Сентябрь / октябрь 2008

Роджер Х.Л. Чен, Чон-Хун Чой, Хота В. Ганга Рао и Питер А. Копач

Полевые исследования показывают, что полимер, армированный стекловолокном, обеспечивает низкую стоимость жизненного цикла для армирования бетонных покрытий.

Этот грузовик едет по первому в стране испытательному участку GFRP-CRCP, построенному на участке Маршрута 9 в Западной Вирджинии. Исследовательская группа сделала эту фотографию во время полевого наблюдения 31 января 2008 года.

Полимерная арматура, армированная стекловолокном, является одним из новых продуктов на рынке, который может предложить ряд преимуществ для транспортной отрасли. Поскольку он легкий и не подвержен коррозии, затраты на строительство должны быть ниже, а тротуары должны служить дольше. Однако лабораторные исследования предлагают ограниченную помощь в определении реальных характеристик арматурных стержней из армированного стекловолокном полимера (GFRP) в непрерывно армированных бетонных покрытиях (CRCP).Причины: трудности моделирования полевых граничных условий, таких как трение от основания и удержания от обочин или прилегающих тротуаров; изменения окружающей среды; транспортные нагрузки; и возможные варианты строительных работ. Чтобы преодолеть эти ограничения и лучше понять поведение GFRP-CRCP, исследователи обратились к полевым исследованиям.

При поддержке и сотрудничестве Федерального управления шоссейных дорог (FHWA), Департамента транспорта Западной Вирджинии (WVDOT) и подрядчиков исследователи Университета Западной Вирджинии (WVU) недавно завершили первую в стране испытательную секцию GFRP-CRCP, а также стальную конструкцию. Тестовый сегмент CRCP для изучения характеристик двух материалов арматуры.Сегменты для испытаний из стеклопласта и стали расположены на шоссе 9 в Мартинсбурге, в северо-восточном углу Западной Вирджинии.

«Использование арматурных стержней из стеклопластика вместо обычной стальной арматуры в CRCP, как было продемонстрировано прошлой осенью [2007] в Западной Вирджинии, дает некоторые интересные соображения относительно производительности», — говорит Сэм Тайсон, инженер по бетонным покрытиям, FHWA. «Во-первых, коррозионная стойкость стержней из стеклопластика делает их привлекательными по очевидным причинам, особенно в штате, где зимние условия требуют частого применения антиобледенителей.Кроме того, высокая прочность на растяжение и небольшой удельный вес GFRP, его соответствующие термические характеристики и соответствующие характеристики жесткости обеспечивают уникальный подход к проектированию и изготовлению CRCP. Наконец, поскольку GFRP не является магнитным, его использование на бетонных покрытиях, где должны быть установлены различные устройства контроля трафика и дорожных сборов, может быть выгодным ».

Эти качества являются явными преимуществами GFRP, но исследование WVU не привело к заключению относительно рабочих характеристик, включая коррозионную стойкость, поскольку прошло недостаточно времени для получения достаточных результатов.Однако исследование показало, что CRCP, армированные стекловолокном, можно построить с низкими затратами и без дополнительных затрат времени на строительство.

Обзор исследования

WVDOT выделила 610-метровую (2000 футов) двухполосную секцию на Маршруте 9 в качестве испытательного полигона для исследования. План эксперимента включал два раздела CRCP для сравнения. Сегменты из стеклопластика и армированные сталью имеют длину 305 метров (1000 футов) и толщину 25 сантиметров (10 дюймов). WVU уточнил, что оба сегмента должны были быть построены из бетона, содержащего крупнозернистый известняк, размещенного на цементно-стабилизированном основании.

Подрядчик построил две экспериментальные секции CRCP 25 сентября 2007 г., и WVU непрерывно контролировал их в течение первых 3 дней, чтобы исследовать поведение растрескивания в раннем возрасте. По мере того, как бетон застывал в течение этого периода, исследователи WVU зафиксировали изменения в деформации бетона, деформации арматуры и температуре. Исследователи WVU обнаружили, посчитали и измерили трещины раннего возраста, чтобы оценить расстояние и ширину. Затем исследовательская группа проанализировала и сравнила данные, а также дополнительные данные о трещинах, полученные примерно через 1 и 4 месяца после строительства.

Члены бригады подрядчика укладывают слой земляного полотна во время строительства испытательных участков.

Детали конструкции

Каждая секция CRCP состоит из двух проезжих полос с асфальтированными обочинами. Слой земляного полотна, состоящий из обработанного цементом заполнителя, обеспечивает равномерную поддержку секциям CRCP. Поверх земляного полотна в качестве подосновы используется открытый грунт со свободным дренированием с заполнителем № 57.Подрядчик стабилизировал основание с помощью портландцемента типа 1, чтобы получить устойчивую к эрозии стабилизированную опору под обеими секциями.

Для секции, армированной стеклопластиком, проект предусматривал использование продольных стержней из стеклопластика №7. Для стального профиля в проекте предусмотрена стальная продольная арматура №6. В обоих испытательных сегментах подрядчик разместил продольные стержни посередине плиты.

Для поперечной арматуры, которая поддерживает продольную арматуру, подрядчик разместил поперечные стержни из стеклопластика №6 и №5 из черной стали в точке 1.Расстояние 2 метра (4 фута). Подрядчик поместил поперечную арматуру на пластиковые стулья для арматуры из стеклопластика и стальные стулья для стальной арматуры. Стулья — это опоры, удерживающие арматуру в правильном положении во время укладки бетона.

Обеспечение адекватной прочности сцепления в нахлестанных стыках продольных арматурных стержней важно для предотвращения расширения трещин и последующего разрушения конструкции. Следовательно, требуется минимальная длина стыка, в 40 раз превышающая диаметр арматурного стержня для стеклопластика и в 25–30 раз для стали, с как минимум тремя надежными стяжками для каждого стыка внахлест.Для стальной арматуры использовалась обычная стальная стяжка, а для стеклопластика — пластиковые стяжки. Подрядчик также расположил стыки внахлест на тротуаре в шахматном порядке, чтобы предотвратить локальные деформации в плите.

Подрядчик использовал три оконечных соединения балки с широкими полками между двумя испытательными участками и примыкающими к нему полосами дорожек из обычного сочлененного бетонного покрытия (JPCP) на Маршруте 9. Соединение с широкими полками балки спроектировано таким образом, чтобы компенсировать, а не ограничивать движение свободного конца. плиты CRCP.В системе соединения балок с широкими полками нижняя часть балки частично заделана в железобетонную шпалевую плиту, большую горизонтальную плиту, которая поддерживает концы примыкающих друг к другу тротуаров. Шпальная плита под стыком обеспечивает большую опорную поверхность и дополнительную опору для свободных концов. Стальной фланец помогает защитить углы от выкрашивания и способствует передаче нагрузки через соединение.

Бетонные смеси и свойства армирования

Для обоих тестовых участков подрядчик использовал один и тот же состав бетонной смеси в соответствии с разделом 601 Стандартных спецификаций и процедур по материалам MP 711 Отделения автомобильных дорог Западной Вирджинии.03.23 для портландцементного бетона. Подрядчик использовал портландцемент типа I в бетонной смеси вместе с летучей золой класса F. Крупный заполнитель представлял собой известняк № 57, а мелкий заполнитель — природный песок. Подрядчик также включил воздухововлекающую добавку и водопонижающую добавку. Соотношение вода / цемент составило 0,42. Проектировщики WVU указали, что бетонная смесь имеет относительно высокую прочность бетона, чтобы избежать чрезмерно узких промежутков между трещинами.

На этой фотографии показаны сборки сплошной арматуры с арматурой из стеклопластика.

Здесь показаны сборки непрерывной арматуры со стальной арматурой.

Свойства арматурного стержня из стеклопластика, предоставленные производителем из стеклопластика, включают модуль продольной упругости (показатель деформации арматуры) 40,8 гигапаскалей, ГПа (5,92 на 106 фунтов на квадратный дюйм, фунт / кв. Дюйм) и предел прочности при растяжении 620,6 мегапаскалей. , МПа (90 тысяч фунтов на квадратный дюйм) для арматуры №6 и 586.1 МПа (85 тысяч фунтов / кв. Дюйм) для арматуры №7. Арматура из стеклопластика состоит из стекловолокна из алюмосиликата кальция и матрицы на основе винилэфирной смолы, модифицированной уретаном, с минимальным содержанием волокон 70 процентов по массе. Подрядчик использовал типичную деформированную арматуру из стали марки 60 для секции сталь-CRCP.

Строительство

Укладка бетона для секции сталь-CRCP началась примерно в 9:00 при температуре окружающей среды около 20 градусов по Цельсию (68 градусов по Фаренгейту). Подрядчик завершил строительство секции сталь-CRCP примерно в 12:30 p.м. а затем началась бетонная укладка секции GFRP-CRCP.

Свойства тестовых участков

Товар

CRCP, армированный сталью

CRCP, армированный стеклопластиком

Ширина перекрытия

7,32 метра (24 фута): две полосы движения длиной 3,66 метра (12 футов)

7,32 метра (24 фута): две полосы движения длиной 3,66 метра (12 футов)

Ширина уступа для асфальта

3.Ширина 05 метров (10 футов) рядом с правой полосой движения;

Ширина 1,22 м (4 фута) рядом с полосой для обгона

Ширина 3,05 метра (10 футов) рядом с правой полосой движения;

Ширина 1,22 м (4 фута) рядом с полосой для обгона

Продольная арматура

Арматурный стержень №6 с шагом 15,24 см (6 дюймов)

# 7 арматура на 15.Расстояние 24 см (6 дюймов)

Диаметр продольной арматуры

1,91 см (0,75 дюйма)

2,22 см (0,875 дюйма)

Подбаза

10.Открытый градиентный дренажный фундамент толщиной 16 сантиметров (4 дюйма), стабилизированный с содержанием цемента 9062 кг / м3 (15065 фунтов / ярд3)

Земляное полотно

Земляное полотно из обработанного цементом заполнителя толщиной 27,31 см (10,75 дюйма)

Земляное полотно из обработанного цементом заполнителя толщиной 27,31 см (10,75 дюйма)

Требуемая прочность бетона на сжатие

40.7 мегапаскалей, МПа (5900 фунтов на квадратный дюйм, фунт / кв. Дюйм)

40,7 МПа (5900 фунтов на кв. Дюйм)

Продольный коэффициент теплового расширения

11,88 микродеформации на градус Цельсия, мкэ / ° C (6,6 микродеформации на градус Фаренгейта, мкэ / ° F)

6,58 мкэ / ° C (3,66 мкэ / ° F)

По мере продолжения укладки температура поверхности основания увеличивалась из-за постоянного пребывания на солнце.Подрядчик измерил температуру поверхности основания около 39 ° C (103 ° F) в 13:30. Чтобы избежать ухудшения обрабатываемости, связанного с температурой, из-за того, что заполнители сухого основания поглощают воду из бетонной смеси, и нежелательного растрескивания из-за ускоренной потери влаги, подрядчик перед укладкой бетона разбрызгивал воду на основание из спринклерной машины. Рабочие завершили обе секции CRCP примерно в 18:30, когда температура окружающей среды была около 29 ° C (85 ° F).

Строительные бригады укладывали секции CRCP с помощью машины для укладки скользящей формы.Машина смогла уместить всю ширину дорожного покрытия. Автобетоносмесители доставили бетон, а ленточный конвейер распространил его по центру полосы тротуара. Бригады закончили поверхность тротуарной плитки сразу после проезда тротуарной машины.

После укладочной машины машина для текстурирования / полимеризации выполнила две дополнительные операции. Машина протащила ткань мешковины, чтобы создать микроструктуры на готовой поверхности, а затем тонировала поверхность, чтобы получить макротекстуры, чтобы обеспечить адекватное трение для сухой и влажной погоды.Затем машина для текстурирования / отверждения распылила отверждающий состав на текстурированную поверхность, чтобы замедлить испарение воды из бетона.

На этой первой из серии из четырех фотографий показана схема усиления шпальной плиты во время строительства концевого соединения широкополочной балки.

Здесь широкополочная балка частично заделана в плиту шпалы.

На этой третьей фотографии показаны сборки сплошной стальной (слева) и стеклопластиковой арматуры (справа), размещенные на плите шпалы.

На этой четвертой фотографии показана завершенная система оконечных соединений широкополочной балки, соединяющая секции сталь-CRCP и GFRPCRCP.

Экспериментальное оборудование и мониторинг

Исследователи WVU и подрядчики протестировали бетонную смесь, чтобы измерить ее свойства как в свежем, так и в затвердевшем состоянии.Подрядчики взяли образцы бетона с поля и немедленно измерили температуру, осадку и содержание воздуха. В то же время исследователи WVU отлили 30 цилиндрических образцов бетона для испытания прочности на сжатие, прочности на растяжение и модуля упругости в разном возрасте, а также отлили три призматических образца для испытания на усадку при высыхании.

инженеры WVDOT также взяли керны примерно через 4 месяца после строительства; средняя прочность на сжатие керна была почти на 40 процентов выше, чем у 28-дневного образца, как для секции сталь-CRCP (два образца керна), так и для секции GFRP-CRCP (три образца керна), хотя прочность на сжатие GFRP была немного выше чем у стали.

Примерно на середине обеих секций CRCP исследователи установили термопары и тензодатчики, чтобы исследовать поведение каждого CRCP в первые 3 дня с точки зрения температуры бетона, деформации бетона и деформации арматуры. Чтобы установить контрольную точку и измерить деформации в продольном направлении, исследователи создали известное искусственное местоположение поперечной трещины. Исследователи WVU разместили индуктор трещин поперек каждой полосы CRCP в месте, где был установлен набор термопар и тензодатчиков.Исследователи прикрепили пластиковую трещину в форме обратной Т-образной формы к поверхности основания.

Для измерения температуры на месте команда WVU установила 18 термопар на разной глубине и в продольном направлении. Комплект термопары состоял из трех термопар и металлической стойки. Исследователи привязали термопары к стойке вертикально, что позволило проводить измерения температуры на расстоянии 5, 13 и 20 сантиметров (2, 5 и 8 дюймов) от верха тротуарной плиты, и приклеили четыре ножки металлической стойки к подставке. поверхность основания.

Исследовательская группа разместила пять комплектов термопар в различных продольных точках в секции GFRP-CRCP и один комплект в секции сталь-CRCP. Исследователи контролировали температуру окружающей среды (с помощью стандартного термометра), поверхности (с помощью инфракрасного термометра) и внутренней температуры (с помощью термопар) бетона каждые 2–4 часа, чтобы получить полное представление о колебаниях температуры в разных местах в течение время под воздействием гидратации бетона и температуры окружающей среды.

Исследователи установили восемь тензодатчиков бетонной заделки, чтобы измерить изменения деформации бетона с течением времени. Чувствительная сетка погружных манометров, заключенная в полимербетон, имеет активную измерительную длину около 10 сантиметров (4 дюйма). Набор датчиков для заливки включал в себя два датчика и металлическую стойку, соединенных вместе для измерения деформаций в двух вертикальных точках: 5 см (2 дюйма) сверху и снизу плиты дорожного покрытия.

Машина для укладки тротуарной плитки.

Чтобы избежать каких-либо эффектов от края плиты, исследователи разместили все комплекты датчиков на расстоянии около 1,2 метра (4 фута) от края плиты. Были использованы две системы сбора данных, одна для секции сталь-CRCP, а другая для секции GFRP-CRCP, для сбора данных о деформации бетона каждые 10 минут в течение первых 3 дней после укладки бетона.

Исследователи прикрепили к арматуре 10 универсальных тензорезисторов для измерения продольных деформаций арматуры в стальных профилях и секциях из стеклопластика и CRCP.Тензодатчики были самокомпенсированы по отношению к материалам арматуры из стали или стеклопластика, так что нежелательные тепловые мощности, возникающие из-за несоответствия теплового расширения между тензодатчиком и материалом арматуры, могли быть минимизированы. В каждом разделе, чтобы избежать потенциальной потери полевых данных из-за неисправности датчика, исследователи установили три тензорезистора арматуры в том месте, где возникла поперечная трещина, где возникло максимальное напряжение арматуры. Исследователи также установили два датчика на 25 и 0 сантиметров.9 метров (3 фута) в продольном направлении от наведенной поперечной трещины.

Чтобы защитить провода от дорожек мощения, исследователи собрали их в электрический канал и вложили его в траншею, вырытую в основании. Кабель вёл провода в электрические шкафы, соединяющиеся со станцией сбора данных. Провода термопар из двух дополнительных точек рядом с основной станцией сбора данных в секции GFRP также были собраны в небольшие электрические кожухи, которые были встроены в плечевое основание.Когда соединители проводов не использовались, исследователи держали их внутри корпусов.

Здесь рабочие распределяют бетон по основанию.

Исследователи провели визуальные исследования расстояния и ширины поперечных трещин в течение первых 3 дней, а затем 1 месяца после укладки бетона. Команда наблюдала за 122-метровой (400-футовой) средней частью и 55-метровой (180-футовой) концевой частью (суставной частью) в каждой секции CRCP.Они классифицировали все трещины в исследуемых областях по месту и дате их появления.

Исследователи наблюдали трещины на гладкой поверхности кромки дорожного покрытия, которые имели более четкий вид трещин. Они измерили ширину трещин, в частности, от верхнего угла кромки дорожного покрытия, что дает завышенные (или консервативные) значения по сравнению со значениями для проезжей части. Наибольшие изменения объема бетона обычно происходили в верхнем углу кромки дорожного покрытия, где было меньше ограничений от трения арматуры и основания.Изменения ширины трещины в этом месте должны быть больше, чем при измерении в других местах.

Результаты экспериментов через 7, 28 и 38 дней и 4 месяца

Тест

CRCP, армированный сталью

CRCP, армированный стеклопластиком

Средняя прочность на сжатие через 7 дней (испытано в WVU)

19,7 МПа (2850 фунтов на кв. Дюйм)

19.7 МПа (2850 фунтов на кв. Дюйм)

Средняя прочность на сжатие через 28 дней (испытано в WVU)

26,9 МПа (3900 фунтов на кв. Дюйм)

26,9 МПа (3900 фунтов на кв. Дюйм)

Средняя прочность на сжатие через 4 месяца (проверено в WVDOT и WVU)

37,6 МПа (5450 фунтов на кв. Дюйм)

37,9 МПа (5,500 фунтов на кв. Дюйм)

Трещины в средней части через 3 дня

45

19

Трещины средней части через 38 дней

75

40

Среднее расстояние между трещинами в средней части за 3 дня

2.88 метров (9,44 фута)

6,91 метра (22,67 футов)

Среднее расстояние между трещинами в средней части через 38 дней

1,71 метра (5,61 фута)

3,31 метра (10,86 футов)

Средняя ширина трещины в средней части за 3 дня

0,025 см (0,01 дюйма)

0,043 сантиметра (0.017 дюймов)

Средняя ширина трещины в средней части через 38 дней

0,028 см (0,011 дюйма)

0,053 см (0,021 дюйма)

Максимальная ширина трещины на 31 января 2008 г.

0,058 см (0,023 дюйма)

0,086 см (0,034 дюйма)

Чтобы измерить ширину трещины, исследователи использовали увеличительное стекло и компаратор трещин, который представляет собой прозрачную линейку с нанесенными градуировками разной ширины.Трещина из GFRP-CRCP, наблюдаемая на третий день и снова через 125 дней, показала максимальную ширину трещины на испытательном участке GFRP-CRCP, равную 0,058 сантиметра (0,023 дюйма) на третий день и 0,086 сантиметра (0,034 дюйма) на 125-й день.

Наблюдение за расстоянием и шириной трещин в раннем возрасте

Все трещины в бетоне были поперечными, продольных трещин не наблюдалось. Ожидаемое отсутствие продольных трещин связано с проектированием продольного стыка, который ограничивает ширину полосы движения до 3.7 метров (12 футов), что снижает вероятность появления трещин в этом направлении. Исследователи оценили максимальные, средние и минимальные значения расстояния между поперечными трещинами и ширины трещин для каждой секции CRCP для каждой даты, когда было произведено измерение. После строительства команда проследила ширину каждой трещины для четырех разных возрастов, чтобы наблюдать изменения ширины трещины с течением времени.

Исследователи WVU установили датчик растрескивания и тензодатчики в секции GFRPCRCP, как показано здесь.

Резкое уменьшение среднего расстояния между трещинами произошло между первым и вторым днями, потому что ряд трещин образовался из-за сочетания большого изменения объема бетона и низкой прочности бетона, которые присущи этому раннему возрасту. . Расстояние между трещинами для секции GFRP-CRCP было больше, чем для секции стали-CRCP, из-за более низкой жесткости арматуры GFRP. Использование арматуры из стеклопластика в качестве арматуры может уменьшить нежелательное развитие напряжений в бетоне, вызванное несоответствием жесткости и теплового расширения между стальной арматурой и бетоном.Жесткость стали примерно в шесть раз больше, чем у бетона или стеклопластика. Улучшенная совместимость может быть полезной в зависимости от других факторов проектирования CRCP для контроля ширины трещин и расстояния между ними, таких как уменьшение напряжений, окружающих арматуру в месте трещины, которые могут вызвать выкрашивание или пробой в CRCP. Как и ожидалось, с концевыми соединениями, которые допускают движение свободного конца плиты CRCP, средний интервал трещин в соединительном сечении был больше, чем в среднем сечении.

Что касается ширины трещины, то исследователи наблюдали неоднозначные результаты.Ширина осталась неизменной или даже уменьшилась на вторые сутки, а затем начала увеличиваться. Трещины, обнаруженные в первый день, обычно имели большую ширину, в то время как дополнительные трещины, обнаруженные в более позднем возрасте, имели меньшую ширину из-за меньшего изменения объема бетона. «Мы полагаем, что сдерживающее напряжение в бетоне, вероятно, было снято, когда возникли дополнительные трещины, сужая ширину существующих трещин», — говорит Уильям «Билл» Шанклин, инженер-строитель отдела автомобильных дорог Западной Вирджинии.

Исследователи поместили этот тензодатчик, установленный непосредственно над источником трещин в секции CRCP, армированной сталью.

На второй день исследователи обнаружили больше новых трещин, чем в более поздние дни. С третьего дня и позже ширина трещины начала медленно увеличиваться из-за непрерывной, но менее резкой усадки бетона. Несмотря на то, что ширина трещины для секции GFRP-CRCP была больше из-за большего расстояния между трещинами и более низкой жесткости арматуры, она по-прежнему соответствует критерию ограничения ширины трещины Американской ассоциации государственных служащих автомобильных дорог и транспорта (AASHTO) — # 0 .1 сантиметр (0,04 дюйма), что имеет первостепенное значение для обеспечения надлежащего сцепления с заполнителем и обеспечения целостности дорожного покрытия. Кроме того, ширина трещин в сечении стыка оказывается меньше, чем в среднем сечении, из-за более низких удерживающих напряжений, возникающих в сечении стыка.

Показанный здесь набор термопар установлен в секции GFRP-CRCP.

В настоящее время обе секции CRCP открыты для движения.Согласно полевым наблюдениям 31 января 2008 г., максимальная ширина трещины для секции GFRP-CRCP и секции стали-CRCP соответствовала текущему ограничивающему критерию AASHTO, даже несмотря на то, что руководство основывалось на опыте и понимании, полученном при использовании армированной стали CRCP. Критерии ограничения, такие как расстояние между трещинами, ширина трещин и уровень напряжения арматуры для CRCP, армированного стеклопластиком, все еще нуждаются в разработке.

Предложения для будущих исследований

Необходимы дополнительные исследования эффективности CRCP, усиленной GFRP, в ответ на нагрузку трафика.Уроки, извлеченные из этого краткосрочного полевого исследования, предполагают, что необходимы дальнейшие исследования для дальнейшего улучшения конструкции CRCP, усиленного GFRP, если такое улучшение окажется необходимым после длительной нагрузки трафика. Периодические наблюдения за эффективностью передачи нагрузки в трещинах, расстоянием между трещинами и шириной под нагрузкой, профилем ширины трещины по всей глубине плиты под нагрузкой и повреждениями дорожного покрытия необходимы для получения всестороннего понимания общих характеристик CRCP, армированного стекловолокном.Это понимание в конечном итоге поможет в разработке стандартных руководящих принципов проектирования для будущих CRCP, усиленных GFRP.

Исследователи поместили эти три набора тензодатчиков в секцию GFRP-CRCP.

Что касается затрат на жизненный цикл CRCP, текущее ожидание состоит в том, что затраты на секцию из стеклопластика будут значительно ниже, чем на стальные секции. Затраты на долгосрочное обслуживание будут ниже для GFRP-CRCP, чем для стали-CRCP, потому что не будет структурных повреждений, вызванных коррозией арматуры.

Два исследователя WVU измеряют температуру, зарегистрированную небольшим электрическим кабелепроводом, встроенным в основание плеча.

Данные о показателях раннего возраста из секции полевых испытаний GFRP-CRCP выгодно отличаются от данных из секции стали-CRCP. При дополнительном опыте строительства с использованием CRCP, армированного стекловолокном, и улучшении конструкции из стеклопластика-CRCP, должна быть достигнута даже лучшая производительность.

Исследователи поместили шариковую ручку на секцию GFRP-CRCP, чтобы показать масштаб ширины этой трещины 0,058 см (0,023 дюйма) на третий день (28 сентября 2007 г.) после укладки бетона. Ржаво-оранжевая краска под ручкой отмечает местоположение каждой трещины, обнаруженной в первый день после укладки бетона, а идентификационный номер написан на красной ленте.

Сечение GFRP-CRCP показало ширину трещины 0.086 см (0,034 дюйма) через 128 дней после размещения (31 января 2008 г.). Эта трещина такая же, как на предыдущем фото. Когда обочина была установлена, подрядчик удалил всю краску и ленты, но места были записаны по номерам строительной станции.

Роджер Х. Л. Чен, доктор философии, , профессор гражданского строительства в Университете Западной Вирджинии (WVU), Моргантаун. Он активно участвовал в исследованиях в области структурной динамики, неразрушающей оценки (NDE), динамического взаимодействия грунта и конструкции и определения характеристик материала бетона, композитов, древесины и керамических материалов в течение примерно 25 лет, а также имеет текущие исследовательские проекты в области CRCP, армированной стекловолокном. , самоуплотняющийся бетон, оценка мостов для транспортировки угля и диагностика термобарьерных покрытий.Он входит в несколько технических комитетов Американского института бетона, Американского общества инженеров-строителей и Американского общества неразрушающего контроля (ASNT), связанных с бетоном, неразрушающим контролем, FRP, динамикой и экспериментальным анализом. Он получил докторскую степень. из Северо-Западного университета и является научным сотрудником ASNT.

Jeong-Hoon Choi — старший научный сотрудник Департамента гражданской и экологической инженерии WVU. Он получил степень бакалавра гражданского строительства в университете Ханьян, Республика Корея, и степень магистра гражданского строительства в WVU.Его доктор философии. исследования связаны с разработкой и применением GFRP-CRCP.

Хота В. Ганга Рао — профессор гражданского строительства и директор Центра построенных сооружений в WVU. Он является членом ASCE и входит во многие технические комитеты профессиональных обществ.

Питер А. Копац является старшим инженером-исследователем в группе проектирования дорожного покрытия и моделирования характеристик в Управлении исследований и развития инфраструктуры FHWA. Он имеет почти 40-летний опыт работы на автомагистралях, в том числе 31 год в FHWA.Компания Kopac руководила, контролировала и участвовала в многочисленных исследованиях, касающихся бетонных и бетонных покрытий.

Это исследование финансируется FHWA через Центр построенных сооружений в WVU. Для получения дополнительной информации свяжитесь с Роджером Х. Л. Ченом по телефону 304-293-3031, доб. 2631 или [email protected], Чон-Хун Чой, тел. 304-293-3031, доб. 2434, [email protected], Hota V. GangaRao, 304-293-3031, доб. 2634, [email protected], или Питер А. Копач, тел. 202-493-3151, питер[email protected]. См. Также www.fhwa.dot.gov/pavement/pccp/pubs/05081/05081.pdf.

Разница между стекловолокном и армированным волокном пластиком (FRP)

Если вы зайдете в Интернет и прочтете о трубах из стекловолокна и других продуктах, вы можете найти множество статей и сообщений в блогах, в которых используются термины «стекловолокно» и «волокно». -армированный пластик (FRP) »взаимозаменяемо. Они могут упомянуть об использовании специальных композитов из стекловолокна и просто назвать их своей собственной версией стекловолокна или FRP.

Одна школа мысли утверждает, что между ними нет разницы. Сторонники этого мнения утверждают, что FRP — это просто еще один способ для некоторых производителей предложить «лучшую» или «более продвинутую» версию стекловолокна. Но говорят, что стеклопластик и стеклопластик — это одно и то же.

Однако с технической точки зрения это не совсем точно.

Что такое стекловолокно?

Технически стекловолокно получается при плавлении прядильного стекла для получения стекловолокна.Это сам по себе может быть конечным продуктом, который можно использовать для изоляции, хотя использование стекла делает его хрупким.

Но волокна также могут использоваться в композитных материалах. Композит — это смесь материалов, часто с «матричным» и «армирующим» материалом. Матрица может быть из пластика (также известного как полимер), керамики или металла. Эта матрица затем укрепляется и армируется стекловолокном (или стекловолокном).

Многие также называют это «стекловолокном», потому что матрица армирована стекловолокном.Но в настоящее время некоторые используют термин «стеклопластик», когда производитель использует такие разновидности пластика, как винил, полиэстер или эпоксидная смола. Этот GRP отличает его от FRP.

Что такое FRP?


FRP означает полимер, армированный волокном. Полимер — это химическое соединение, молекулы которого имеют форму длинной цепи. Натуральный полимер включает каучук, но есть и синтетические полимеры. Пластичные синтетические полимеры называют термопластами, а неизменно жесткие — термореактивными.

Затем полимерную матрицу армируют волокном. Ключевое отличие здесь в том, что используемые волокна могут быть стеклянными (стекловолокно) или могут быть изготовлены из других материалов. Вместо этого производитель может использовать волокна углерода или арамида или даже натуральные материалы, такие как целлюлоза. В качестве волокон можно использовать даже графит и бор.

Заключение
Стеклопластик

все чаще используется в строительстве и производстве, потому что он, как правило, довольно прочен, даже если он легкий. Во многих случаях он может быть в 7 раз прочнее стали и даже вдвое прочнее алюминия, который уже славится своей прочностью.FRP и стекловолокно еще прочнее.

Поскольку производители могут выбирать материалы, которые вы используете для матрицы и для армирования, у вас может быть много типов FRP. Многие производители предлагают свои собственные формулы, поэтому их стеклопластик может иметь особые характеристики. Они могут обладать исключительной прочностью и устойчивостью к вибрации и ударам. Они также могут быть чрезвычайно устойчивы к воздействию тепла и химикатов. Все зависит от конкретной используемой формулы.

Но технически стекловолокно и FRP — это не одно и то же.В FRP вообще не обязательно использовать стекловолокно, поскольку вместо него можно использовать углеродные или целлюлозные волокна.

Так как мы это проясним? Можно использовать аналогию с собаками и собаками. Вы можете использовать термин
«клыки» для собак, потому что это то, что они из себя представляют. Но другие собаки включают волков, лисиц и койотов. Вы можете также называть этих животных собаками, но технически они сильно отличаются от домашних собак. Собаки — собаки, но не все собаки.

То же самое и со стекловолокном.Стекловолокно или армированные стекловолокном полимеры — это разновидность стеклопластика. Но не все FRP — это стекловолокно, потому что не все из них используют стекловолокно в качестве арматуры. Стеклопластики — это стеклопластики, но не все стеклопластики.

Как использовать панели, армированные стекловолокном (FRP)

Панели, армированные стекловолокном, или FRP, представляют собой тонкие гибкие пластиковые панели, изготовленные из прочной полиэфирной смолы, армированной стекловолокном. Они используются на стенах и потолках и могут быть установлены непосредственно на гипсокартон, дерево, бетонный блок и многие другие твердые поверхности.Системы FRP включают пластиковую накладку для создания непрерывной прочной, устойчивой к царапинам поверхности, которую легко чистить, а также устойчивой к плесени и пятнам. Панели можно даже промыть из шланга для очистки. Все эти качества делают FRP отличным материалом для покрытия стен и потолков на кухнях ресторанов, общественных ванных комнатах, медицинских учреждениях, зонах пищевой промышленности и во многих других средах, требующих частой глубокой очистки.

Преимущества панелей, армированных стекловолокном

FPR — это недорогая, простая в установке система, которая превращает гипсокартон или другие поверхности в Superwall :

  • Прочный устойчивый к царапинам материал
  • Легко очищается обычными моющими средствами, аппаратами высокого давления или даже паром.
  • Легкая, гибкая панель, простая в установке
  • Можно установить с помощью клея или крепежа, или и того, и другого
  • Максимальная санитарная защита
  • Повышенная химическая стойкость
  • Устанавливается поверх любого количества материалов с использованием основных и технических приемов
  • Высокая ударопрочность от разрушения и царапин
  • Превосходная гибкость
  • Может сэкономить деньги по сравнению с другими строительными материалами
  • Помогает предотвратить рост плесени, не ржавеет и не разъедает
  • Идеально для покрытия нового гипсокартона или старых поврежденных поверхностей стен и потолка.

Приложения FRP

Стеновые панели FRP идеально подходят для кухонь, туалетов, столовых, офисов, классных комнат, больничных палат, коридоров, градирен, зон отдыха и других второстепенных пространств.Одним из наиболее важных применений панелей FRP является то, что они могут быть установлены поверх нового и существующего гипсокартона или использованы для ремонта поврежденных поверхностей.

FRP FAQ

Q: Можно ли укладывать армированные волокном панели на большинство оснований?

О: Армированные стекловолокном панели можно устанавливать практически на любое основание, при условии, что поверхность сухая и устойчивая. Система панелей не позволит поверхности высохнуть, поэтому FRP не следует устанавливать там, где влага должна уходить с исходной поверхности.

Q: Как установить FRP поверх гипсокартона?

О: Стандартный метод установки FRP на гипсокартон — использование мастичного клея на водной основе. Если требуются крепежные элементы, панели можно закрепить пластиковыми заклепками, размещенными с рекомендованными интервалами. Накладки на молдинги между панелями, а также на внутренних и внешних углах обычно устанавливаются с помощью металлических скоб. Для максимальной водонепроницаемости панели должны быть заделаны силиконовым герметиком на всех стыках отделки.

Q: Как установить FRP поверх негипсокартонных материалов?

A: FRP может быть установлен на большинстве оснований с помощью клея и / или заклепок. Мастичный клей на водной основе подходит для некоторых окрашенных поверхностей из гипсокартона или дерева. Для глянцевых, шероховатых или не идеально ровных поверхностей, таких как бетонный блок или керамическая плитка, рекомендуется клей на масляной основе. Для заклепок необходимо просверлить в подложке пилотные отверстия. Крепежные детали обычно не требуются, если клей хорошо склеивается.На твердых основаниях, таких как плитка или блоки, декоративные молдинги могут быть приклеены к основанию или установлены с помощью закаленных стальных гвоздей.

Q: Какие инструменты требуются для установки FRP?

О: Лучший инструмент для резки стеклопластика — электрические ножницы. FRP также можно разрезать лобзиком или циркулярной пилой, но пилы создают гораздо больше пыли, чем ножницы. Для облегчения монтажа помогает отшлифовать края панелей PRP, которые войдут в ранее установленную декоративную опалубку. Быстрый проход с ручным шлифовальным блоком и крупной наждачной бумагой ударяет по краю настолько, что позволяет панели легко проскользнуть в канал формовки.Молдинги можно разрезать авиационными ножницами или торцовочной пилой. Электрический степлер ускоряет установку молдинга на гипсокартон. Для установки заклепок потребуется дрель и молоток. Клей для панелей можно наносить зубчатым шпателем (входит в комплект некоторых клеев) или самодельным зубчатым шпателем, вырезанным из куска стеклопластика.

Q: В каком размере производится FRP?

О: FRP выпускается в виде панелей шириной 4 фута и стандартной длины 8, 9, 10 и 12 футов. Накладки на молдинги бывают длиной 9, 10 и 12 футов.Панели FRP имеют толщину около 0,09 дюйма и вес около 12 унций на квадратный фут. Подставка из 100 панелей размером 4 на 8 футов весит приблизительно 2 000 фунтов.

Композитная арматура по сравнению со стандартной стальной арматурой

Q. Что будет со стекловолокном и арматурой из углеродного волокна? Я узнал об этих вариантах композитной арматуры недавно, когда услышал, как подрядчик упомянул, что их стоимость теперь сопоставима со стандартной стальной арматурой. Но я не уверен, насколько точен мой источник, и когда вы использовали бы один vs.другой. И где в эту смесь вписалась бы арматура с эпоксидным покрытием?

A. Билл Палмер, редактор woc360.com , член Американского института бетона, лицензированный профессиональный инженер и бывший редактор Concrete Construction , отвечает: Армирование из углеродистой стали использовалось для более века, чтобы обеспечить прочность на разрыв железобетона. Это дополнительное армирование необходимо, потому что прочность бетона на растяжение (при прямом растяжении) составляет всего от 10% до 15% от его прочности на сжатие, поэтому бетон под давлением 3000 фунтов на квадратный дюйм может иметь предел прочности на разрыв всего 300 фунтов на квадратный дюйм по сравнению со сталью марки 60, которая имеет предел прочности на разрыв 60 000 фунтов на квадратный дюйм.

Когда к бетонной балке прилагается нагрузка, она отклоняется или изгибается, и бетон в верхней половине балки сжимается, а нижняя половина находится в растяжении. Сталь кладется около нижней части балки, и когда бетон, окружающий сталь, трескается — хотя вы можете даже не видеть трещины — сталь обеспечивает прочность на растяжение.

Обратной стороной стали в бетоне является то, что со временем влага, хлориды и кислород проникают в бетон и вызывают коррозию стали.Если коррозия достаточно сильная, бетонная балка (или колонна, или стена) теряет прочность на растяжение или изгиб. Это особенно проблема в конструкциях, которые подвергаются воздействию солей для защиты от обледенения, таких как мосты или гаражи.

Фото любезно предоставлено Owens Corning Infrastructure Solutions Арматура из стеклопластика доступна в различных размерах и марках для различных областей применения. Здесь показана арматура из стекловолокна Pinkbar № 3 от Owens Corning, которая, по словам компании, хорошо подходит для плоских работ благодаря своей коррозионной стойкости, легкому весу и простоте обращения.Также доступна арматура из стекловолокна повышенной прочности для применения в строительстве.

Для защиты стали в 1970-х годах была изобретена арматура с эпоксидным покрытием. За последние 50 лет тысячи конструкций были построены с использованием стержней с эпоксидным покрытием, и эпоксидное покрытие в основном успешно продлевает время до начала коррозии. Однако недавно некоторые государственные департаменты транспорта запретили использование арматуры с эпоксидным покрытием после обнаружения многих мостов, на которых покрытие отслоилось от стали.Достаточно всего лишь небольшого скола эпоксидной смолы, чтобы коррозия началась и распространилась под покрытием.

Однако существуют альтернативные армирующие материалы для бетона, которые можно использовать для предотвращения коррозии. Арматура из нержавеющей стали доступна, но довольно дорога, есть и оцинкованная арматура. Другой выбор — материалы, которые сочетают в себе полимерную матрицу со стеклянными, углеродными или базальтовыми волокнами — армированный волокнами полимер (FRP). Эти материалы не подвержены коррозии, они намного легче стали (примерно треть веса), они не нагреваются на солнце на рабочем месте, а их 4.В 5 раз сильнее по напряжению. Более новые стержни имеют шероховатый внешний вид, поэтому они хорошо сцепляются с бетоном.

Однако арматурный стержень из стеклопластика имеет некоторые недостатки. Стекловолоконные стержни в настоящее время стоят от 15% до 25% больше, чем эквивалентная стальная арматура. Кроме того, есть несколько вопросов о том, насколько хорошо они работают в огне — тают ли они и теряют ли силу? И были некоторые опасения по поводу их длительного прогиба или ползучести. Вопросы проектирования привели к более консервативному (и, следовательно, более дорогому) проектированию конструкционных бетонных элементов.Еще одна проблема заключается в том, что прутки нельзя гнуть в поле, их нужно заказывать гнутыми на заводе.

Но для легкой арматуры в плоских конструкциях, где основной целью является предотвращение трещин, арматура из стеклопластика вполне конкурентоспособна даже с точки зрения затрат, а поскольку она намного легче стали, она снижает трудозатраты. А из-за его высокой прочности требуется меньше армирования. Несколько компаний сегодня производят арматуру из стеклопластика. Owens Corning продвигает свой Pinkbar из стекловолокна, а Neuvokas производит GatorBar в Мичигане.GatorBar состоит из стержней из стекловолокна и базальтового волокна.

Покупатель, однако, будьте осторожны. Дуг Гремель из Owens Corning говорит: «Легко срезать углы, используя менее дорогостоящую полиэфирную смолу, которая не будет столь же прочной при щелочности бетона, как стержни, сделанные из более качественной винилэфирной смолы, которая, как было показано, выдерживает в тестах на ускоренное старение и в реальном времени. Есть много очень недорогих китайских производителей стекловолокна, которые продаются за небольшую часть его стоимости. Это немного похоже на проблему китайского гипсокартона, на мой взгляд, с некоторыми из этих плееров.

Что касается использования углеродного волокна в арматуре FRP, Гремель говорит: «Карбоновый стержень, на мой взгляд, все еще остается в лагере экзотики. Это, безусловно, лучший материал, который разумно и целесообразно используется для структурного усиления существующих конструкций. Карбоновые стержни из стеклопластика, закрепленные эпоксидной смолой в неглубоких бетонных канавках в покрытии конструкций, как лейкопластырь, придают элементу почти чудесную дополнительную способность к изгибу и сдвигу. Однако углеродные стержни или арматурные стержни из углеродного волокна остаются как минимум в 10 раз дороже, чем стержни из стеклопластика и стальной арматуры.”

Возможно, лучшим решением для конструкционного бетона, который будет подвергаться воздействию солей для защиты от обледенения, является горячеоцинкованная арматура. Оцинкованные стержни будут противостоять коррозии примерно в четыре раза дольше, чем стержни из углеродистой стали, а надбавка к цене составляет всего около 10%. Оцинкованные стержни легко доступны по всей территории США

.

A Путеводитель по мостам из полимерных материалов, армированных волокном,

Справочник по мостам из полимерных материалов, армированных волокном,


Справочная информация о мостах из стеклопластика

Первый пешеходный мост из стеклопластика был построен в Израиле в 1975 году.С того времени, Пешеходные мосты из стеклопластика были построены в Азии, Европе и Северной Америке. Включен список пешеходных мостов из стеклопластика, построенных в США. в приложении E. Композитные материалы могут образовывать весь мост или его часть, например, настил или колонны башни моста, который использует другие стандартные материалы, такие как дерево или сталь. Технология FRP используется как в дорожных, так и в дорожных мостах. FRP надстройки мостов обычно изготавливаются из винилэфирной или полиэфирной смолы. армированный стекловолокном E.Они спроектированы и изготовлены заранее. собираются и устанавливаются на площадке моста.

Краткий обзор композитов

Самый Обычный и легкодоступный материал FRP называют просто стекловолокном. Стекловолокно — это композит с матрицей из полимерной смолы, которая окружает, покрывает, и армирован стекловолокном (рис. 2). Хотя одна только смола будет достаточно прочной для некоторых применений, мосты требуют армирующие волокна.Хотя многие волокна могут армировать смолы, низкая стоимость стекловолокна делает это основное армирование, используемое в компонентах мостов из стеклопластика. Волокна из Е-стекла являются хорошими электрическими изоляторами и имеют низкую подверженность повреждениям от влаги и высокие механические сила. Количество волокна в композитах, используемых для структурных применений колеблется от 45 до 75 процентов. Тип смолы определяет коррозионную стойкость, устойчивость к пламени и максимальная рабочая температура, в то же время способствуя значительно с другими характеристиками, в том числе устойчивость к ударам и усталости.


Рисунок 2 — Состав материалов FRP.
— Предоставлено Strongwell

Прочность материалов FRP, в том числе стекловолокно, определяется типом, ориентацией, количеством и расположением армирующих волокон. Армирующие волокна бывают преимущественно продольными, создание элементы, имеющие очень высокую прочность на разрыв. Смола связывает армирующую волокна в матрице и обеспечивает некоторую жесткость. Стекловолокно весит между на одну четверть и одну пятую меньше стали, но имеет такую ​​же прочность.Модуль эластичности Стекловолокно похоже на бетон и примерно в восемь раз меньше стали.

Стекловолокно члены имеют поверхностный слой из полиэфирной ткани и смолы (поверхностная вуаль) для защиты от коррозии, проникновение воды и разложение ультрафиолетом. Стекловолокно выдерживают нагрузки на композит (ударная вязкость, жесткость и напряжение), в то время как матрица смолы служит связующим для распределения нагрузки по все волокна в структуре.

Многие мосты из стеклопластика состоят из формы (трубки). Эти формы обеспечивают лучшее продольное изгибание и скручивание. характеристики, чем открытые формы, такие как W-образные формы или каналы. (фигура 3). Иногда для мостов используют открытые участки, а закрытые. должно быть используется по возможности.


Рисунок 3 — Различные формы (открытые и закрытые) для элементов FRP.
—Вежливость компании Strongwell

Два основных процесса производства композитов бывают пултрузия и экструзия.Композитные изделия из стеклопластика обычно производятся путем пултрузии, в то время как некоторые другие композитные изделия, такие как древесно-пластиковая настил и сайдинг, как правило, производятся методом экструзии. Пултрузия — это производство процесс (рисунок 4) для производства непрерывных отрезков конструкционных профилей из стеклопластика с постоянным поперечные сечения, такие как стержни, балки, швеллеры и пластины.


Рисунок 4-Процесс пултрузии для производства FRP.
— Предоставлено Strongwell

Пултрузия

Сырье, используемое для производства элементов FRP: жидкая смесь смол (содержащая смолу, наполнители и специальные добавки) и гибкие текстильные армирующие волокна. Пултрузия предполагает использование непрерывного тянущее устройство для протягивания этого сырья через нагретую стальную формовочную умереть. Армирующие волокна имеют непрерывную форму, например рулоны из стекловолокна. коврики, называемые doffs.Армирующие волокна протягиваются через ванну со смолой. который насыщает (смачивает) волокна раствором, содержащим смолу, наполнители, пигмент, катализатор и любые другие добавки.

Преформер выжимает удаляет излишки смолы и аккуратно формирует материалы до того, как они попадут в матрицу. В пресс-форма, реакция, которая устанавливает смолу, активируется теплом и композит затвердел (затвердел). Затвердевшая форма (профиль) протягивается пила, что отрезает его до нужной длины.Горячий материал необходимо охладить перед захватом. за тяговый блок (из прочного пенополиуретана), чтобы предотвратить натяжение блоков от растрескивания или деформации материалов FRP. Для получения более подробной информации на композитах, см. Введение в композиты по композитам Институт общества индустрии пластмасс, Inc. (1998).

Преимущества материалов FRP

преимущества композитов в приложениях для путепроводов включают их легкий вес (рис. 5), высокая прочность, устойчивость к коррозии, а также быстрая и простая установка.Эти свойства делают их конкурентоспособными со стандартными материалами мостовидных протезов. в ситуации там, где доступ и строительство представляют трудности. Композитные материалы может быть спроектирован так, чтобы обеспечивать широкий диапазон прочности на растяжение, изгиб, удар и прочность на сжатие. Им можно придать любую форму, а красители могут быть добавленным к позволяют структурам сливаться с большинством ландшафтов. Использование композитов предотвращает чрезмерную вырубку больших деревьев возле участков мостов и устраняет любые потенциальное воздействие на окружающую среду обработанной древесины или оцинкованной стали используется в прибрежных средах.Композиты стоят дешевле нержавеющих или компоненты из высокоуглеродистой легированной стали, которые могут использоваться агрессивные среды.


Рис. 5. Элементы FRP легкие
и может быть поднят вручную.

Недостатки материалов FRP

Одним из недостатков материалов FRP является их относительно высокая стоимость по сравнению с деревом или неокрашенной низкоуглеродистой сталью. Прочие недостатки включают:

  • Необходимость в других пильных полотнах и сверлах, чем те используется с деревом или сталью.
  • Мостовых конструкций, контролируемых количеством прогиб, а не сила, необходимая для предотвращения разрушения моста (из-за гибкости материалов FRP).
  • Собственные конструкции мостов (а не конструкции, основанные на стандартных спецификациях). Справочная информация о FRP Маршрутные мосты
  • Ограничения на экологические характеристики.
    • На высоком температура снижается прочность материала и прогиб увеличивается.
    • Эти материалы продолжают отклоняться под тяжелые, продолжительные нагрузки (ползучесть).
    • Ударная нагрузка при столкновении может повредить эти материалы.
  • Ограниченный опыт работы с материалами FRP в строительство индустрия дизайна.
  • Отсутствие стандартов и правил проектирования.
  • Отсутствие история выступлений.

Стоимость

Маршрутные мосты из стеклопластика

стоят примерно столько же, сколько эквивалент стальные мосты и почти вдвое больше деревянных.Затраты на отдаленные тропические мосты очень сложно сравнивать потому что затраты на установку могут достигать 50-70 процентов мост Общая стоимость. Затраты на техническое обслуживание композитных мостовидных протезов из стеклопластика могут быть меньше чем расходы на обслуживание деревянных или деревянных мостов. Кроме того, стекловолокно составные части легко транспортировать и устанавливать, что может экономия затрат по сравнению с транспортировкой и установкой деревянных или стальных компонентов.

материалы для боковой фермы из стекловолокна длиной 30 футов и шириной 3 фута мост (с дизайном загрузка 125 фунтов на квадратный фут) может стоить 117 долларов за квадрат оплачивать. Материалы для сопоставимого типа моста из клееной балки могут стоит просто 65 долларов за квадратный фут. Самый тяжелый кусок стекловолокна будет весить 80 фунты, в то время как клееные балки для сопоставимого деревянного моста будут весит 1200 фунтов.

(PDF) Армирование стекловолокном для бетона

Расположение волокон. Бетон с дисперсным армированием обычно называют фибробетоном

.

Основная концепция внешнего армирования — многофункциональное армирование наружными пластинами.

Он может одновременно выполнять три функции: мощность, безопасность и функцию опалубки

во время использования бетона. Поскольку оболочка из стекловолокна непроницаема для воздуха и воды, она защищает бетон

от воздействия окружающей среды и, благодаря своей высокой прочности, фактически служит арматурой

более эффективно, чем внутренняя арматура из стержней, так как она расположена на расстоянии. вдали от нейтрального самолета

.

Внешнее армирование может быть непрерывным или дискретным. Непрерывное внешнее армирование

выполняется сплошным листом материала; дискретное внешнее армирование выполняется

отдельными полосами или сетками. Внешнее армирование может быть расположено по всей площади поверхности

опорного элемента, а также в определенных, наиболее нагруженных областях (если это не требуется,

защищает бетон от воздействия агрессивной среды).

Есть два способа получить бетонные конструкции в стеклопластиковых оболочках. Первый заключается в нанесении оболочки из стекловолокна

на предварительно высушенные бетонные элементы путем обертывания их слоистым стекловолокном

, пропитанным смолой. После полимеризации вяжущего обмотка превращается в прочный корпус из стеклопластика

, а весь элемент превращается в так называемую трубчато-бетонную конструкцию.

Второй способ основан на предварительном изготовлении оболочки из стекловолокна с последующим заполнением ее бетоном

.

Если внешней арматуры недостаточно для выдерживания механических нагрузок, можно также использовать внутреннюю арматуру

, которая может быть либо стекловолоконной, либо металлической.

Коррозионная стойкость различных видов стекловолокна в основном зависит от типа используемого полимерного связующего и волокна

. Для внутреннего армирования бетона сопротивление элементов FRP

необходимо оценивать не только по отношению к внешней среде, но также и по отношению к жидкой фазе в бетоне

, поскольку твердеющий бетон является щелочной средой в which

обычно используемое алюмоборосиликатное волокно будет разрушено.В этом случае волокно должно быть

,

защищено слоем смолы или волокна другого происхождения. В случае несводных бетонных конструкций

коррозия стекловолокна не наблюдалась [2]. В конструкциях, которые

еще влажные, щелочность бетонной среды может быть существенно снижена за счет использования цементов для бетона

с активными минеральными добавками.

В ходе исследования коррозионной стойкости арматуры на алюмоборосиликатном связующем волокне

и эпоксидно-фенольном связующем (содержащем 22-24% стеклопластика) образцы

испытывали на прямое воздействие кислот, щелочей, солевых растворов. и т. д., а также при воздействии

агрессивных сред, проникающих в арматуру через бетон [1].Испытания показали, что сопротивление

FRP в кислой среде более чем в 10 раз выше, а в растворах солей более

более чем в 5 раз превышает сопротивление стальной арматуры. Наиболее агрессивным фактором для FRP является

щелочная среда. Снижение прочности FRP в щелочной среде является результатом проникновения

жидкой фазы в волокно через открытые дефекты связующего, а также диффузии

через связующее.Следует отметить, что номенклатура исходных материалов и современные технологии

позволяют производить полимерные материалы в широком диапазоне, чтобы контролировать свойства связующего для стеклопластика

, а также получать композиции с чрезвычайно низкими

проницаемость и, следовательно, позволяет минимизировать коррозию волокон.

Когда температура понижается с 20 до -40 ° C, прочность FRP на эпоксидно-фенольном связующем

увеличивается на 40%.При повышении температуры от 20 до 300 ° C происходит постепенное снижение прочности арматуры до 60% от исходной (при 20 ° C). При более высоких температурах

прочность начинает резко падать из-за деградации связующего [1]. Изменение

прочности стеклопластика в диапазоне температур от -40 до 300 ° C является обратимым.

Модуль деформации стекловолоконной арматуры в 4-5 раз меньше, чем у стальной.

Поэтому рекомендуется использовать его только в предварительно напряженных конструкциях.

В основном используются три способа предварительного напряжения бетонных конструкций с дискретным армированием стекловолокном

: натяжение на опорах, натяжение в бетоне и непрерывная намотка [2,3].

Серьезные трудности возникают при создании зажимов для армирования стеклопластиком. Часто используемые

476 Инновационные технологии в развитии строительной индустрии

.

Добавить комментарий