Утеплитель 2 см толщиной: Утеплители 20 мм, цена — купить в интернет-магазине в Москве

Содержание

Как рассчитать толщину утеплителя

Даже популярные ныне коттеджи из бревна или профилированного бруса необходимо утеплять дополнительно или возводить их из практически несуществующего на рынке деревянного массива толщиной в 35-40 см. Что уж говорить о каменных строениях (блочных, кирпичных, монолитных).

Что значит «утеплиться правильно»

Итак, без теплоизоляционных слоёв обойтись нельзя, с этим согласится подавляющее большинства домовладельцев. Некоторым из них приходится изучать вопрос во время строительства собственного гнёздышка, другие озадачиваются утеплением, чтобы фасадными работами улучшить уже эксплуатируемый коттедж. В любом случае подходить к вопросу необходимо очень скрупулёзно.

Одно дело соблюдение технологии утепления, но ведь часто застройщики допускают ошибки на стадии закупки материала, в частности неправильно выбирают толщину утепляющего слоя. Если жилище окажется слишком холодным, то находиться в нём будет, мягко говоря, некомфортно. При благоприятном стечении обстоятельств (наличие запаса производительности теплогенератора) проблему получится решить увеличением мощности отопительной системы, что, однозначно, влечёт за собой существенный рост расходов на покупку энергоносителей.

Но обычно всё заканчивается куда печальнее: при малой толщине утепляющего слоя ограждающие конструкции промерзают. А это становится причиной перемещения точки росы вовнутрь помещений, из-за чего на внутренних поверхностях стен и перекрытий выпадает конденсат. Потом появляется плесень, разрушаются строительные конструкции и отделочные материалы… Что самое неприятное, так это тот факт, что невозможно устранить неприятности малой кровью. Например, на фасаде придётся демонтировать (или «похоронить») финишный слой, затем создать ещё один барьер из утеплителя, а потом снова отделать стены. Очень недёшево выходит, лучше сразу всё сделать как положено.

Важно! Технологичные современные утеплители мало стоить не будут, причём с увеличением толщины пропорционально будет расти и цена. Поэтому создавать слишком большой запас по теплоизоляции обычно смысла нет, это – пустая трата средств, особенно если случайному сверхутеплению подвергается только часть конструкций дома.

Принципы расчёта утепляющего слоя

Теплопроводность и термическое сопротивление

Прежде всего, нужно определиться с главной причиной охлаждения здания. Зимой у нас работает система отопления, которая греет воздух, но сгенерированное тепло проходит через ограждающие конструкции и рассеивается в атмосфере. То есть происходят теплопотери – «теплопередача». Она есть всегда, вопрос лишь в том, получается ли их восполнить посредством отопления, чтобы в доме оставалась стабильная положительная температура, желательно на уровне + 20-22 градусов.

Важно! Заметим, что очень немаловажную роль в динамике теплового баланса (в общих теплопотерях) играют различные неплотности в элементах здания – инфильтрация. Поэтому на герметичность и сквозняки тоже следует обращать внимание.  

Кирпич, сталь, бетон, стекло, деревянный брус… - каждый материал, применяемый при строительстве зданий, в той или иной мере обладает способностью передавать тепловую энергию. И каждый из них обладает обратной способностью – сопротивляться теплопередаче. Теплопроводность является величиной неизменной, поэтому в системе СИ существует показатель «коэффициент теплопроводности» для каждого материала. Данные эти важны не только для понимания физических свойств конструкций, но и для последующих расчётов.

Приведём данные для некоторых основных материалов в виде таблицы.

МатериалКоэффициент теплопроводности Вт/(м*К)
1Сталь52
2Стекло1,15
3Железобетон с щебнем1,7-2
4Минеральная вата0,035-0,053
5Сосна влажности 15%0,15-0,23
6Кирпич с пустотами0,44
7Кирпич сплошной0,67- 0,82
8Пенопласт0,04-0,05
9Пенобетонные блоки0,3-0,5

Теперь о сопротивлении теплопередаче. Значение сопротивления теплопередаче обратно пропорционально теплопроводности. Этот показатель относится и к ограждающим конструкциям, и к материалам как таковым. Он используется для того, чтобы охарактеризовать теплоизоляционные характеристики стен, перекрытий, окон, дверей, кровли…

Для расчёта термического сопротивления используют следующую общедоступную формулу:

R=d/k.

Показатель «d» здесь означает толщину слоя, а показатель «k» - теплопроводность материала. Получается, что сопротивление теплопередаче напрямую зависит от массивности материалов и ограждающих конструкций, что при использовании нескольких таблиц поможет нам рассчитать фактическое теплосопротивление существующей стены или правильный утеплитель по толщине.

Для примера: стена в половину кирпича (полнотелого) имеет толщину 120 мм, то есть показатель R получится 0,17 м²·K/Вт (толщина 0,12 метра, разделённая на 0,7 Вт/(м*К)). Аналогичная кладка в кирпич (250 мм) покажет 0,36 м²·K/Вт, а в два кирпича (510 мм) – 0,72 м²·K/Вт.

Допустим, по минеральной вате толщиной 50; 100; 150 мм показатели термического сопротивления будут следующие: 1,11; 2,22; 3,33 м²·K/Вт.

Важно! Большинство ограждающих конструкций в современных зданиях являются многослойными. Поэтому, чтобы рассчитать, например, термическое сопротивление такой стены, нужно отдельно рассматривать все её прослойки, а затем полученные показатели суммировать.

Существуют ли требования к тепловому сопротивлению

Возникает вопрос: а каким, собственно, должен быть показатель сопротивления теплопередачи для ограждающих конструкций в доме, чтобы в помещениях было тепло, и в отопительный период расходовалось минимум энергоносителей? К счастью для домовладельцев, не обязательно снова использовать сложные формулы. Вся необходимая информация есть в СНиП 23-02-2003 «Тепловая защита зданий». В данном нормативном документе рассматриваются строения различного назначения, эксплуатируемые в различных климатических зонах. Это вполне объяснимо, так как температура для жилых помещений и производственных помещений не нужна одинаковая. Кроме того, отдельные регионы характеризуются своими предельными минусовыми температурами и длительность отопительного периода, поэтому выделяют такую усреднённую характеристику, как градусо-сутки отопительного сезона.

Важно! Ещё один интересный момент заключается в том, что основная интересующая нас таблица содержит нормируемые показатели для различных ограждающих конструкций. Это в общем-то не удивительно, ведь тепло покидает дом неравномерно.

Попробуем немного упростить таблицу по необходимому тепловому сопротивлению, вот что получится для жилых зданий (м²·K/Вт):

Регион по градусо-суткамОкнаСтеныПерекрытия холодного чердака и холодного подвала
20000,32,12,8
40000,452,83,7
60000,63,54,6
80000,74,25,5
100000,754,96,4
120000,85,67,3

Согласно данной таблице, становится понятно, что если в Москве (5800 градусо-суток при средней температуре в помещениях порядка 24 градусов) строить дом только из полнотелого кирпича, то стену придётся делать по толщине более 2,4 метра (3,5 Х 0,7). Реально ли это технически и по деньгам? Конечно – абсурд. Вот почему нужно применить утепляющий материал.  

Очевидно, что для коттеджа в Москве, Краснодаре и Хабаровске будут предъявляться разные требования. Всё, что нам нужно, так это определить градусо-суточные показатели для нашего населённого пункта и выбрать подходящее число из таблицы. Потом применяя формулу сопротивления теплопередаче, работаем с уравнением и получаем оптимальную толщину утеплителя, который необходимо применить. 

Город
Градусо-сутки Dd отопительного периода при температуре, + С
242220181614
Абакан730068006400590055005000
Анадырь10700101009500890082007600
Арзанас620058005300490045004000
Архангельск720067006200570052004700
Астрахань420039003500320029002500
Ачинск750070006500610056005100
Белгород490046004200380034003000
Березово (ХМАО)900085007900740069006300
Бийск710066006200570053004800
Биробиджан7500710067006200
5800
5300
Благовещенск750071006700620058005400
Братск810076007100660061005600
Брянск540050004600420038003300
Верхоянск134001290012300117001120010600
Владивосток550051004700430039003500
Владикавказ410038003400310027002400
Владимир590054005000460042003700
Комсомольск-на-Амуре780073006900640060005500
Кострома620058005300490044004000
Котлас690065006000550050004600
Краснодар330030002700240021001800
Красноярск730068006300590054004900
Курган680064006000560051004700
Курск520048004400400036003200
Кызыл880083007900740070006500
Липецк550051004700430039003500
Санкт Петербург570052004800440039003500
Смоленск570052004800440040003500
Магадан900084007800720067006100
Махачкала320029002600230020001700
Минусинск470069006500600056005100
Москва580054004900450041003700
Мурманск750069006400
5800
53004700
Муром600056005100470043003900
Нальчик390036003300290026002300
Нижний Новгород600053005200480043003900
Нарьян-Мар900085007900730067006100
Великий Новгород580054004900450040003600
Олонец630059005400490045004000
Омск720067006300580054005000
Орел550051004700420038003400
Оренбург610057005300490045004100
Новосибирск750071006600610057005200
Партизанск560052004900450041003700
Пенза
590055005100470042003800
Пермь680064005900550050004600
Петрозаводск650060005500510046004100
Петропавловск-Камчатский660061005600510046004000
Псков540050004600420037003300
Рязань570053004900450041003600
Самара590055005100470043003900
Саранск600055005100570043003900
Саратов560052004800440040003600
Сортавала630058005400490044003900
Сочи1600140012501100900700
Сургут870082007700720067006100
Ставрополь390035003200290025002200
Сыктывкар730068006300580053004900
Тайшет780073006800630058005400
Тамбов560052004800440040003600
Тверь590054005000460041003700
Тихвин610056002500470043003800
Тобольск750070006500610056005100
Томск760072006700620058005300
Тотьна670062005800530048004300
Тула560052004800440039003500
Тюмень700066006100570052004800
Улан-Удэ820077007200670063005800
Ульяновск620058005400500045004100
Уренгой10600100009500890083007800
Уфа640059005500510047004200
Ухта790074006900640058005300
Хабаровск700066006200580053004900
Ханты-Мансийск820077007200670062005700
Чебоксары630058005400500045004100
Челябинск660062005800530049004500
Черкесск400036003300290026002300
Чита860081007600710066006100
Элиста440040003700330030002600
Южно-Курильск540050004500410036003200
Южно-Сахалинск65006005600510047004200
Якутск114001090010400990094008900
Ярославль620057005300490044004000

Примеры расчёта толщины утеплителя

Предлагаем на практике рассмотреть процесс расчётов утепляющего слоя стены и потолка жилой мансарды. Для примера возьмём дом в Вологде, построенный из блоков (пенобетон) толщиной 200 мм.

Итак, если температура в 22 градуса для обитателей будет нормальной, то актуальный в данном случае показатель градусо-суток равняется 6000. Находим в таблице нормативов по термическому сопротивлению соответствующий показатель, он составляет 3,5 м²·K/Вт – к нему будем стремиться.

Стена получится многослойная, поэтому сначала определим, сколько термического сопротивления даст голый пеноблок. Если средняя теплопроводность пенобетона составляет порядка 0,4 Вт/(м*К), то при 20-миллиметровой толщине эта наружная стена даст сопротивление теплопередаче на уровне 0,5 м²·K/Вт (0,2 метра делим на коэффициент теплопроводности 0,4).

То есть для качественного утепления нам не хватает порядка 3 м²·K/Вт. Их можно получить минеральной ватой или пенопластом, который будут установлены со стороны фасада в вентилируемой навесной конструкции или мокрым способом скреплённой теплоизоляции. Чуть трансформируем формулу термического сопротивления и получаем необходимую толщину – то есть умножаем необходимое (недостающее) сопротивление теплопередачи на теплопроводность (берём из таблицы).

В цифрах это будет выглядеть так: d толщина базальтовой минваты = 3 Х 0,035 = 0,105 метра. Получается, что мы может использовать материал в матах или рулонах толщиной 10 сантиметров. Заметим, что при использовании пенопласта плотностью 25 кг/м3 и выше – необходимая толщина получится аналогичной.

Кстати, можно рассмотреть другой пример. Допустим, хотим из полнотелого силикатного кирпича в этом же доме сделать ограждение тёплого остеклённого балкона, тогда недостающего термического сопротивления будет порядка 3,35 м²·K/Вт (0,12Х0,82). Если планируется применять для утепления пенопласт ПСБ-С-15, то его толщина должна быть 0,144 мм – то есть 15 см.  

Для мансарды, крыши и перекрытий техника расчётов будет примерно такая же, только отсюда исключается теплопроводность и сопротивление теплопередачи несущих конструкций. А также несколько увеличиваются требования по сопротивлению – потребуется уже не 3,5 м²·K/Вт, а 4,6. В итоге, вата подойдёт толщиной до 20 см = 4,6 Х 0,04 (теплоизолятор для кровли).

Применение калькуляторов 

Производители изоляционных материалов решили упростить задачу рядовым застройщикам. Для этого они разработали простые и понятные программки для расчёта толщины утеплителя.

Рассмотрим некоторые варианты:

http://www.xps.tn.ru/calculate/

http://calc.rockwool.ua/#professional

http://www.penoplex.ru/school/index.php?step=4

http://www.knaufinsulation.ru/kalkulyator-dlya-rascheta-kolichestva-teploizolyatsii-0

В каждом из них в несколько шагов нужно заполнить поля, после чего, нажав на кнопку, можно мгновенно получить результат.

Вот некоторые особенности использования программ:

1. Везде предлагается из выпадающего списка выбрать город/район/регион строительства.

2. Все, кроме Технониколь, просят определить тип объекта: жилое/производственное, либо, как на сайте Пеноплекс – городская квартира/лоджия/малоэтажный дом/хозпостройка.

3. Потом указываем, какие конструкции нас интересуют: стены, полы, перекрытие чердака, крыша. Программа Пеноплекс рассчитывает также утепление фундамента, инженерных коммуникаций, уличных дорожек и площадок.

4. Некоторые калькуляторы имеют поле для указания желаемой температуры внутри помещения, на сайте Rockwool интересуются также габаритами здания и типом применяемого для отопления топлива, количеством проживающих людей. Кнауф ещё учитывает относительную влажность воздуха в помещениях.

5. На penoplex.ru нужно указать тип и толщину стен, а также материал, из которого они изготовлены. 

6. В большинстве калькуляторов есть возможность задать характеристики отдельных или дополнительных слоёв конструкций, например, особенности несущих стен без теплоизоляции, тип облицовки...

7. Калькулятор пеноплекс для некоторых конструкций (допустим для утепления кровли методом «между стропил») может считать не только экструдированный пенополистирол, на котором фирма специализируется, но также минеральную вату.

Как вы понимаете, в том, чтобы рассчитать оптимальную толщину теплоизоляции – ничего сложного нет, следует только со всей тщательностью подойти к данному вопросу. Главное, чётко определиться с недостающим сопротивлением теплопередаче, а потом уже выбирать утеплитель, который будет лучше всего подходить для конкретных элементов здания и применяемых строительных технологий. Также не стоит забывать, что к теплоизоляцией частного дома необходимо заниматься комплексно, в должной степени должны быть утеплены все ограждающие конструкции.

Пенопласт толщиной 2 см: теплопроводность и плотность

На современном рынке строительных материалов представлен широчайший выбор различных утеплителей, применение каждого из них обусловлено определенными требованиями в зависимости от назначения здания, условий эксплуатации и климата в данном регионе. Большинству требований, предъявляемых к утеплителям, соответствует пенопласт, который прочно занимает одну из лидирующих позиций на рынке нашей страны.

Сравнение теплопроводности пенопласта с другими утеплителями.

Преимущества материала

Пенопласт или пенополистирол представляет собой массив из спаянных между собой газонаполненных гранул полистирола, предварительно вспененных и отформованных беспрессовым методом. Материал изготавливается разной плотности, она зависит от размера и количества гранул в 1 м³. Если гранулы крупные, их количество на единицу объема будет меньше, а плотность материала ниже и наоборот, большое количество маленьких гранул придает ему высокую плотность и уменьшает теплопроводность. Пенопласт имеет ряд преимуществ, который и делает этот утеплитель таким популярным:

Таблица характеристик пенопластов различных марок.

  1. Превосходные теплоизоляционные показатели одни из самых высоких. Более высокие теплоизоляционные свойства имеет только пенополиуретан, но стоимость его гораздо выше.
  2. Небольшой вес упрощает процесс доставки и монтажа.
  3. Пенополистирол практически не впитывает влагу.
  4. Современный пенопласт экологичен.
  5. Не поддерживает горение, при воздействии высоких температур материал просто разрушается без воспламенения.
  6. Изделия из пенополистирола обладают прочностью и жесткостью.
  7. Материал один из самых доступных по цене.

Из недостатков этого утеплителя можно выделить два существенных: он не может быть использован при высоких противопожарных требованиях к зданию или помещению, поскольку при пожаре разрушится. Второй недостаток заключается в том, что пенополистирол грызут мыши. Они это делают с целью обустроить себе теплое гнездо, а не ради пропитания, что еще раз доказывает экологичность материала, в базальтовой вате мыши гнезд не делают.

Вернуться к оглавлению

Свойства и параметры утеплителя

Схема применения различных марок пенопласта.

Теплопроводность — это передача тепловой энергии от одной части материала, которая имеет более высокую температуру, к другой части, с меньшей температурой. То есть, простыми словами, это способность материала проводить тепловую энергию. Выражается этот параметр в единицах Вт/(м*К) и называется коэффициентом теплопередачи.

Расшифровка единицы измерения теплопередачи следующая: это количество тепловой энергии в Вт, которую способен передать материал толщиной 1 м на площади в 1 м² при перепаде температур 1 °(Кельвин) за определенную единицу времени. Коэффициент теплопередачи уменьшается по мере того, как повышается плотность материала, то есть чем выше плотность, тем лучше его теплоизоляционные свойства. Значения характеристик при различной плотности представлены в Таблице 1.

Таблица 1

Плотность,кг / м³ 10 15 20 25 30 35
Коэффициенттеплопередачи,Вт/(м . К) 0.044 0.038 0.035 0.034 0.033 0.032

Величина теплопроводности является ключевой для расчета общего сопротивления теплопередаче ограждающих конструкций здания (стен, кровли, перекрытий). Последнее обозначается латинской буквой R, единица выражается в м² К / Вт и показывает, сколько тепла в Вт проходит через 1 м² площади стены или кровли заданной толщины за единицу времени при перепаде температур 1°К. Этот параметр зависит от материала стены и ее толщины, это видно из формулы:

R = δ / k

Схема утепления стен пенопластом.

Здесь δ — толщина стены в метрах, k — коэффициент теплопроводности. Для примера можно показать сколько тепла теряет 1 м² пенополистирола толщиной 1 сантиметр плотностью 10 кг / м³ за единицу времени при перепаде температур 1°К:

R = 0,01 / 0,044 = 0,227 м² К / Вт.

Данный параметр нормируется, он не может быть меньше того, что прописан в нормативной документации для каждого региона. Учитывая разницу климатических условий на просторах нашей страны и длительность отопительного сезона, минимальное нормируемое сопротивление теплопередаче наружных стен для южных регионов составляет 1,8 м² К / Вт, средней полосы — 3 м² К / Вт, а северных — 4,8 м² К / Вт. Значения R для пенопласта разной плотности и различной толщины отражены в таблице 2.

Таблица 2

СопротивлениетеплопередачеR, м²К / Вт Плотность 10 кг / м³ Плотность 15 кг / м³ Плотность 20 кг / м³ Плотность 25 кг / м³ Плотность 30 кг / м³ Плотность 35 кг / м³
Толщина 2 см 0.45 0.53 0.57 0.59 0.61 0.63
Толщина 5 см 1.14 1.32 1.43 1.47 1.52 1.56
Толщина 10 см 2.27 2.63 2.86 2.94 3.03 3.13

Из таблицы 2 хорошо видно, что пенопласт толщиной 100 мм может полностью заменить другие строительные материалы стен в южных и средних регионах, так как такая конструкция соответствует современным требованиям нормативной документации (СНиП 23-02-2003). Материал толщиной 5 см и 2 см может применяться для дополнительного утепления существующих зданий из кирпича или бетона, так как ограждающие конструкции этих зданий не соответствуют современным требованиям по энергосбережению. При этом утеплитель толщиной 2 см зачастую целесообразно использовать для отделки стен изнутри помещения, это дешевле, чем выполнять наружные работы, и не отнимет много места от пространства комнаты.

Вернуться к оглавлению

Подбор плотности и толщины материала для дома

Значение представленных расчетов следующее: зная температуру воздуха снаружи и желаемую температуру внутри помещения, можно на практике подобрать пенопласт необходимой толщины и плотности, чтобы успешно утеплить свой дом и при этом не переплатить за материалы.

http://ostroymaterialah.ru/www.youtube.com/watch?v=wQ9nUUUPMFs

Для этого следует воспользоваться формулой:

Q = (1/R) х S х (tв — tн)

В этой формуле:

  • Q — количество тепла в Вт, которое будет теряться стеной;
  • R — сопротивление теплопередаче выбранного вида утеплителя;
  • S — площадь стены в кв.м;
  • tв и tн — температура внутреннего и наружного воздуха соответственно.

Подобрав толщину и плотность пенопласта, с помощью коэффициента теплопередачи высчитывается значение R, вставляется в приведенную формулу и в результате станет известно, сколько тепла будет терять вся стена здания из пенопласта. Однако требуется учесть и существующий материал стены, кирпич или бетон, ведь он тоже задерживает тепло. Для этого по тем же формулам нужно посчитать количество тепла, уходящего через существующую кирпичную, бетонную или деревянную стену. Значения теплопроводности некоторых материалов для расчета показаны в таблице 3.

Таблица 3

Материал стены Кирпичная кладка Шлако блок Керамзи тобетон Дерево (сосна) Газобетон
Коэффициенттеплопередачи,Вт/(м*К) 0.41 0.34 0.14 0.09 0.1

http://ostroymaterialah.ru/www.youtube.com/watch?v=26LNUWcmIvg

Теплоизоляционные показатели традиционных материалов достаточно низкие, расчет покажет большие потери тепла, вот почему требуется доработка таких стен изделиями из полистирола. Полученные результаты просчета по пенопласту и существующей стене складываются. Дальше такой же расчет нужно произвести по всем стенам, суммировать результаты и сопоставить с мощностью системы отопления.

Если выяснится, что можно без ущерба для экономии уменьшить толщину утепляющего пенополистирола или его плотность, нужно пересчитать потери тепла еще раз с учетом новых параметров.

После чего смело приобретать материал.

Оптимальная толщина утепления частного дома – статьи на сайте ГК «САКСЭС»

При разработке проекта частного дома непременно следует озадачиться вопросом: какой толщины подойдет утеплитель для крыши и для других основных конструктивных элементов. Оттого, насколько грамотно будет смонтирован слой утеплителя , выбрана его толщина и плотность, зависит не только комфортное проживание в доме и поддержание оптимальной температуры в помещении, но и долговечность всех его элементов.

Эффективное утепление кровли, стен и перекрытий позволит сохранить тепло в строении и значительно снизить затраты на энергопотребление зимой, а летом сэкономить на кондиционировании.

Есть мнение профессионалов, что через кровлю может уходить до 20 % тепла из помещения, происходит это, как правило, при утеплении перекрытий чердака в отсутствии утепления кровельных скатов.

При строительстве многие из нас стремятся расширить свое жилое пространство, задействовать и обустроить ранее нежилые помещения, улучшить энергоэффективность жилья в целом. В первую очередь, это касается мансард.

Правильно утепленная кровля дает возможность обустроить мансардный этаж, что, безусловно, расширяет полезную площадь любого дома.

Наиболее популярными материалами, которые используются для утепления мансардного помещения, являются: минеральная вата, экструдированный пенополистирол и пенопласт.

Пенопласт, безусловно, обладает низкой теплопроводностью, но он вреден для здоровья, горюч и недолговечен. В соответствии с СНиП его не рекомендуется монтировать на скаты кровли.

Минераловатные плиты сочетают хорошие звуко- и теплоизоляционные свойства с долговечностью и экологичностью, и, в отличии от пенополистирола, более доступны по стоимости. Для утепления скатов применяют минвату плотностью 30-35 кг/м3, для стен – с плотностью от 40-45 кг/м3.

Часто в вопросе утепления выбор останавливают на плитах экструдированного пенополистирола. Имея низкую степень теплопроводности, они также имеют низкий показатель паропроницаемости. В случае с утеплением кровли это не может быть плюсом. Поэтому дома, утепленные при помощи экструзии, нуждаются в эффективной и качественно смонтированной вентиляции. Иначе в «кровельном пироге» будет скапливаться конденсат, что, рано или поздно, приведет к разрушению ограждающих конструкций здания.

По сути, выбирать приходится из минераловатных плит и полистирольных плит. Все зависит от конструкции стропильной системы и от финансовых возможностей.

Очень важно, чтобы выбранный вид утеплителя обладал рядом необходимых качеств: высокой гигроскопичностью, отличался небольшим весом, обладал стабильностью формы и не деформировался в процессе длительной эксплуатации, имел высокую степень огнестойкости, был не токсичен и отвечал всем требованиям экологической безопасности.

Толщину утепляющего слоя кровли и стен определяют уже на этапе проектирования. При этом ориентируются на 2 главных параметра:

  • λБ – коэффициент теплопроводности утеплителя, Вт/(м · °С). Это значение можно найти либо на упаковке выбранного материала, либо в сертификатах на него. Величина дает оценку задерживающим свойствам теплоизоляционного материала. Чем ниже коэффициент теплопроводности, тем лучше он сохраняет тепло.
  • R – величина сопротивления теплопередачи кровли или стен, которая зависит от климатических условий местности, где будет строиться дом, м2*0С/Вт.

Строго говоря, расчет толщины утепления ведется в соответствии со Сводом правил и СНиП «Строительная теплотехника», в которых содержатся таблицы климатических зон, влажности климата и карты нормируемого сопротивления по городам (та самая величина R).

Толщина утеплителя будет напрямую зависеть от климатической зоны, в которой возводится дом. Чем ниже температура зимой и чем дольше длится отопительный период, тем толще будет теплоизоляционный слой.

При расчете толщины утеплителя для стен, помимо климата, следует принимать во внимание материал, из которого они изготовлены, а также их толщину. Для стен из дерева или пеноблока потребуется менее толстый слой утеплителя, чем для кирпича или бетона, так как теплопроводность последних значительно выше.


Упрощенная формула расчета выглядит так:

αут=(R-0,16) х λБ

где αут – толщина утеплителя в метрах.

λБ -коэффициент удельной теплопроводности. В расчет брать необходимо именно значение с индексом «Б», означающее, что материал будет использоваться во влажной среде.

Например, расчет толщины с использованием утеплителя минваты Технониколь РОКЛАЙТ составит:

(4,79- 0,16) х0,039= 0,18

Профессионалы – строители советуют прибавить к получившейся цифре 10% и получится рекомендуемая толщина утеплителя -0.2м или 200 мм.

Расчет толщины теплоизоляции для стен также можно сделать самостоятельно, учитывая данные действующих строительных норм и правил. Формула расчета для крыши практически не отличается от формулы для стен каркасного дома, но в этом случае надо использовать значения теплового сопротивления R из другого столбца таблицы.

Главная отличительная особенность работ для утепления мансарды или стены состоит в том, что для разных конструктивных элементов дома нужна разная толщина утеплителя. Если на кровлю потребуется более толстый слой, то у стен теплопроводность меньше, а значит, и утеплитель будет тоньше. Расчеты для каждого вида ограждения производятся отдельно.

Подводя итоги, следует отметить, что выбор материала для утепления каркасного дома, будь то минераловатные плиты или пенополистирол, во многом зависит от конструктивных особенностей строения и назначения постройки.

Выполнение работ по утеплению требует определенных навыков и опыта. Сделать грамотный расчет толщины утеплителя, не допустить промокания материала, зазоров и «мостиков холода», через которые будет уходить тёплый воздух все же лучше доверить профессионалам.

Купить утеплитель в Нижнем Новгороде на сайте ГК «САКСЭС».

Калькулятор утеплителя, онлайн расчет количества утеплителя для стен

Для определения нужного количества утеплителя для строящегося дома предлагаем воспользоваться калькулятором. С его помощью можно рассчитать объем утеплителя, применение которого позволит при минимальных затратах сохранять максимальное количество тепла в доме. Для того, чтобы использовать калькулятор утепления стен, выполнить онлайн расчет и определить требуемую толщину и объем утеплителя, который нужно купить, необходимо ввести следующие данные:

  • по каждой из стен указать ширину, высоту. Квадратуру калькулятор подсчитывает автоматически;
  • если предполагается строительство дома с фронтоном, то этот факт также должен быть отражен в соответствующей графе калькулятора;
  • для более точного расчета необходимо указать размеры оконных и дверных проемов, а также их количество;
  • нужно выбрать, какой тип утеплителя предпочтительнее – минеральная или базальтовая вата. После ввода контактных данных, вам будет предложено выбрать из брендов Кнауф и Роквул, в зависимости от типа ваты, которую вы выбрали.

 

Решающее влияние на изменение объема утеплителя оказывают два фактора: материал, из которого предполагается строительство стен – будет ли это каркасный дом или кирпичный, а также тип утеплителя. Предлагаем ознакомиться с характеристиками некоторых, наиболее популярных, материалов, используемых для утепления стен дома.

 

Минеральная вата Кнауф

 

Минераловатный утеплитель Knauf изготавливается из расплавленных силикатных материалов, Это экологически чистый эластичный материал без запаха с коэффициентом теплопроводности от 0,037 до 0,4 Вт/м*К, обладающий отличными звукоизоляционными качествами и следующими свойствами:

  • огнестойкостью;
  • влагостойкостью;
  • устойчивостью к биологическому и химическому воздействию.

 

Базальтовая вата Роквул

 

Каменная вата RockWool является экологически чистым материалом с пористой структурой. Поры заполнены воздухом, поэтому этот тип утеплителя характеризуется минимальным значением коэффициента теплопроводности – 0,037 Вт/м*К. Для сравнения: слой утеплителя Роквул толщиной 100 мм способен задерживать столько же тепла во внутренних помещениях дома, как и стена из кирпича толщиной 1960 мм.

Калькулятор расчета эковаты | ЭковатаКазань

Калькулятор расчета эковаты | ЭковатаКазань Перейти к содержанию

Вы здесь:

  1. Главная
  2. Калькулятор для расчета эковаты

Для расчета количества утеплителя необходимо выбрать вкладку с утепляемой позицией, заполнить поля «площадь утепления», «толщина утепления» и нажать кнопку «Рассчитать».

* Результаты расчета являются предварительными. Вы можете узнать точную стоимость у нашего специалиста, заказав консультацию или бесплатный замер по контактным телефонам

* Результаты расчета являются предварительными. Вы можете узнать точную стоимость у нашего специалиста, заказав консультацию или бесплатный замер по контактным телефонам

* Результаты расчета являются предварительными. Вы можете узнать точную стоимость у нашего специалиста, заказав консультацию или бесплатный замер по контактным телефонам

* Результаты расчета являются предварительными. Вы можете узнать точную стоимость у нашего специалиста, заказав консультацию или бесплатный замер по контактным телефонам

* При ручном способе укладки, расход эковаты больше на 10-20% из-за неравномерной плотности укладки
* При задувке в закрытые горизонтальные каркасы (в т.ч. полы, чердаки, межэтажные перекрытия) расход эковаты 50 кг/м3
* Мансарда с углом наклона более 70° по плотности и расходу материала приравнивается к стенам

Рекомендуемая толщина укладки:

  • Стена 10-20 см.
  • Мансарда 20- 25 см.
  • Чердак 20-30 см.

 

Пример расчета с использованием калькулятора эковаты

Нужно утеплить дом 10 х 10 м (1,5 этажа с мансардой). Общая площадь дома 200 м2

  1. Площадь стен примерно 200 м2, толщина утепления стен 15 см
  2. Площадь пола 100 м2, толщина утепления 20 см
  3. Площадь перекрытия между 1 и 2 этажом 100 м2, толщина утепления 20 см
  4. Площадь скатов примерно 50 м2, толщина утепления 25 см
  5. Площадь чердачка мансарды примерно 70 м2, толщина утепления 30 см

 

Вводим данные значения в калькулятор и получаем количество эковаты, необходимой для утепления нашего дома (в скобках справочно указан объем утепления):

  1. Стены 1800 кг (30 м3)
  2. Полы 700 кг (20 м3)
  3. Перекрытия 700 кг (20 м3)
  4. Скаты 625 кг (12,5 м3)
  5. Чердак 735 кг (21 м3)

 

Итого на утепление дома 10х10 м необходимо 4560 кг эковаты.

Утепляемый объем составит 103,5 м3.

Наша бригада профессионалов на профессиональном оборудовании выполнит данную работу за 1,5-2 дня.

Вверх

Этот сайт использует cookie для хранения данных. Продолжая использовать сайт, Вы даете свое согласие на работу с этими файлами. OK

Какой толщины должен быть утеплитель для вентилируемого фасада

Свыше 90% вентилируемых фасадов в России устраиваются с утеплением. Для того, чтобы определить толщину и плотность необходимого к применению утеплителя, самым лучшим вариантом является проведение тепловизорного обследования наружных стен здания с последующим осуществлением теплотехнического расчёта. Однако, такой метод, как правило, является оправданным в ходе крупных проектов реконструкции объектов капитального строительства. Для большинства объектов промышленного и гражданского назначения существует методика определения толщины утепления без вышеуказанных затратных процедур. На что в первую очередь следует обратить внимание при определении вида, толщины и плотности утепления вентилируемого фасада?

1. Виды фасадного утеплителя

Для устройства вентилируемых фасадов следует выбирать утеплители, имеющие группу горючести НГ, то есть негорючие. К числу таких относятся минераловатные утеплители на основе базальтового или иного каменного волокна, а также в некоторых случаях - стекловолокна.

Для утепления цокольной части зданий с последующим устройством штукатурных фасадов по сеткие и облицовкой керамогранитом, а также подземных частей здания, следует использовать утеплитель на основе пенополистирола. Данный вид материала хоть и является горючим, но его применение возможно на участках фасада, исключающих его воспламенение. Утеплитель фундаментной (подземной) части наружных стен следует обрабатывать битумной гидроизоляцией.

2. Плотность утеплителя для вентилируемых фасадов

Минераловатный утеплитель, применяемый в фасадных системах, может иметь плотность от 25 кг/м3 до 140 кг/м3. Как правило, наиболее экономичным и эффективным является утепление стены плитами разной плотности: непосредственно к стене в таком случае должен примыкать утеплитель меньшей плотности  - например, 30 кг/м3, а в качестве второго, наружного слоя утепления, должен быть применен более плотный материал - не менее 75 кг/м3.

Современные материалы фасадного утепления предусматривают в том числе изготовление плит утеплителей с различной плотностью в пределах одной плиты. Например, утеплитель Rockwool Венти Баттс D имеет нижний слой плотностью 30-35 кг/м3, а верхний - 85-90 кг/м3. Такой материал даже при однослойном варианте исполнения обеспечивает достижение экономического и технологического эффектов, аналогичных двухслойному утеплению.

По общему правилу, при однослойном утеплении плотность утеплителя должна быть не менее 80 кг/м3. Такая плотность обеспечивает достаточный (до 20 лет) срок работы утеплителя с учётом его массовых потерь в результате выветривания с течением времени.

3. Толщина утеплителя с наружной стороны фасада здания

Необходимая толщина слоя утепления зависит от нескольких факторов: материала и толщины наружных стен фасада, климатической зоны места расположения объекта, высоты здания, количества проёмов, а также от плотности применяемого утепления. 

К примеру, для объектов, выполненных из красного кирпича в два слоя, и расположенных в средней полосе РФ, достаточным является применение утеплителя общей толщиной 100 мм, из которых нижний слой 40 мм выполнен минеральной ватой с плотностью 35 кг/м3, а верхний слой 60 мм - с плотностью 80 кг/м3. Для объектов, выполненных по монолитно-каркасной технологии, где наружные стены состоят из монолитных плит 200-250 мм с перекрытиями из пенобетонных блоков D600, в той же средней полосе РФ желательно применять утепление с толщиной не менее 150 мм, причём наружный слой должен иметь толщину не менее 50 мм и плотность 90 кг/м3.

Соответственно, чем севернее расположен объект строительства - тем толще и плотнее должен быть слой утепления для обеспечивания его нормальной работы. Например, за Полярным кругом для утепления объектов ПГС толщина слоёв утеплителя может доходить до 350 мм.

При этом, при определении толщины и плотности плит утеплителя для фасада следует учитывать, что основная его функция - это не только сохранение тепла внутри здания, но и вынос точки росы за пределы несущей стены. Точка росы - это место внутри наружной стены, где плюсовая температура, идущая от обогрева изнутри помещения, переходит в минусовую в результате воздействия отрицательных температур на улице. Как известно, вода при нулевой температуре переходит в твёрдое состояние, при этом расширяясь. Такое расширение, происходящее внутри материалов наружных стен зданий, и является наиболее существенной причиной разрушения наружных стен. Да, такое разрушение происходит с годами - но именно поэтому безремонтным сроком эксплуатации жилых домов, построенных в советское время, является срок от 30 до 50 лет. Современные климатические испытания и лабораторные исследования показали, что применение наружного фасадного утеплителя нужной толщины и плотности  способно продлить срок службы всего здания в несколько раз! 

Кроме того, следует учитывать, что достаточная толщина и плотность утеплителя также обеспечивают отличную звукоизоляцию. В условиях современных городов проблема постоянного шума может быть решена в том числе качественным утеплением наружной стены. Кроме того, здание, обшитое миреналоватным утепплителем, требует значительно меньших затрат на его кондиционирование летом.

Проведенные экономические расчёты анализа эффективности капитальных вложений на нескольких объектах (многоэтажные офисные центры, г. Москва) показали, что окупаемость материалов и строительно-монтажных работ по утеплению наружной стены за счёт экономии в затратах на отопление и кондиционирование составляет от 5 до 7 лет, при том, что современные фасадные системы способны обеспечить срок безремонтной эксплуатации до 50 лет. 

Утеплитель Пеноплэкс: цены и характеристики

Выбор теплоизоляции Пеноплекс по толщине:

  • Теплоизоляция Пеноплекс толщиной 20 мм
  • Теплоизоляция Пеноплекс толщиной 30 мм
  • Теплоизоляция Пеноплекс толщиной 50 мм
  • Теплоизоляция Пеноплекс толщиной 100 мм

 

Компания «ПЕНОПЛЭКС» - один из крупнейших отечественных производителей стройматериалов и декоративной отделки на основе полимеров. Фирма поставляет продукцию на внутренний рынок с 1998 года. Именно это предприятие наладило первую в России линию по выпуску материалов из экструдированного пенополистирола под торговым названием утеплитель Пеноплэкс. Сегодня бренд узнаваем не только в нашей стране, но и на территории СНГ, и в некоторых европейских государствах.

Виды утеплителей Пеноплэкс

Утеплитель для фундамента Пеноплэкс Фундамент. Прочные плиты для нагружаемых конструкций с защитным слоем (цементно-песчаная стяжка) и/или невысокими требованиями пожарной безопасности:

  • фундаментов;
  • цоколей;
  • садовых дорожек;
  • инженерных коммуникаций.

Это хороший утеплитель для пола с расчетным сроком службы до 50 лет. Материал обладает гидроизолирующими свойствами.

Утеплитель для кровли Пеноплэкс Кровля. Прочные, влагостойкие плиты. ЭППС Пеноплэкс идеально стыкуется, монтируется на клей, не образует мостиков холода. Специальная кромка шип-паз обеспечивает максимально плотную укладку элементов. Экструдированный пенополистирол выдерживает большие эксплуатационные и монтажные нагрузки. Подходит для теплоизоляции скатных кровель любого типа.

Утеплитель для стен Пеноплэкс Комфорт. Листы быстро и легко монтируются благодаря Г-образной кромке. Материал не пылит, не выделяет вредных веществ. Работать с плитами Пеноплэкс можно без специальных средств индивидуальной защиты.

Это хороший утеплитель для балкона, лоджии, стен каркасных домов, полов, крыш, инженерных коммуникаций. Благодаря малому весу он практически не создает нагрузки на опорные элементы. Цена за м2 теплоизоляции Пеноплэкс оптимальна для его технических характеристик.

Утеплитель для фасада (Пеноплэкс Фасад). Материал выпускается в ассортименте по толщине плиты, что позволяет подобрать оптимальное решение для разных климатических условий.

Рекомендуем купить Пеноплэкс Фасад для утепления внутренних и внешних ограждающих конструкций:

  • стен;
  • перегородок;
  • цоколей;
  • фасадных систем.

Утеплитель Пеноплэкс широко используется при возведении стен по технологии «колодезной кладки». Он позволяет в несколько раз уменьшить толщину кирпичной конструкции. Цена экструдированного пенополистирола Пеноплэкс оправдана его энергоэффективностью.

Технические характеристики утеплителей Пеноплэкс

 

Пеноплэкс Фундамент

Пеноплэкс Скатная кровля

Пеноплэкс Комфорт

Пеноплэкс Фасад

Прочность на сжатие при 10 %-ной линейной деформации, МПа (кгс/см2, т/м2), не менее

0,27

(2,7; 2,7)

0,25

(2,5; 2,5)

0,18

(1,8; 1,8)

0,20

(2,0; 2,0)

Водопоглощение за 24 часа, % по объему, не более

0,4

0,4

0,4

0,5

Водопоглощение за 28 суток, % по объему

0,5

0,5

0,5

-

Категория стойкости к огню, группа

Г4

Г4

Г4

Г3

Коэффициент теплопроводности при (25 ± 5) °С, Вт/мК

0,030

0,030

0,030

0,030

Расчетный коэффициент теплопроводности при условиях эксплуатации «А», Вт/мК

0,031

0,031

0,031

0,031

Расчетный коэффициент теплопроводности при условиях эксплуатации «Б», Вт/мК

0,032

0,032

0,032

0,032

Стандартные размеры, мм:

Ширина

600

600

600

600

Длина

1200

2400

1200

1200

Толщина 20, 30, 40, 50, 60, 70, 80, 100, 120, 150

100, 150

20, 30, 40, 50, 60, 80, 100, 120, 150 20, 30, 40, 50, 60, 80, 100, 120, 150

Температурный диапазон эксплуатации, °С

-100…+75

-100…+75

-100…+75

-100…+75

Звукоизоляция перегородки (ГКЛ + утеплитель Пеноплэкс 50 мм), Rw, дБ

-

41

41

41

Индекс улучшения изоляции структурного шума в конструкции пола, дБ

-

23

23

-

Преимущества теплоизоляции Пеноплэкс

  1. Влагостойкость. Материал не теряет свойств при намокании.
  2. Широкий ассортимент размеров. Можно подобрать плиты для внутренних тонких перегородок или выбрать ЭППС 100 мм – утеплитель Пеноплэкс такой толщины подойдет для морозов – 30 градусов.
  3. Малый вес. Плиты легко транспортировать и крепить.

Купить Пеноплэкс в Иркутске по цене официального дилера предлагает наш интернет-магазин. Мы сотрудничаем с производителями, поэтому гарантируем качество материалов. Выбирайте наиболее подходящие плиты и дополнительно закажите фирменный клей для теплоизоляции – он обеспечивает надежную фиксацию и не разрушает структуру полимера.

Толщина изоляции - обзор

В литературе формула. (8.2-40) обычно выражается в форме

, где термины U A и U B называются общими коэффициентами теплопередачи . Сравнение уравнения. (8.2-41) с формулой. (8.2-40) дает U A и U B как

(8.2-42) UA = [1 〈hA〉 + (R2 − R1) A1ALMk + A1 〈hB〉 A2] −1 = [1 〈hA〉 + R1ln (R2 / R1) k + R1 〈hB〉 R2] −1

(8.2-43) UB = [A2 〈hA〉 A1 + (R2 − R1) A2ALMk + 1 〈hB〉] −1 = [1 〈hA〉 R1 + R2ln (R2 / R1) k + 1 〈hB〉] −1

Пример 8.10

Рассмотрим цилиндрическую трубу длиной L с внутренним и внешним радиусами R 1 и R 2 соответственно, и исследуем, как скорость теплопотерь изменяется в зависимости от толщины изоляции.

Решение

Немедленная реакция большинства студентов после прочтения постановки задачи: «Какой смысл обсуждать скорость теплопотерь в зависимости от толщины изоляции? Добавление толщины изоляции, очевидно, снижает скорость потери тепла.Этот вывод верен только для плоских поверхностей. В случае изогнутых поверхностей, однако, внимательное рассмотрение уравнения. (8.2-32) указывает, что, хотя добавление изоляции увеличивает толщину, т. Е. R 2 - R 1 , оно также увеличивает площадь теплопередачи, т. Е. A LM . Следовательно, как числитель, так и знаменатель уравнения. (8.2-32) увеличиваются при увеличении толщины изоляции. Если увеличение площади теплопередачи больше, чем увеличение толщины, сопротивление уменьшается с одновременным увеличением скорости потери тепла.

Для геометрии, показанной на рисунке 8.20, скорость тепловых потерь определяется как

(1) Q˙ = TA − TB12πR1L 〈hA〉 + ln (R2 / R1) 2πLkw + ln (R3 / R2) 2πLki + 12πR3L 〈HB〉 ︸x

, где k w и k i - теплопроводность стены и изоляционного материала соответственно. Обратите внимание, что член X в знаменателе уравнения. (1) зависит от толщины изоляции. Дифференциация X относительно R 3 дает

(2) dXdR3 = 12πL (1R3ki − 1 〈hB〉 R32) = 0 ⇒ R3 = ki 〈hB〉

Чтобы определить, соответствует ли эта точка минимуму или максимальное значение, необходимо вычислить вторую производную, т.е.е.,

(3) d2XdR32 | R3 = ki / 〈hB〉 = 12πL 〈hB〉 2ki3> 0

Следовательно, при R 3 = k i / 〈 h B 〉, X имеет минимальное значение. Это означает, что скорость тепловых потерь достигнет максимального значения при R 3 = R cr = k i / 〈 h B 〉, где R cr называется критической толщиной изоляции.Для R 2 3 R кр добавление изоляции вызывает увеличение скорости потери тепла, а не ее уменьшение. Типичный график, показывающий изменение скорости теплопередачи в зависимости от толщины изоляции, представлен на рисунке 8.21.

Рисунок 8.20. Проводка через изолированную цилиндрическую трубу.

Рисунок 8.21. Скорость потери тепла в зависимости от толщины изоляции.

Еще один интересный момент - определение значения R *, точки, в которой скорость теплопотерь равна скорости потери тепла в неизолированной трубе.Скорость потери тепла через голую трубу, Q˙o, составляет

(4) Q˙o = TA − TB12πR1L 〈hA〉 + ln (R2 / R1) 2πLkW + 12πR2L 〈hB〉

С другой стороны, скорость потери тепла, Q˙ *, когда R 3 = R * равно

(5) Q˙ ∗ = TA − TB12πR1L 〈hA〉 + ln (R2 / R1) 2πLkW + ln (R * / R2) 2πLki + 12πR * L 〈hB〉

Приравнивая уравнения (4) и (5) дает

(6) R * R2- 〈hB〉 R * печь (R * R2) = 1

R * может быть определено из уравнения. (6) для заданных значений R 2 , 〈 h B 〉 и k i .

Комментарий: Для изоляционных материалов наибольшее значение теплопроводности составляет порядка 0,1 Вт / м · К. С другой стороны, наименьшее значение 〈 h B 〉 составляет около 3 Вт / м 2 · K. Следовательно, максимальное значение критического радиуса составляет примерно 3,3 см, и для большинства практических приложений это не представляет проблемы. Поэтому критический радиус изоляции важен только для проводов или трубок малого диаметра.

Проводимость | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Рассчитайте теплопроводность.
  • Наблюдать за теплопроводностью при столкновении.
  • Изучение теплопроводности обычных веществ.

Рис. 1. Изоляция используется для ограничения теплопроводности изнутри наружу (зимой) и снаружи внутрь (летом). (кредит: Джайлз Дуглас)

Вам холодно в ногах, когда вы идете босиком по ковру в гостиной в холодном доме, а затем ступаете на плиточный пол кухни. Этот результат интригует, так как ковер и кафельный пол имеют одинаковую температуру.Различные ощущения, которые вы испытываете, объясняются разной скоростью теплопередачи: потери тепла в течение одного и того же промежутка времени больше для кожи, контактирующей с плиткой, чем с ковром, поэтому перепад температуры больше на плитке.

Некоторые материалы проводят тепловую энергию быстрее, чем другие. В целом, хорошие проводники электричества (металлы, такие как медь, алюминий, золото и серебро) также являются хорошими проводниками тепла, тогда как изоляторы электричества (дерево, пластик и резина) являются плохими проводниками тепла.На рисунке 2 показаны молекулы в двух телах при разных температурах. (Средняя) кинетическая энергия молекулы в горячем теле выше, чем в более холодном теле. Если две молекулы сталкиваются, происходит передача энергии от горячей молекулы к холодной. Кумулятивный эффект от всех столкновений приводит к чистому потоку тепла от горячего тела к более холодному телу. Таким образом, тепловой поток зависит от разности температур Δ = Τ горячий - T холодный .Таким образом, вы получите более сильный ожог от кипятка, чем от горячей воды из-под крана. И наоборот, если температуры одинаковы, чистая скорость теплопередачи падает до нуля и достигается равновесие. Благодаря тому, что количество столкновений увеличивается с увеличением площади, теплопроводность зависит от площади поперечного сечения. Если прикоснуться ладонью к холодной стене, рука остынет быстрее, чем при прикосновении к ней кончиком пальца.

Рис. 2. Молекулы в двух телах при разных температурах имеют разные средние кинетические энергии.Столкновения, происходящие на контактной поверхности, имеют тенденцию передавать энергию из высокотемпературных областей в низкотемпературные области. На этом рисунке молекула в области более низких температур (правая сторона) имеет низкую энергию перед столкновением, но ее энергия увеличивается после столкновения с контактной поверхностью. Напротив, молекула в области более высоких температур (слева) имеет высокую энергию до столкновения, но ее энергия уменьшается после столкновения с контактной поверхностью.

Третий фактор в механизме теплопроводности - это толщина материала, через который передается тепло.На рисунке ниже показана плита из материала с разными температурами с обеих сторон. Предположим, что T 2 больше, чем T 1 , так что тепло передается слева направо. Передача тепла с левой стороны на правую осуществляется серией столкновений молекул. Чем толще материал, тем больше времени требуется для передачи того же количества тепла. Эта модель объясняет, почему толстая одежда зимой теплее тонкой и почему арктические млекопитающие защищаются толстым салом.

Рис. 3. Теплопроводность происходит через любой материал, представленный здесь прямоугольной полосой, будь то оконное стекло или моржовый жир. Температура материала T 2 слева и T 1 справа, где T 2 больше T 1 . Скорость теплопередачи за счет теплопроводности прямо пропорциональна площади поверхности A, разности температур T 2 - T 1 и проводимости вещества k .Скорость теплопередачи обратно пропорциональна толщине d .

Наконец, скорость теплопередачи зависит от свойств материала, описываемых коэффициентом теплопроводности. Все четыре фактора включены в простое уравнение, выведенное из экспериментов и подтвержденное экспериментами. Скорость кондуктивной теплопередачи через пластину материала, такую ​​как показанная на рисунке 3, определяется как

.

[латекс] \ displaystyle \ frac {Q} {t} = \ frac {kA \ left (T_2-T_1 \ right)} {d} \\ [/ latex],

, где [latex] \ frac {Q} {t} \\ [/ latex] - это скорость теплопередачи в ваттах или килокалориях в секунду, k - теплопроводность материала, A и d - это его площадь поверхности и толщина, как показано на Рисунке 3, а ( T 2 - T 1 ) - разница температур по пластине.В таблице 1 приведены типичные значения теплопроводности.

Пример 1. Расчет теплопроводности: скорость теплопроводности через ледяной ящик

Ледяной ящик из пенополистирола имеет общую площадь 0,950 м 2 и стенки со средней толщиной 2,50 см. В коробке есть лед, вода и напитки в банках с температурой 0 ° C. Внутренняя часть ящика охлаждается за счет таяния льда. Сколько льда тает за сутки, если хранить ледяной ящик в багажнике автомобиля при температуре 35,0ºC?

Стратегия

Этот вопрос включает как тепло для фазового перехода (таяние льда), так и передачу тепла за счет теплопроводности.{\ circ} \ text {C}; \\ t & = & 1 \ text {day} = 24 \ text {hours} = 86 400 \ text {s}. \ end {array} \\ [/ latex]

Определите неизвестные. Нам нужно найти массу льда м . Нам также нужно будет вычислить чистое тепло, передаваемое для таяния льда, Q . Определите, какие уравнения использовать. Скорость теплопередачи за счет теплопроводности определяется по формуле

.

[латекс] \ displaystyle \ frac {Q} {t} = \ frac {kA \ left (T_2-T_1 \ right)} {d} \\ [/ latex]

Тепло используется для плавления льда: Q мл f .{\ circ} \ text {C} \ right)} {0,0250 \ text {m}} = 13,3 \ text {J / s} \\ [/ latex]

Умножьте скорость теплопередачи на время (1 день = 86 400 с): Q = [латекс] \ left (\ frac {Q} {t} \ right) t \\ [/ latex] = ( 13,3 Дж / с) (86400 с) = 1,15 × 10 6 Дж

Установите равным теплу, передаваемому для растапливания льда: Q = мл f . Решим относительно массы м :

[латекс] \ displaystyle {m} = \ frac {Q} {L _ {\ text {f}}} = \ frac {1.3 \ text {Дж / кг}} = 3,44 \ text {кг} \\ [/ latex]

Обсуждение

Результат 3,44 кг, или около 7,6 фунта, кажется примерно правильным, если судить по опыту. Вы можете рассчитывать на использование мешка льда весом около 4 кг (7–10 фунтов) в день. Если вы добавляете горячую пищу или напитки, потребуется немного льда.

Проверка проводимости в таблице 1 показывает, что пенополистирол - очень плохой проводник и, следовательно, хороший изолятор. Среди других хороших изоляторов - стекловолокно, шерсть и перья из гусиного пуха. Как и пенополистирол, все они включают в себя множество маленьких карманов с воздухом, благодаря низкой теплопроводности воздуха.

Таблица 1. Теплопроводность обычных веществ
Вещество Теплопроводность k (Дж / с⋅м⋅ºC)
Серебро 420
Медь 390
Золото 318
Алюминий 220
Стальной чугун 80
Сталь (нержавеющая) 14
Лед 2.2
Стекло (среднее) 0,84
Бетонный кирпич 0,84
Вода 0,6
Жировая ткань (без крови) 0,2
Асбест 0,16
Гипсокартон 0,16
Дерево 0,08–0,16
Снег (сухой) 0,10
Пробка 0.042
Стекловата 0,042
Шерсть 0,04
Пуховые перья 0,025
Воздух 0,023
Пенополистирол 0,010

Рис. 4. Стекловолокно используется для изоляции стен и потолков, чтобы предотвратить теплопередачу между внутренней частью здания и внешней средой.

Комбинацией материала и толщины часто манипулируют для создания хороших изоляторов - чем меньше проводимость k и чем больше толщина d , тем лучше.Соотношение [латекс] \ гидроразрыва {d} {k} \\ [/ латекс], таким образом, будет большим для хорошего изолятора. Соотношение [латекс] \ frac {d} {k} \\ [/ latex] называется коэффициентом R . Скорость кондуктивной теплопередачи обратно пропорциональна R . Чем больше значение R , тем лучше изоляция. R Коэффициент чаще всего указывается для бытовой теплоизоляции, холодильников и т. П. - к сожалению, он все еще выражается в неметрических единицах футов 2 · ° F · ч / британских тепловых единиц, хотя единицы обычно не указываются (1 британский тепловая единица [BTU] - это количество энергии, необходимое для изменения температуры на 1.0 фунтов воды при температуре 1,0 ° F). Пара репрезентативных значений: коэффициент R , равный 11, для стекловолоконных войлоков (кусков) изоляции толщиной 3,5 дюйма и коэффициент R , равный 19, для стекловолоконных войлоков толщиной 6,5 дюймов. Стены обычно утепляются 3,5-дюймовыми ватными покрытиями, а потолки - 6,5-дюймовыми. В холодном климате для потолков и стен можно использовать более толстый войлок.

Обратите внимание, что в таблице 1 лучшие теплопроводники - серебро, медь, золото и алюминий - также являются лучшими электрическими проводниками, что опять же связано с плотностью свободных электронов в них.Кухонная утварь обычно изготавливается из хороших проводников.

Пример 2. Расчет разницы температур, поддерживаемой теплопередачей: проводимость через алюминиевый поддон

Вода кипит в алюминиевой кастрюле, поставленной на электрический элемент на плите. Дно кастрюли имеет толщину 0,800 см и диаметр 14,0 см. Кипящая вода испаряется со скоростью 1,00 г / с. Какая разница температур на дне сковороды?

Стратегия

Проводимость через алюминий является здесь основным методом теплопередачи, поэтому мы используем уравнение для скорости теплопередачи и решаем разницу температур .

[латекс] \ displaystyle {T} _2-T_1 = \ frac {Q} {t} \ left (\ frac {d} {kA} \ right) \\ [/ latex]

Решение

Определите известные значения и преобразуйте их в единицы СИ. Толщина поддона, d = 0,900 см = 8,0 × 10 −3 м площадь поддона, A = π (0,14 / 2) 2 м 2 = 1,54 × 10 −2 м 2 , а теплопроводность k = 220 Дж / с ⋅ м ⋅ ° C.

Рассчитайте необходимую теплоту испарения 1 г воды: Q = мл v = (1.{\ circ} \ text {C} \\ [/ latex]

Обсуждение

Значение теплопередачи [латекс] \ frac {Q} {t} \ [/ latex] = 2,26 кВт или 2256 Дж / с типично для электрической плиты. Это значение дает очень небольшую разницу температур между плитой и сковородой. Учтите, что конфорка печи раскалилась докрасна, а температура внутри сковороды почти 100ºC из-за контакта с кипящей водой. Этот контакт эффективно охлаждает дно сковороды, несмотря на его близость к очень горячей конфорке плиты.Алюминий настолько хороший проводник, что достаточно лишь этой небольшой разницы температур для передачи тепла в сковороду 2,26 кВт.

Проводимость вызывается случайным движением атомов и молекул. По сути, это неэффективный механизм переноса тепла на макроскопические расстояния и короткие временные расстояния. Возьмем, к примеру, температуру на Земле, которая была бы невыносимо низкой ночью и чрезвычайно высокой днем, если бы перенос тепла в атмосфере происходил только за счет теплопроводности.В другом примере автомобильные двигатели будут перегреваться, если не будет более эффективного способа отвода избыточного тепла от поршней.

Проверьте свое понимание

Как изменяется скорость теплопередачи за счет теплопроводности, когда все пространственные размеры удваиваются?

Решение

Поскольку площадь является произведением двух пространственных измерений, она увеличивается в четыре раза, когда каждое измерение удваивается ( A final = (2 d ) 2 = 4 d 2 = 4 А начальный ).А расстояние просто удваивается. Поскольку разница температур и коэффициент теплопроводности не зависят от пространственных размеров, скорость передачи тепла за счет теплопроводности увеличивается в четыре раза, деленные на два или два:

[латекс] \ left (\ frac {Q} {t} \ right) _ {\ text {final}} = \ frac {kA _ {\ text {final}} \ left (T_2-T_1 \ right)} {d_ {\ text {final}}} = \ frac {k \ left (4A _ {\ text {initial}} \ right) \ left (T_2-T_1 \ right)} {2d _ {\ text {initial}}} = 2 \ frac {kA _ {\ text {initial}} \ left (T_2-T_1 \ right)} {d _ {\ text {initial}}} = 2 \ left (\ frac {Q} {t} \ right) _ {\ text {initial}} \\ [/ latex]

Сводка раздела

  • Теплопроводность - это передача тепла между двумя объектами, находящимися в непосредственном контакте друг с другом.
  • Скорость теплопередачи [латекс] \ frac {Q} {t} \ [/ latex] (энергия в единицу времени) пропорциональна разнице температур T 2 - T 1 и площадь контакта A и обратно пропорциональна расстоянию d между объектами: [latex] \ frac {Q} {t} = \ frac {\ text {kA} \ left ({T} _ {2} - {T} _ {1} \ right)} {d} \\ [/ latex].

Концептуальные вопросы

  1. Некоторые электроплиты имеют плоскую керамическую поверхность со скрытыми нагревательными элементами.Кастрюля, поставленная над нагревательным элементом, будет нагрета, при этом безопасно прикасаться к поверхности всего в нескольких сантиметрах от нее. Почему керамика с проводимостью меньше, чем у металла, но больше, чем у хорошего изолятора, является идеальным выбором для плиты?
  2. Свободная белая одежда, закрывающая большую часть тела, идеальна для обитателей пустыни как на жарком солнце, так и в холодные вечера. Объясните, чем выгодна такая одежда днем ​​и ночью.

Рисунок 5.Джеллабию носят многие мужчины в Египте. (кредит: Зерида)

Задачи и упражнения

  1. (a) Рассчитайте коэффициент теплопроводности через стены дома толщиной 13,0 см, у которых средняя теплопроводность в два раза выше, чем у стекловаты. Предположим, что нет ни окон, ни дверей. Площадь стен составляет 120 м 2 2 , их внутренняя поверхность имеет температуру 18,0ºC, а внешняя поверхность - 5,00ºC. (b) Сколько комнатных обогревателей мощностью 1 кВт потребуется для уравновешивания теплопередачи за счет теплопроводности?
  2. Скорость отвода тепла из окна в зимний день достаточно высока, чтобы охладить воздух рядом с ним.Чтобы увидеть, насколько быстро окна передают тепло за счет теплопроводности, рассчитайте коэффициент теплопроводности в ваттах через окно размером 3,00 м 2 толщиной 0,635 см (1/4 дюйма), если температура внутренней и внешней поверхностей составляет 5,00 ºC и −10,0ºC соответственно. Такая высокая скорость не будет поддерживаться - внутренняя поверхность остынет и даже может образоваться иней.
  3. Рассчитайте скорость отвода тепла от тела человека, предполагая, что внутренняя температура ядра составляет 37,0 ° C, а температура кожи равна 34.0ºC, толщина тканей в среднем составляет 1,00 см, а площадь поверхности составляет 1,40 м 2 .
  4. Предположим, вы стоите одной ногой на керамическом полу и одной ногой на шерстяном ковре, соприкасаясь каждой ногой на площади 80,0 см. 2 . И керамика, и ковер имеют толщину 2,00 см и температуру на нижней стороне 10,0 ° C. С какой скоростью должна происходить теплопередача от каждой ступни, чтобы верхняя часть керамики и ковра поддерживала температуру 33,0 ° C?
  5. Человек потребляет 3000 ккал пищи за один день, преобразовывая большую ее часть для поддержания температуры тела.Если он теряет половину этой энергии из-за испарения воды (при дыхании и потоотделении), сколько килограммов воды испаряется?
  6. (a) Огнеходящий бежит по раскаленному углю, не получив ожогов. Рассчитайте теплопроводность, передаваемую подошве одной ступни огнехожника, учитывая, что нижняя часть ступни представляет собой мозоль толщиной 3,00 мм с проводимостью на нижнем пределе диапазона для древесины, а ее плотность составляет 300 кг / м 2. 3 . Площадь контакта 25,0 см 2 , температура углей 700ºC, время контакта 1.00 с. (b) Какое повышение температуры происходит в 25,0 см 3 пораженной ткани? (c) Как вы думаете, какое влияние это окажет на ткань, учитывая, что каллус состоит из мертвых клеток?
  7. (а) Какова скорость теплопроводности через мех толщиной 3 см у крупного животного с площадью поверхности 1,40 м 2 ? Предположим, что температура кожи животного составляет 32,0 ° C, температура воздуха -5,00 ° C и мех имеет такую ​​же теплопроводность, что и воздух.(б) Какой прием пищи потребуется животному в течение одного дня, чтобы восполнить эту теплопередачу?
  8. Морж передает энергию посредством проводимости через свой жир с мощностью 150 Вт при погружении в воду с температурой –1,00 ° C. Внутренняя температура моржа составляет 37,0ºC, а его площадь поверхности составляет 2,00 м 2 . Какова средняя толщина его подкожного жира, который имеет проводимость жировых тканей без крови?

    Рис. 6. Морж на льду. (Источник: капитан Бадд Кристман, Корпус NOAA)

  9. Сравните коэффициент теплопроводности через 13.Стена толщиной 0 см, имеющая площадь 10,0 м 2 и удвоенную теплопроводность, чем у стекловаты, со скоростью теплопроводности через окно толщиной 0,750 см и площадью 2,00 м 2 , предполагая одинаковую разницу температур между ними.
  10. Предположим, что человек покрыт с головы до ног шерстяной одеждой средней толщины 2,00 см и передает энергию путем теплопроводности через одежду со скоростью 50,0 Вт. Какова разница температур в одежде, если площадь поверхности равна 1.40 м 2 ?
  11. Поверхности некоторых плит сделаны из гладкой керамики для облегчения очистки. Если керамика имеет толщину 0,600 см и теплопроводность происходит через ту же площадь и с той же скоростью, что и в примере 2, какова разница температур в ней? Керамика имеет такую ​​же теплопроводность, как стекло и кирпич.
  12. Один из простых способов сократить расходы на отопление (и охлаждение) - это добавить дополнительную изоляцию на чердаке дома. Предположим, что в доме уже есть 15 см стекловолоконной изоляции на чердаке и на всех внешних поверхностях.Если добавить на чердак еще 8,0 см стеклопластика, то на какой процент упадет стоимость отопления дома? Возьмем одноэтажный дом размером 10 м на 15 м на 3,0 м. Не обращайте внимания на проникновение воздуха и потерю тепла через окна и двери.
  13. (a) Рассчитайте коэффициент теплопроводности через окно с двойным остеклением, которое имеет площадь 1,50 м 2 и состоит из двух стекол толщиной 0,800 см, разделенных воздушным зазором 1,00 см. Температура внутренней поверхности 15.0ºC, а снаружи −10,0ºC. (Подсказка: на двух стеклянных панелях наблюдаются одинаковые перепады температуры. Сначала найдите их, а затем перепад температуры в воздушном зазоре. Эта проблема игнорирует повышенную теплопередачу в воздушном зазоре из-за конвекции.) (B) Рассчитайте скорость теплопроводность через окно толщиной 1,60 см той же площади и с такими же температурами. Сравните свой ответ с ответом на часть (а).
  14. Многие решения принимаются на основе периода окупаемости: времени, которое потребуется за счет экономии, чтобы равняться капитальным затратам на инвестиции.Приемлемые сроки окупаемости зависят от бизнеса или философии. (Для некоторых отраслей период окупаемости составляет всего два года.) Предположим, вы хотите установить дополнительную изоляцию, о которой идет речь в вопросе 12. Если стоимость энергии составляет 1 доллар США за миллион джоулей, а стоимость изоляции составляет 4 доллара США за квадратный метр, тогда рассчитайте простой срок окупаемости. . Возьмем среднее значение Δ T для 120-дневного отопительного сезона равным 15,0 ° C.
  15. Для человеческого тела, какова скорость теплопередачи через ткани тела при следующих условиях: толщина ткани 3.00 см, изменение температуры 2,00ºC, а площадь кожи 1,50 м 2 . Как это соотносится со средней скоростью передачи тепла телу в результате потребления энергии около 2400 ккал в день? (Никакие упражнения не включены.)

Глоссарий

R-фактор: отношение толщины материала к проводимости

скорость кондуктивной теплопередачи: скорость теплопередачи от одного материала к другому

теплопроводность: свойство способности материала проводить тепло

Избранные решения проблем и упражнения

1.(а) 1.01 × 10 3 Вт; (б) Один

3. 84.0 Вт

5. 2,59 кг

7. (а) 39,7 Вт; (б) 820 ккал

9. 35 к 1, окно к стене

11. 1,05 × 10 3 К

13. (а) 83 Вт; (b) в 24 раза больше, чем у окна с двойным остеклением.

15. 20,0 Вт, 17,2% от 2400 ккал в день


Conductive Heat Transfer

Проводимость как теплопередача имеет место при наличии температурного градиента в твердой или неподвижной текучей среде.

При столкновении соседних молекул энергия проводимости передается от более энергичных молекул к менее энергичным. Тепло течет в направлении понижения температуры, поскольку более высокие температуры связаны с более высокой молекулярной энергией.

Кондуктивная теплопередача может быть выражена с помощью "закона Фурье "

q = (k / s) A dT

= UA dT (1)

где

q

= теплопередача (Вт, Дж / с, БТЕ / час)

k = Теплопроводность материала (Вт / м · К или Вт / м o C, БТЕ / (час o F ft 2 / фут))

s = толщина материала (м, фут)

A = площадь теплопередачи (м 2 , фут 2 )

U = k / s

= Коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 ч o F)

dT = t 1 - t 2

= температурный градиент - разница - по материалу ( o C, o F) 90 006

Пример - кондуктивный теплообмен

Плоская стена изготовлена ​​из твердого железа с теплопроводностью 70 Вт / м o C. Толщина стены 50 мм, и длина и ширина поверхности 1 м на 1 м. Температура составляет 150 ° С ° С с одной стороны поверхности и 80 ° ° С с другой.

Можно рассчитать кондуктивную теплопередачу через стену

q = [(70 Вт / м o C) / (0,05 м) ] [(1 м) (1 м)] [ (150 o C) - (80 o C)]

= 98000 (Вт)

= 98 (кВт)

Калькулятор теплопроводности.

Этот калькулятор можно использовать для расчета теплопроводности и теплопередачи через стену. Калькулятор является универсальным и может использоваться как для метрических, так и для британских единиц измерения, если они используются последовательно.

k - теплопроводность (Вт / (мК), БТЕ / (час o F фут 2 / фут))

A - площадь (м 2 , фут 2 )

t 1 - температура 1 ( o C, o F)

t 2 - температура 2 ( C, o F)

s - толщина материала (м, футы)

Проводящая теплопередача через плоскую поверхность или стену со слоями в серии

Тепло, передаваемое через стену со слоями в тепловой контакт можно рассчитать как

q = dT A / ((s 1 / k 1 ) + (s 2 07 / k 9 2 ) +... + (s n / k n )) (2)

где

dT = t 1 - t

= разница температур между внутренней и внешней стеной ( o C, o F)

Обратите внимание, что термостойкость из-за поверхностной конвекции и излучения не включена в это уравнение .Конвекция и излучение в целом имеют большое влияние на общие коэффициенты теплопередачи.

Пример - кондуктивная теплопередача через стенку печи

Стенка печи 1 м 2 состоит из внутреннего слоя нержавеющей стали толщиной 1,2 см , покрытого 5 см наружного изоляционного слоя изоляционной плиты. Температура внутренней поверхности стали составляет 800 K , а температура внешней поверхности изоляционной плиты составляет 350 K .Теплопроводность нержавеющей стали составляет 19 Вт / (м · К) , а теплопроводность изоляционной плиты составляет 0,7 Вт / (м · К) .

Кондуктивный перенос тепла через многослойную стену можно рассчитать как

q = [(800 K) - (350 K)] (1 м 2 ) / ([(0,012 м) / (19 Вт / (м · К) )] + [(0,05 м) / (0,7 Вт / (м · К))] )

= 6245 (Ш)

= 6.25 кВт

Единицы измерения теплопроводности

  • БТЕ / (ч-фут 2 o фут / фут)
  • БТЕ / (ч-фут 2 o фут / дюйм) 902 БТЕ / (с фут 2 o фут / фут)
  • БТЕ дюйм) / (фут² ч ° F)
  • МВт / (м 2 К / м)
  • кВт / (м 2 К / м)
  • Вт / (м 2 К / м)
  • Вт / (м 2 К / см)
  • Вт / ( см 2 o C / см)
  • Вт / (дюйм 2 o F / дюйм)
  • кДж / (hm 2 К / м)
  • Дж / (см 2 o C / м)
  • ккал / (hm 2 o C / м)
  • кал / (с cm 2 o C / см)
  • 1 Вт / (м · K) = 1 Вт / (м o C) = 0.85984 ккал / (hm o C) = 0,5779 Btu / (ft h o F) = 0,048 Btu / (дюйм h o F) = 6,935 (BTu дюймов) / (фут² час ° F)

Пенополиуритан - теплоизоляция

Пример - изоляция из пенополиуретана

Основным источником потери тепла от дома являются стены. Рассчитайте скорость теплового потока через стену площадью 3 м x 10 м (A = 30 м 2 ). Стена толщиной 15 см (L 1 ) сделана из кирпича с теплопроводностью k 1 = 1.0 Вт / м.К (плохой теплоизолятор). Предположим, что температура в помещении и на улице составляет 22 ° C и -8 ° C, а коэффициенты конвективной теплопередачи на внутренней и внешней сторонах равны h 1 = 10 Вт / м 2 K и h 2 = 30 Вт / м 2 К соответственно. Обратите внимание, что эти коэффициенты конвекции сильно зависят, в частности, от внешних и внутренних условий (ветер, влажность и т. Д.).

  1. Рассчитайте тепловой поток ( потери тепла ) через эту неизолированную стену.
  2. Теперь предположим, что теплоизоляция на внешней стороне этой стены. Используйте изоляцию из пенополиуретана толщиной 10 см (L 2 ) с теплопроводностью k 2 = 0,028 Вт / м · К и рассчитайте тепловой поток ( потери тепла ) через эту композитную стену.

Решение:

Как уже было написано, многие процессы теплопередачи включают композитные системы и даже включают комбинацию теплопроводности и конвекции.С этими композитными системами часто удобно работать с общим коэффициентом теплопередачи , , известным как U-фактор . Коэффициент U определяется выражением, аналогичным закону охлаждения Ньютона :

Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии задачи.

  1. голая стена

Предполагая одномерную теплопередачу через плоскую стену и не принимая во внимание излучение, общий коэффициент теплопередачи можно рассчитать как:

Тогда общий коэффициент теплопередачи равен:

U = 1 / (1/10 + 0.15/1 + 1/30) = 3,53 Вт / м 2 K

Затем тепловой поток можно рассчитать просто как:

q = 3,53 [Вт / м 2 K] x 30 [K] = 105,9 Вт / м 2

Суммарные потери тепла через эту стену будут:

q потери = q. A = 105,9 [Вт / м 2 ] x 30 [м 2 ] = 3177W

  1. композитная стена с теплоизоляцией

Предполагая одномерную теплопередачу через плоскую композитную стену, отсутствие термоконтактного сопротивления и без учета излучения общий коэффициент теплопередачи может быть рассчитан как:

Общий коэффициент теплопередачи тогда равен:

U = 1 / (1/10 + 0.15/1 + 0,1 / 0,028 + 1/30) = 0,259 Вт / м 2 K

Затем тепловой поток можно рассчитать просто как:

q = 0,259 [Вт / м 2 K] x 30 [ K] = 7,78 Вт / м 2

Суммарные потери тепла через эту стену будут:

q потери = q. A = 7,78 [Вт / м 2 ] x 30 [м 2 ] = 233 Вт

Как видно, добавление теплоизолятора приводит к значительному снижению тепловых потерь. Его надо добавить, добавление следующего слоя теплоизолятора не дает такой большой экономии.Это лучше всего видно из метода термического сопротивления, который можно использовать для расчета теплопередачи через композитные стены . Скорость устойчивой теплопередачи между двумя поверхностями равна разнице температур, деленной на общее тепловое сопротивление между этими двумя поверхностями.

Труба диаметром 8 см покрыта слоем изоляции толщиной 3 см с коэффициентом излучения поверхности 0,9. Температура поверхности изоляции составляет 80 ° C, а температура трубы 20 ° C.Учитывая потери тепла за счет излучения и естественной конвекции, рассчитайте: (i) Потери тепла от длины 5 м из

Дано: Изолированная труба подвергается воздействию воздуха:
D_1 = 8 см, L = 5 м,
D_2 = 8 см + 2 × 3 см = 14 см = 0,14 м
ε = 0,9, T_s = 80 ° C = 353 K,
T_∞ = 20 ° C = 293 K.
Чтобы найти:
(i) Скорость рассеивания тепла за счет естественной конвекции и тепловое излучение на изолированную поверхность трубы длиной 5 м.
(ii) Общий коэффициент теплопередачи и
(iii) Коэффициент радиационной теплопередачи.2.К.

Изоляция из стекловолокна толщиной 2 дюйма |

Утеплитель из стекловолокна Значение U Показатель R определяет, насколько хорошо определенные строительные изоляционные материалы могут противостоять нагреванию. Чем выше значение R, тем лучше изоляционные характеристики. При определении того, какой уровень изоляции вам нужен, не гадайте, а рассчитывайте. Точно знайте, сколько вам нужно, с помощью наших калькуляторов проекта. Справочная таблица для значений "U". Значение "U" - это коэффициент передачи, т.е. передача

UniTherm R-5, рулон необработанного изоляционного полотна из керамического волокна 2 дюймаx 24 дюйма x 50 дюймов для печей, духовок, печей и т. д. Модель № CF8-2-24X50in $ 56 49 $ 56 49.… r19 изоляция r13 облицованная изоляция звукоизоляционная изоляция стекловолоконная изоляция 2 в стекловолоконной изоляции ...

Получите бесплатную доставку квалифицированного 2 в изоляции из стекловолокна или купите онлайн в… Без облицовки · Изоляция Расположение: 2 × 4 Стена · Рулон · Толщина продукта (дюймы): 2 дюйма…

OWENS CORNING 703 жесткие панели из стекловолокна 4'x2 'толщиной 2 дюйма, 6 шт. Оставьте первый отзыв об этом продукте Owens Corning 703 Rigid Fiberglass толщиной 2 дюйма - идеальный продукт для создания акустических панелей и басовых ловушек.

В чем разница между минеральной изоляцией Xname и изоляцией из стекловолокна Глобальный рынок звукоизоляции и теплоизоляционных материалов в 2020 году по производителям, регионам, типам и областям применения, прогноз до 2025 года содержит углубленную оценку рынка с помощью… 24 марта 2017 г.… Джозеф Труини. На протяжении почти 80 лет изоляция из стекловолокна была самым популярным типом утеплителя для дома, и ее легко сделать

.

Изоляция из стекловолокна Стандартные изоляционные ватины или одеяла из стекловолокна обеспечивают R-значение 2.От 2 до 3,8 на дюйм толщины. Большинство производителей выпускают войлок R-13, который подходит для 2х4…

Чем толще изоляция, тем выше ее термическое сопротивление или коэффициент R. Стандартная изоляция из стекловолокна толщиной 3,5 дюйма имеет R-значение 11 и аккуратно вписывается в пространство для стоек размером два на четыре.

Ищете OWENS CORNING толщиной 2 дюйма, шарнирную, с самоуплотняющейся изоляцией из стекловолокна внахлест, длина изоляции 3 фута (4LFH7)? Грейнджер вас поддержит. Цена 31,00 долл. обслуживание клиентов, бесплатная техническая поддержка и многое другое.

Получите бесплатную доставку квалифицированной изоляции из стекловолокна или купите онлайн-самовывоз в магазине сегодня в отделе строительных материалов.

Изоляция предварительно просвечивается и приклеивается и может выдерживать температуры от -70 ° до 220 ° F. Он также содержит противомикробное средство, устойчивое к плесени, грибкам и бактериям. Используется на линиях охлажденной воды и хладагента, а также для предотвращения потерь тепла в горячей воде…

Толщина изоляции - это толщина стенки из стекловолокна, которая варьируется от 1/2 до 3 дюймов.Для получения помощи в выборе толщины изоляции трубы из стекловолокна см. Наше Руководство по толщине стекловолокна. Чтобы определить размер трубы для заказа, перейдите по ссылке ниже (Примечание: Труба…

Wiss, Janney, Fiona Aldous из Elstner упоминает материалы с фазовым переходом, сверхтолстую изоляцию и высокоэффективные изолирующие одеяла со значениями R, превышающими девять на дюйм толщины… для…

Толщина: 2 дюйма WISCO продает изоляцию для труб только в картонных коробках. Каждый размер имеет разное количество в картонной упаковке.Это количество указано справа от размера, указанного выше в погонных футах. Например: 2 x 2 (48 футов) содержат 48 погонных футов в коробке (16 штук x 3 фута). Для определения размеров обратитесь к таблице, показанной выше на изображениях, или по ссылке ниже.

Изоляция из стекловолокна Огнестойкая водонепроницаемая изоляция из стекловолокна Легко найдите свою водонепроницаемую изоляцию среди 89 продуктов ведущих производителей… теплоакустическая изоляция / стекловата / стекловолокно / для вентиляции и кондиционирования воздуха kdip kimmco. изоляция из стекловолокна по сравнению с изоляцией из распыляемой пены Купить изоляцию из стекловолокна Обзор мирового рынка изоляционных материалов из стекловолокна… важность понимания того, что покупают и смотрят мировые потребители,

Существуют кондиционеры поверхности для бетона и кирпичной кладки, еще один - для фанеры и третий - для облицовки стекловолокном ... не используйте клей, когда на улице ниже 40 ° F.2 Плотно сверните…

Необлицованная изоляция из стекловолокна Guardian R-6.7 2 "x 16" x 48 "- (5,3 кв. Фута)… Тип продукта. Рулонная изоляция. Значение R. 6.7. Толщина. 2 дюйма. Зона покрытия.

Fiberglass Mat Insulation Продукты серии L представляют собой одеяла с низким содержанием связующего, в то время как мат HP5 II Mat представляет собой игольчатое одеяло без связующего • Волокна, не содержащие связующего вещества, уменьшают зуд и раздражение у… Мы предлагаем широкий спектр индивидуальных и оптовых изоляционных продуктов из рулона , войлок и картон… K-25 Mat Лицевая изоляция светло-желтая, средняя

[Решено] Горячая жидкость течет по длинной трубе с внешним диаметром 4 см.

Вопрос:

Горячая жидкость течет по длинной трубе с внешним диаметром 4 см, покрытой изоляцией толщиной 2 см.Предлагается снизить теплопотери из-за теплопроводности в окружающую среду до одной трети от нынешнего уровня за счет увеличения такой же толщины изоляции. Требуемая дополнительная толщина утеплителя составит

.

Бесплатная практика с тестами из тестовой тетради

Опции:

Правильный ответ:

Вариант 4 (Решение ниже)

Этот вопрос ранее задавали в

ISRO Холодильное оборудование и кондиционирование воздуха 2020 Официальный

Решение:

Скачать вопрос с решением PDF ››

Концепция:

Скорость теплопередачи через цилиндр определяется по формуле:

\ (\ dot Q = \ frac {{2 \ pi kl \ left ({{T_1} - {T_2}} \ right)}} {{ln \ left ({\ frac {{{r_2}}}} {{ {r_1}}}} \ right)}} \)

где Q̇ = скорость теплопередачи, T 1 , T 2 = температура внутренней и внешней цилиндрической поверхности, r 1 , r 2 = внутренний и внешний радиус, k = теплопроводность материала, l = длина трубы

Расчет:

Дано:

r 1 = 2 см, r 2 = 4 см, Q 2 = \ (\ frac {1} {3} \) × Q 1

Потери тепла с существующей изоляцией,

\ ({Q_1} = \ frac {{2 \ pi kl \ left ({{T_1} - {T_2}} \ right)}} {{ln \ left ({\ frac {{{r_2}}}} {{ {r_1}}}} \ right)}} \)

Теплопотери с дополнительной изоляцией,

\ ({Q_2} = \ frac {{2 \ pi kl \ left ({{T_1} - {T_2}} \ right)}} {{ln \ left ({\ frac {{{r_2} + x}}) {{{r_1}}}} \ right)}} \)

Где x - дополнительная толщина изоляции .

Добавить комментарий