Ветряк мощность: как сталь помогает альтернативной энергетике

Содержание

как сталь помогает альтернативной энергетике

Мир переходит на чистую энергетику. Энергия ветра сейчас считается одной из самых дешевых по способу производства электроэнергии. По данным Глобального совета по ветроэнергетике (Global Wind Energy Council (GWEC), в прошлом году мощности ветряных электростанций впервые превысили объемы ископаемого топлива на многих развитых и развивающихся рынках.

Последние пять лет ветряная энергетика растет примерно на 50 гигаватт в год. Сегодня все ветроэлектростанции планеты генерируют 591 гигаватт. GWEC ожидает, что еще через пять лет в мире станет больше на 300 гигаватт новых мощностей. 

Топ стран-лидеров в ветроэнергетике, 2018 год, GWEC, гигаватты 

Номер два в Европе и Украине 

Ветроэнергетика – вторая по объему мощностей отрасль энергетики в Европе. Ветропарки Европейского союза вырабатывают около 180 гигаватт энергии. Это почти половина от всей европейской энергетики. По прогнозам ассоциации Wind Europe, в этом году ветроэнергетика может перерасти газовую промышленность.

В 2018 году в Европе введены в эксплуатацию установки с ветрогенераторамы мощностью почти 12 гигаватт. Из всех энергетических объектов, построенных в прошлом году, на долю возобновляемых источников энергии приходится 95%. А вот газ, нефть и уголь теряют свои позиции: новые установки по добыче газа и угля в ЕС достигли рекордно низкого уровня. 

Каждый год в зеленую энергетику в Европе вкладывают миллиарды евро. 2018 год стал рекордным по финансированию проектов ветроэнергетики: инвестиции составили почти 27 млрд евро. Самые крупные инвесторы – Великобритания и Швеция. Украина с 1,2 млрд евро входит в десятку по объему инвестиций в зеленую энергетику.    

Топ стран-лидеров по инвестициям в ветроэнергетику в 2018 году, Wind Europe, млрд евро

В первой половине этого года в Европе построили  ветрогенераторы мощностью почти 5 гигаватт. Украина вошла в пятерку самых продвинутых стран.

Топ стран-лидеров по количеству установок ветроэлектростанций, 1-е полугодие 2019 г., Wind Europe, мегаватты

Среди альтернативных источников энергии в Украине ветер пока уступает солнцу. В 2018 году было построено 68 ветропарков общей мощностью 533 мегаватта. Это 22 ветрогенератора, мощность каждого из которых – около 3 мегаватт. На конец июня этого года общие мощности украинских ветроэлектростанций достигли почти 777 мегаватт. 

Мегаконструкции из металла

Ветроэлектростанция состоит из нескольких ветрогенераторов, объединенных в одну сеть. Самые большие ветропарки расположены в Китае, Индии и Великобритании. К примеру, в китайской провинции Ганьсу работает целый комплекс ветроэлектростанций мощностью почти 8 гигаватт, который может потягаться с крупнейшими атомными и гидроэлектростанциями. 

Ветрогенератор – установка, которая превращает энергию ветра в электрическую. По данным Wind Europe, в среднем мощность одного ветрогенератора колеблется от 2 до 3,6 мегаватт.

Самая мощная турбина ветрогенератора в мире установлена у берегов Шотландии. Диаметр лопастей ветряка составляет 164 метра – больше, чем размах крыльев любого самолета, высота – 191 метр. Мощность установки – 8,8 мегаватт. Ветряной  энергии от одного оборота лопастей ветрогенератора хватит для того, чтобы освещать одну квартиру целый день.

Конструкция ветряка весит сотни тонн, его мачта выполняется из толстолистового проката, а фундамент – из арматуры крупных диаметров – 20-32 мм. На один фундамент может уйти от 60 до 130 тонн арматуры. Стальной сплав делает установку прочной и устойчивой к нагрузкам. 

Производителям башен и гондол ветроэлектрических установок Метинвест поставляет прокат шириной до 3300 мм и толщиной до 200 мм, произведенный по ведущим мировым стандартам на украинских и европейских заводах компании. Практически весь материал ветрогенератора – это лист конструкционных марок стали с преобладанием класса прочности S355. Больше половины проката проходит ультразвуковой контроль качества, чтобы гарантировать требуемую сплошность материала для дальнейшей сборки. В 2018 году Метинвест поставил 68 тыс. тонн горячекатаного листа для производства башен ветрогенераторов. Большую часть продукции выпустил Trametal, итальянский завод группы.

Метинвест участвует в ветроэнергетических проектах по всему миру. Италия, Испания, Португалия, Германия, Израиль, Турция, Иордания, Египет, США, Украина – это далеко не полный перечень стран, в которых построены или строятся ветропарки из украинской стали. 

Ветропарк в Барвице, Польша

Среди клиентов Метинвеста – мировой лидер в отрасли ветроэнергетики, компания Siemens Gamesa. Для строительства ветроэлектростанции в Польше комбинат «Азовсталь» поставил около 3 тысяч тонн толстого листа. Из него субподрядчик проекта, польская компания GSG Towers изготовит ветряные башни.

В этом году специалисты Siemens провели аудит на «Азовстали» и сертифицировали производство комбината. Это значит, что Метинвест стал украинским партнером Siemens и сможет поставлять продукцию и для других проектов компании. 

Ветряная электростанция  расположится в Барвице, что на северо-западе Польши. Проект включает строительство 14 ветряных турбин мощностью 3 мегаватта каждая. Общая мощность станции – 42 мегаватта. Строительство началось в марте этого года, а ввод ветропарка в эксплуатацию ожидается в феврале 2020 года. Ветроэлектростанция будет генерировать около 112 млн КВтч в год. Этого достаточно, чтобы обеспечить электричеством около 27 тысяч домохозяйств.

Ветропарк на острове Петалас, Греция

В западной Греции продолжается строительство ветроэлектростанции из 24 установок мощностью по 2 мегаватта каждая. Ветропарком будет управлять компания Protergia – энергетическое подразделение Mytilineos, крупнейшего производителя электроэнергии в Греции. 

Ветряные турбины в этом проекте изготавливает и монтирует один из крупнейших в мире производителей – датская компания Vestas, которой Метинвест поставил 0,5 тыс. тонн арматуры.

Ветропарки в Украине

На внутреннем рынке  ветрогенераторы украинского производства выпускает Краматорский завод тяжелого станкостроения, который совместно с компанией «Фурлендер Виндтехнолоджи» предоставляет полный цикл по производству ветрогенераторов.

Для изготовления ветроэнергетических установок в Украине за последний год Метинвест поставил более 2,5 тыс. тонн горячекатаного толстолистового проката производства «Азовстали». 

Ветроэлектростанция вблизи поселка Ясногорка, что возле Славянска, будет состоять из 15 установок. Один ветряк мощностью 4,5 мегаватт сможет обеспечивать электроэнергией около 3,5 тысяч семей. Строительство ветряного парка началось осенью 2018 года. На первом этапе планируется установить три ветрогенератора. 

Ветропарк «Очаковский» включает две ветроэлектростанции – Очаковскую и Тузловскую общей мощностью 37,5 мегаватт. Ветропарк расположен на трех полях протяженностью 16 км. Мощности станции хотят увеличить – всего планируется построить 150 ветроэнергетических установок мощностью 375 мегаватт.
 

Расчет выработки энергии ветрогенератором

Немало статей размещено в интернете, в том числе и на нашем сайте, о том, как рассчитать систему с солнечными батареями для конкретного дома, дачи, офиса или производственного здания. Нельзя не затронуть тему расчета системы содержащей ветрогенератор.

Тонкости расчета вырабатываемой энергии ветрогенератором

Ветрогенератор в автономной системе крайне полезен. По большей части тем, что его выработка не имеет ярко выраженной зависимости от сезонов. Солнечные батареи хорошо работают летом и плохо зимой, тогда как ветрогенераторы сохраняют свою эффективность в зимний период. Немало важно то, что сильные ветра, как правило, наблюдаются в пасмурную погоду, поэтому совместное применение ветрогенераторов и солнечных панелей достаточно обоснованно. 

Основная проблема ветровых турбин заключается в том, что их эффективность мала при низких скоростях ветра. Если внимательно посмотреть на кривую зависимости мощности от скорости ветра, то можно обнаружить следующее: турбина только начнет вращаться при скорости ветра около 3метров в секунду и, более-менее ощутимая, выработка энергии начнется только при 7метрах в секунду.

Ветрогенераторы достаточно эффективны в прибрежных районах, либо на возвышенностях, где скорости ветра выше и ветра чаще. На большей части территории России средняя скорость ветра составляет 4-5метров в секунду, что создает неблагоприятные условия для применения ветрогенераторов. Но данные усреднены, поэтому следует изучить энерго-потенциал конкретной местности, если существует подозрение, что ветрогенератор  может быть эффективен.

Для повышения эффективности работы ветровых электростанций применяют различные технические решения:

  • ветрогенератор размещают на высокой мачте. Приведем пример: если увеличить высоту мачты с 5 до 20метров, выработка увеличится в 2 раза;
  • применяют ветрогенераторы с вертикальным расположением лопастей. Вертикальные турбины более эффективны при слабых ветрах, а также менее шумные, тем не менее, их стоимость значительно выше горизонтальных;
  • применяют специальные контроллеры заряда, которые, при низкой скорости, ветра сначала дают лопастям раскрутиться, и только потом подключают нагрузку. В таком режиме ветрогенератор вырабатывает некоторое количество энергии, хоть и небольшое, при слабом ветре.

On-line калькулятор для расчета энергии «ветряка»

Перейдем теперь к методам расчета систем с ветряными электростанциями. Покупая устройство, вы будете знать его заявленную номинальную мощность, а также найдете в инструкции график зависимости мощности вырабатываемой «ветряком» от скорости ветра. Имея эти данные довольно сложно оценить количество вырабатываемой энергии, поэтому для дальнейших рассуждений нужно воспользоваться одной из специальных программ, учитывающих метеорологические данные в вашей местности. Мы предлагаем вам воспользоваться удобным сервисом — on-line калькулятор на нашем сайте. Программа учитывает местоположение установки, высоту мачты, а также рельеф местности. Если в электростанции имеются солнечные батареи, в калькуляторе можно произвести расчет для всей системы и получить данные и графики как суммарной, так и раздельной выработки энергии. 

              

                

Рис.1. Расчет суточного потребления (нагрузки).
Рис.2. Подбор солнечных батарей и ветряка. Индивидуальные графики среднесуточной выработки.
Рис.3. Выгрузка графика среднесуточной выработки всех источников энергии.

Не стоит забывать о том, что программа никак не может брать в расчет влияние местных особенностей (предметов, деревьев, заграждающих зданий и т.п.), затеняющих солнечные батареи или вносящих турбулентности в поток воздуха, данные факторы следует учитывать отдельно. 

Читать еще статьи…

 

Мегаконструкции. Самые большие ветрогенераторы / Хабр


Siemens SWT-7.0-154

Кто говорил, что ветряки не способны конкурировать по мощности с атомными электростанциями? Посмотрите на самую большую в мире ветроэлектрическую установку Siemens SWT-7.0-154. С площадью ометания 18 600 м² этот гигант в одиночку генерирует максимальную мощность 7 МВт при скорости ветра 13-15 м/с. Несколько сотен таких ветряков — и вот вам атомная электростанция.

SWT-7.0-154 — это флагманская модель компании Siemens. В её названии зашифрованы генерируемая мощность (7 МВт) и диаметр ротора с лопастями (154 м). Она пришла на смену предыдущему флагману SWT-6.0-154, от которого практически не отличается по техническим спецификациям, но оснащён более мощными магнитами. Более сильное магнитное поле позволяет генерировать больше электроэнергии при том же диаметре. Другими словами, в этой ВЭН параметр снимаемой мощности с квадратного метра площади ометания выше примерно на 16,7%.

Ветрогенератор включается в работу на минимальной скорости ветра 3-5 м/с, а генерируемая мощность поступательно растёт до максимальной 7 МВт при скорости ветра 13-15 м/с. При достижении скорости ветра 25 м/с генерация прекращается.

Казалось бы, на таких скоростях ветра лопасти ВЭУ должны вращаться быстро, но это совершенно не так. На самом деле они вращаются неторопливо и степенно, делая всего 5-11 оборотов в минуту. То есть полный оборот три лопасти совершают примерно за 5-12 секунд, в зависимости от скорости ветра.

Более сильное магнитное поле в новой модели означает также и то, что эту турбину труднее раскрутить. Для достижения той же скорости вращения 5-11 оборотов в минуту и максимальной генерируемой мощности (7 МВт вместо 6 МВт) этой турбине требуется повышенная скорость ветра: 13-15 м/с вместо 12-14 м/с. Соответственно, и начальная скорость ветрогенерации у неё выше. Вот почему данная модель-гигант наиболее оптимально подходит для размещения на территориях с относительно сильными ветрами, лучше всего в море.

Внутри турбины нет редуктора (коробки передач) — здесь работает система прямого привода, подключенная к синхронному генератору переменного тока с постоянными магнитами. Поскольку скорость генератора определяет напряжение и частоту тока, то «грязный переменный ток» преобразуется в постоянный ток, а затем преобразуется обратно в переменный ток перед подачей в сеть.

В последние годы в области ветряной энергетики происходит очень быстрый научно-технический прогресс. Буквально каждый год появляются новые модели ВЭУ большей мощности и эффективности. Большие и маленькие, рассчитанные на целые посёлки или отдельные дома, на большую скорость ветра в море или на среднюю скорость ветра над крышей частного дома.

Например, мировой рекорд по максимальной генерируемой мощности принадлежит вовсе не Siemens, а другой турбине ещё одного немецкого производителя Enercon E126, которая выдаёт до 7,58 МВт. На видео показан процесс установки такой турбины.

Высота стойки Enercon E126 — 135 м, диаметр ротора — 126 м, общая высота вместе с лопастями — 198 м. Общий вес фундамента турбины — 2500 тонн, а самого ветрогенератора — 2800 тонн. Только электрогенератор весит 220 тонн, а ротор вместе с лопастями — 364 тонны. Общий вес всей конструкции со всеми деталями — 6000 тонн. Первая установка подобного типа была установлена около немецкого Эмдена в 2007 году, хотя в той модификации максимальная мощность была меньше.

Впрочем, ветрогенераторы-гиганты — довольно дорогое удовольствие. Один такой ветряк на 7 МВт обойдётся в $14 млн вместе с установкой, если заказывать все работы у сертифицированных немецких специалистов. Конечно, если освоить производство в своей стране, благо металла хватает, то стоимость вполне можно снизить в несколько раз. Кто знает, может такой гигантский проект национальной стройки занял бы население страны и помог выбраться из экономического кризиса.

Одна из самых последних строящихся в Восточной Европе атомных станций — Белорусская АЭС — получит два энергоблока с реакторами ВВЭР-1200 мощностью по 1200 МВт. Казалось бы, несколько сотен ветряков Siemens сравнятся с атомной электростанцией. Стоимость строительства примерно одинаковая, зато «топливо» бесплатное. Что интересно, Белорусскую АЭС как раз строят в районе, где

по климатическим данным за 1962-2000 годы

почти самая высокая среднегодовая скорость ветра в Беларуси. Но в реальности эта «самая большая» среднегодовая скорость ветра — всего лишь около 4 м/c (на высоте 10 м), чего едва хватит для запуска ВЭУ на минимальной мощности.

Перед установкой следует сверяться с годовой картой ветров в районе дислокации с данными средней удельной мощности ветрового потока на высоте 100 м и выше. Хорошо бы составить такие карты для всей территории страны, чтобы найти места наиболее оптимального строительства ВЭУ. Нужно иметь в виду, что скорость ветра сильно зависит от высоты, что хорошо известно жителям высотных домов. В обычных прогнозах погоды по ТВ сообщают скорость ветра на высоте 10 м над землёй, а для ветровой турбины следует измерять скорость на высоте 100-150 м, где ветры гораздо сильнее.

Так что наиболее оптимально такие гиганты подходят для установки в море, в нескольких километрах от побережья, на большой высоте. Например, если установить такие установки вдоль северного побережья России с шагом 200 метров, то максимальная мощность массива составит 690,3 ГВт (побережье Северного Ледовитого океана составляет 19724,1 км). Скорость ветра там должна быть приемлемая, только при заливке фундаментов придётся иметь дело с вечной мерзлотой.

Правда, по стабильности работы ВЭУ никогда не сравнятся с АЭС или ГЭС. Здесь энергетикам приходится постоянно следить за прогнозом погоды, потому что генерируемая мощность напрямую зависит от скорости ветра. Ветер должен быть не слишком сильным и не слишком слабым. Хорошо, если в среднем ВЭУ будут выдавать хотя бы треть от максимальной мощности.

В Испании придумали «вибратор», преобразующий энергию ветра

В Испании придумали ветряк, не использующий вращающиеся лопасти. По словам создателей, механизм проще, безопасней и дешевле традиционных ветрогенераторов.

Гигантские ветряки, которые давно стали символом альтернативной энергетики и устанавливаются в огромных количествах в разных странах мира, возможно, в будущем, уступят место более компактным, безопасным и эффективным устройствам, предложенным испанскими изобретателями.

Ветряная электроэнергетика – одна из немногих отраслей, которая продолжила уверенный рост даже в кризисный 2020 год. По подсчетам аналитиков компании BloombergNEF, в минувшем году в мире введено в эксплуатацию ветряных установок рекордной мощностью 96,7 гигаВатт – на 59% больше, чем введено в 2019 году.

Большая часть (93%) – установки, введенные на суше, строительство морских ветряков показало падение на 13% по сравнению с 2019 годом. При этом основной прирост приходится на новые генераторы, введенные в США и Китае.

Однако традиционные вращающиеся ветряки размером и высотой в десятки метров – не самый лучший способ превращения энергии ветра в электричество, уверены основатели испанского стартапа Vortex Bladeless, предложившие оригинальную модель генератора.

Дизайн их установки недавно получил поддержку норвежской государственной энергетической компании Equinor, назвавшей проект одним из 10 перспективных стартапов в области энергетики.

Пока экспериментальный образец имеет в высоту всего три метра. Он представляет из себя вытянутый цилиндр на подвижной опоре, который способен колебаться вперед-назад под действием напора ветра. Необычный дизайн устройства уже привлек внимание огромного числа пользователей сайта Reddit, где остряки обратили внимание не его фаллическую форму и прозвали «skybrator».

«Наша технология имеет другие характеристики, которые позволяют использовать места, где традиционные ветряные фермы не годятся», — пояснил Guardian основатель стартапа Давид Янез.

Принцип работы устройства основан на образовании особых вихрей позади твердых тел, обтекаемых потоком воздуха. В основании мачты имеются два кольцевых отталкивающих магнита, которые возвращают ее в исходное положение при наклоне. За счет таких движений, частота которых зависит от силы ветра, и происходит генерация электроэнергии.

Основа мачты – углеволокно, срок службы которого оценивают в 25 лет. Отсутствие вращающихся лопастей делает Vortex тише, компактнее, и дешевле в обслуживании, а также позволяет ему легче адаптироваться к изменению направления ветра.

А отсутствие вращающегося генератора не позволит ему замерзнуть во время зимних штормов, как это происходило со многими ветряками в Техасе в минувшем феврале. Как уверяют создатели, производство энергии на новых ветряках будет на 30% дешевле, чем на традиционных, в основном – за счет низкой стоимости установки и обслуживания.

«В нашей машине нет ни шестерней, ни тормозов, ни подшипников, ни валов, – пояснил Янез. – Ей не требуется смазка, и там нет частей, которые бы изнашивались из-за трения».

Речь может идти об установке новых генераторов вблизи промышленных и жилых районов, где традиционные ветряки обычно не устанавливают из-за их вредного влияния. Генераторы могут устанавливаться вместе с солнечными панелями для отдельных домовладений.

«Они дополняют друг друга, поскольку солнечные панели производят электричество днем, а скорость ветра обычно растет ночью, — говорит предприниматель. – Однако главная выгода технологии – уменьшение экологического воздействия, внешний облик, стоимость работы и обслуживания турбины».

Предложенный генератор не представляет опасности для перелетных птиц и других животных, в том числе в населенных районах. По мнению специалистов, массовый переход на подобные устройства и отказ от традиционных ветряков может сохранить жизни птиц и летучих мышей, ежегодно гибнущих от ударов о лопасти, иногда раскручивающиеся до скоростей в 300 км/ч. Только в США по этой причине, по подсчетам экологов, ежегодно погибает до 500 тыс. птиц.

Для работающих и живущих рядом людей его шум не будет представлять проблем, так как возникает на частотах, не слышимых человеческим ухом.

«Пока турбина небольшая и производит мало энергии. Но мы ищем индустриального партнера для масштабирования наших планов и постройки 140-метровой установки мощностью 1 мегаВатт», — пояснил Янез.

Ветроэнергетика: размеры и пределы роста

Современная ветроэнергетика – энергетика больших мощностей и гигантских машин. Ветряные турбины становятся все больше и больше. Примерно так:

Если посмотреть на изменение парка материковых ветровых турбин во времени, например, в Германии, очевидно увеличение их среднего размера.

Всё растет. Увеличиваются как башни, которые у крупнейших машин сегодня достигают 140 метров, так и лопасти, достигающие в длину почти 90 м, и диаметры ротора, доходящие до почти 190 м.

На нынешний день крупнейшими серийными ветряками являются 8-мегаваттные машины от Vestas (MHI Vestas V164), Adwen (AD-180) и Siemens (SWT-8.0-154 8MW), используемые в морской (офшорной) ветроэнергетике, а также 7,5 МВт модель Enercon E-126 – крупнейший материковый ветрогенератор (на фото в начале статьи).

Это серийные модели, находящиеся в эксплуатации. В виде прототипов существуют еще более крупные агрегаты.

Есть ли предел роста размеров ветряных турбин? Чем он обусловлен?

Понятно, размеры ветроустановок увеличивают не из прихоти, а исходя из экономических соображений – в попытке снизить стоимость электроэнергии. Высокие башни обеспечивают доступ к ветровым ресурсам более высокого качества (как говорят спецы: «на высоте 100 метров всегда есть коммерческий ветер»). Увеличение диаметра ротора позволяет «захватить» этих ресурсов побольше, а также задействовать менее качественный ветровой потенциал. Увеличение размеров может приводить к снижению удельных (на единицу мощности) капитальных и операционных затрат, что прямо отражается на стоимости электроэнергии.

В то же время рост размеров ветряных турбин наталкивается на ограничения, связанные как с характеристиками используемых материалов, так и с транспортировкой и технологиями монтажных работ. Кроме того, существуют физические лимиты увеличения размеров, описываемые законом квадрата-куба: объем (соответственно, масса и стоимость) используемых материалов может расти быстрее, чем отдача от этого увеличения.

Транспортно-логистические и монтажные ограничения касаются главным образом материковой ветроэнергетики. Перевозка секций башен большого диаметра и длинных лопастей наземным транспортном – серьезный технологический вызов. Диаметр перевозимых труб/конусов башен ветряков ограничен сегодня 4,3 метра в редких случаях возможны перевозки диаметров 4,6 метра. Разумеется, транспортировка таких агрегатов на дальние расстояния крайне затруднена. Одним из используемых компромиссных решений является комбинированная башня сталь/железобетон, в которой нижние железобетонные секции самого большого диаметра изготавливаются на месте. Кроме того, необходимо учитывать, что транспортная и монтажная техника (например, большие краны) имеет свои пределы.

Рассмотренные в предыдущем абзаце ограничения в меньшей степени касаются морской ветроэнергетики, где используются производственные технологии/мощности судостроения, строительства на шельфе и морских грузоперевозок.

Проведенное в текущем году в США исследование, включающее в себя опрос 163-х ведущих отраслевых экспертов, показало: размеры ветроустановок будут расти и дальше. При этом, очевидно, потенциал роста у офшорных ветрогенераторов существенно превышает потенциал наземной ветроэнергетики.

Результаты исследования представлены на следующих графиках.

К 2030 средняя высота башни ветрогенератора в материковой ветроэнергетике приблизится к 120 метрам и в Европе, и в США, средний диаметр ротора будет находится в интервале 130-140 метров, а средняя установленная мощность на один генератор в Европе превысит 3,5 МВт.

В офшорной ветроэнергетике намечаемые изменения куда существенней. Средняя мощность ветрогенераторов на европейском рынке достигнет 11 МВт, при высоте башен более 220 метров. Распространение получат плавающие ветроэлектростанции. Некоторые эксперты прогнозируют, что к 2030 году максимальная мощность морских ветряков на фиксированном фундаменте может достичь 18 МВт, то есть более чем в два раза превысить сегодняшние рекордные показатели.

В то же время очевидно, что ветроустановки не будут расти бесконечно. Вероятно, в скором времени мы узнаем оптимум, превышение которого будет затруднено с логистической, в первую очередь, точки зрения, и не будет оправдываться экономически.

Ветрогенераторы для яхт | ЭлектроФорс

Для владельцев парусных яхт ветрогенератор – это естественный и понятный способ увеличения электрической мощности. Он используют туже энергию,  что движет парусное судно, а технология, лежащая в основе его работы, надежна и хорошо изучена. Поэтому несмотря на растущую популярность гидрогенераторов и появление все более эффективных солнечных панелей, автономные ветрогенераторы по-прежнему широко распространены на яхтах.

Содержание статьи

Преимущества и недостатки ветрогенераторов

Для зарядки тяговых аккумуляторов от береговой электрической сети на яхте устанавливают комбинированный инвертор или  зарядное устройство. В межсезонье с этой задачей справляется небольшая солнечная панель. Ветряную турбину имеет смысл использовать, когда требуется дополнительный мощный источник зарядки, который будет работать на яхте совместно с солнечными батареями или гидрогенератором.

Яхтенные ветрогенераторы – это небольшие устройства относительно малой мощности. Однако вырабатываемой ими энергии достаточно, чтобы в течении суток зарядить 12-вольтовую аккумуляторную батарею емкостью 800 ампер-часов.  Плюс ветрогенератора в том, что он производит электрическую энергию практически постоянно — во время движения и на якорной стоянке, в солнечные и в пасмурные дни. Ветрогенератор не требует технического обслуживания, ремонта и дополнительного оборудования для запуска.

МодельD400Superwind 350Rutland 1200
Максимальная мощность при напряжении 12 В, Вт 600 350 483
Максимальная скорость ветра, узлов 37 24 29
Мощность при скорости ветра 20 узлов 192 180 255
Мощность при скорости ветра 12 узлов 48 20 60
Скорость включения, узлов 5 6,8 4
Вес, кг 17 11 8
Диаметр лопастей, м 1,09 1,19 1,22
Количество лопастей, шт 5 3 3
Коэффициент TSR 3,9 6,5 7
Регулятор напряжения в комплекте Нет Нет нет
Внешний регулятор PWM PWM PWM/MPPT

Но существуют и минусы. Яхтенные маршруты, проложенные по ветру отнимают у генератора часть его мощности. А поскольку энергия ветра зависит от третьей степени его скорости, то с уменьшением скорости, мощность ветрогенератора стремительно падает. Например, при реальной скорости ветра 20 узлов, для яхты идущей по ветру со скоростью 8 узлов наблюдаемая скорость ветра составит всего 12 узлов. При ветре 20 узлов большинство моделей малых ветрогенераторов вырабатывают около 200 Вт, а при 12 узлах мощность опускается до 40-50 Вт. Зависимость мощности турбины от скорости ветра необходимо учитывать и при планировании стоянок. Порты и якорные стоянки привлекают владельцев яхт именно потому, что обеспечивают защиту от стихии, значит скорость ветра там ниже, чем прогнозируется на расстоянии от берега.

Все небольшие ветрогенераторы имеют примерно одинаковую максимальная мощность — от 400 до 600 Вт. Однако более важная характеристика – это ток, отдаваемый турбиной при слабом ветре. Ведь именно с ним большинство владельцев яхт хотят иметь дело во время своих путешествий. Поэтому производительность ветрогенератора при относительной скорости ветра 12 или 20 узлов гораздо лучший показателем его зарядной способности

Кроме того, кривые мощности, которые приводят производители ветрогенераторов основаны на результатах испытания плавным, постоянным воздушным потоком в аэродинамической трубе. Реальные результаты могут оказаться гораздо ниже. Поэтому там где требуется гарантированно высокая мощность владельцы предпочитают устанавливать две турбины и подключать их параллельного через один регулятор.

Как установить ветрогенератор на яхте

Чтобы получить от ветрогенератора максимальную выходную мощность, необходимо выполнить два условия. Во-первых, конструкция на которой установлена турбина должна быть как можно более устойчивой, иначе любая качка или крен будут отворачивает ее от ветра. Во-вторых, ветрогенератору нужен свободный, ровный и гладкий воздушный поток

Многолопастной ветрогенератор D400 мощностью 600 Вт, установленный на корме яхты

В какой-то степени эти два требования противоречат друг другу. Скорость ветра на мачте может быть на 50 процентов выше, чем на уровне моря, поэтому чем выше вы поднимите ветрогенератор, тем больше энергии вы получите. С другой стороны турбина, ее крепление и кабельная разводка весят 20-30 кг. Такой дополнительный вес на движущейся яхте увеличивает маятниковый эффект, а значит возрастают тангаж и крен и снижается общая устойчивость

Существует множество успешных установок ветрогенераторов на мачтах. Однако для большинства владельцев яхт устанавливать турбину рекомендуется поверх кокпита. Там ее проще монтировать и обслуживать, а если возникнет неисправность, и другие способы торможения выйдут из строя, устройство можно будет отключить вручную.

Падение напряжения в кабеле существенно влияет на общую производительность системы зарядки. При установке турбины внизу кабель от нее до аккумуляторов окажется гораздо короче, а значит его сечение можно выбрать меньше и это не увеличит потери энергии .

Контроллер заряда ветрогенератора

На первый взгляд сохранение полученной электрической энергии в аккумуляторе  — это самая простая часть ветряной энергоустановки. Однако единого способа решения этой задачи среди производителей не существует и каждый из них придерживается собственных подходов.

Английская компания Marlec, использует MPPT регулятор. MPPT контроллеры получили распространение благодаря солнечным источникам энергии, у которых они повысили выходную мощность на целых 30 процентов. Контроллер регулирует напряжение генератора так, чтобы в каждый момент времени мощность установки была максимальной. Для снижения скорости турбины Marlec применяет широтно-импульсную модуляцию. Когда заряд аккумуляторной батареи приближается к 100% и ей требуется меньше энергии ШИМ-регулятор замыкает обмотки все более длинными импульсами, создавая растущий тормозной момент.

Зависимость тока, вырабатываемого ветрогенератором D400, от скорости ветра

Создатель ветрогенератора D400 Петер Андерсен из компании Eclectic Energy придерживается другого подхода. Он считает, что обеспечить структурированный выходной сигнал на основе такого входа как у ветряных турбин нельзя. Более того исследование показывают, что общая производительность системы с MPPT контроллером не возрастает, а иногда наоборот снижается.

Другие производители также считают, что MPPT регулятор не добавляет достоинств небольшой ветряной турбине с правильно спроектированным и оптимизированным для низких скоростей ветра генератором. Преимущества, достигаемые благодаря эффективности генератора, сводятся на нет потерями в электронике MPPT. Однако PWM регулятор  позволяет заряжать аккумулятор до 100 процентов, поскольку обеспечивает аккумулятор именно тем током, который батарея может принять на каждой стадии зарядки.

Некоторые производители вместо MPPT контроллера, устанавливают на выходе генератора DC-DC конвертер. Конвертер повышает выходное напряжение генератора и позволяет заряжать аккумуляторы при слабом ветре (скоростью менее 2 м /с ). Ветрогенераторы с DС-DС преобразователями начинают зарядку аккумуляторов при выходном напряжении от 2 вольт и обеспечивают зарядную мощность  3 — 5 Вт. Такие устройства подходят для заряда аккумуляторов на защищенных от ветра стоянках, однако дополнительное количество энергии, получаемое от них, не велико.

Многие намеренно не используют технологии MPPT или PWM, считая простоту и надежность ключевыми достоинствами своих изделий. Если турбины работают совместно с солнечными батареями, то ветрогенератор реализует этап быстрой зарядки, а до 100% аккумуляторы заряжают солнечные панели . Дополнительная электроника в этом случае лишь увеличивает сложность и повышает стоимость изделий

Дополнительно с внешним, часто используют разгрузочный регулятор. Его добавляют, чтобы контролировать мощность, поступающую от турбины. Когда заряженность аккумулятора возрастает, избыток энергии отводят через резистор, рассеивающий тепло. С таким регулятором турбина всегда работает при полной нагрузке, а ее лопасти вращаются с оптимальной частотой.

Системы имеющие только встроенный «регулятор» турбины, лучше не использовать. Такой регулятор представляет собой электронный тормоз, срабатывающий, когда напряжение аккумулятора поднялось слишком высоко, а турбина продолжает выдавать много энергии. После остановки генератора напряжение аккумулятора падает и регулятор перезапускает генератор вновь. Если аккумуляторов почти заряжен, то происходит многократная остановка и повторный запуск ветрогенератора. Этот метод регулирование далек от того, который нужен аккумуляторной батарее — по мере увеличения заряженности ток должен плавно понижаться.

Лопасти ветрогенератора

Конструкция лопастей турбины – это еще одна область в которой модели разных производителей отличаются друг от друга. Лопасть во время вращения подвергается тем же воздействиям, что и  крыло самолета. Однако в их работе существуют и небольшие отличия. Если у лопастей постоянный шаг, то их оптимальный режим работы достигается при одной заданной скорости вращения. Значит у слишком быстро или слишком медленно вращающейся турбины эффективность снижается

Комплект небольшого ветрогенератора для яхты — генератор, лопасти, резисторы для рассеивания мощности. Контроллер заряда приобретается отдельно

Немецкая компания Superwind выпускает ветрогенераторы с изменяемым шагом, величина которого зависит от скорости вращения. Чем быстрее вращается турбина, тем больше лопасти поворачиваются вокруг своей оси и сильнее замедляют вращение. Компания утверждает, что эта система реагирует очень быстро и может защитить систему в случае отказа электронного торможения.

Лопасти – основная причина шума и вибрации, исходящих от ветрогенератора. Если скорость вращения кончиков слишком высока, то обтекающий их поток воздуха становится нестабильным, возникает турбулентность и лопасти начинают вибрировать. Известен случай, когда лопасти установленного на яхте ветрогенератора издавали такой вой на высоких скоростях вращения, что соседние лодки были вынуждены покинуть якорную стоянку.

Существует специальный коэффициент (TSR), характеризующий во сколько раз кончик лопатки турбины движется быстрее, чем реальная скорость ветра. Например, если турбина имеет TSR равный 16 — при ветре в 20 узлов концы лопасти будут двигаться со скоростью 320 узлов, а при небольшом шторме их скорость приблизится к скорости звука. Для ветрогенератора D400 производитель указывает TSR всего 3,9. Это говорит о том, что турбина спроектирована для гораздо более медленного вращения, чем модели других производителей. D400 не самый легкий ветрогенератор, вес только чистой меди в его обмотках почти 1 кг. Но его преимущество в устойчивости, надежности и относительно низких оборотах вращения

Некоторые производители указывают для своих машин максимальную скорость ветра. Однако к этой характеристике следует относится с недоверием. В ветровом потоке наиболее разрушительным является  уровень турбулентности, а его нельзя не предсказать, ни легко измерить.

Мощность ветрогенератора

Перед установкой любого электрогенерирующего оборудования на яхте, в первую очередь считают потребление энергии. Расход вычисляют как для якорной стоянки, так и для движения под парусом. В результате появляется подобие некоторого энергетического бюджета, в котором перечислены как очевидные крупные потребители, такие как холодильники, дисплеи, водонагреватели и освещение, так и менее мощные устройства — ночные навигационные огни, насосы, газовые сигнализации, мониторы двигателей, развлекательные системы.

Для подруливающего устройства или электрической лебедки предусматривают дополнительный запас мощности. Если на яхте установлен кондиционер, маловероятно, что возобновляемые источники энергии удовлетворят его потребности. В этом случае лучше подумать о дизельном генераторе или топливных элементах.

После того как расход энергии подсчитан, оценивают стиль управления яхтой. Необходимо принять во внимание регулярную среднюю скорость на маршруте и понять двигается ли яхта чаще всего против ветра, или ей всегда сопутствует попутный? Дополнительно учитывают другие генерирующие мощности, установленные на борту — солнечные панели, гидрогенератор и зарядное устройство, работающее от генератора дизельного двигателя.

ТОП 7 самых мощных ВЭС Украины

В 2019 году состоялось два выдающихся события в национальном ветроэнергетическом секторе Украины. Во-первых, Украина стала членом международного «гигаваттного клуба» стран, установленная ​​ветроэнергетическая мощность которых превышает 1000 МВт. Во-вторых, 2019 был юбилейным в развитии возобновляемой энергетики. Объявленный в 2018 году постепенный переход от привычного «зеленого» тарифа к аукционам стал значительным толчком к ускорению темпов проектирования и ввода в эксплуатацию новых ветроэнергетических объектов. По данным Украинской ветроэнергетической ассоциации, ветроэнергетические объекты суммарной мощностью 5,55 ГВт получили разрешения на строительство и подписали договоры на купли-продажи электроэнергии по «зеленому» тарифу (PPA) с ГП «Гарантированный покупатель». Благодаря такому росту, на сегодня Украина имеет три ВЭС, мощность которых выше 100 МВт. В этой статье представлен ТОП 7 самых мощных ВЭС Украины в настоящее время.

Ботиевская ВЭС

Ботиевская ВЭС, построенная в 2014 году энергетическим холдингом ДТЭК и до сих пор занимает почетное первое место среди крупнейших ВЭС в Украине. Каждый хоть раз слышал новость о Ботиевской ВЭС, которая на момент установки входила в пятерку мощнейших в Европе. 64 турбин Vestas V-112 3 МВт каждая, общей мощностью 200 МВт, с ежегодным выработкой энергии около 686 млн кВт·ч. В 2014 году на Ботиевской ВЭС была зафиксирована максимальная скорость ветра — 40 м/с, но, к счастью, все ветротурбины выдержали шторм, несмотря на то, что каждая ВЭУ имеет достаточно большие габариты, например, высоту башни 94 м, а диаметр ротора 112 м.

Приморская ВЭС

1 ноября 2019 введена в эксплуатацию вторая очередь Приморской ВЭС компаний ДТЭК ВИЭ и GE Renewable Energy. Еще один гигант ветровой энергетики Украины от компании ДТЭК имеет в общем 52 ветротурбины (модели GE-130 и GE-137), единичной мощностью 3,8 МВт каждая. Высота башни 110 м, а диаметр ротора 137 м. В целом, ВЭС мощностью 200 МВт вырабатывает 650-700 млн кВт·ч энергии в год, тем самым сокращая выбросы СО2 на 700 тыс. тонн в год. Интересный факт, что ВЭС оборудована двумя цифровыми подстанциями 150/35/10 кВ, которые автоматически реагируют на неисправности или сбои в системе.

Мирненская ВЭС

Летом 2019 стартовало строительство ВЭС «Мирненская» общей мощностью 163 МВт на Херсонщине. Проект ВЭС, состоящий из 35 ветротурбин V-150 (это самые ветротурбины Vestas) мощностью 4,2 каждая и 4 ВЭУ той же модели по 4 МВт, воплощает компания WindKraft. Отмечалось, что стоимость одного комплекта ветровой установки стоит около 3 млн евро. Генерировать станция может около 574 млн кВт·ч энергии в год и сокращает выбросы на 455 тыс тонн СО2 ежегодно. Подключение к ОЭС Украины осуществляется за счет высоковольтной линии 150 кВ протяженностью около 22 км и подстанции 220/150/35 кВ «Каирка». Новая ВЭС обеспечивает электроэнергией Каланчакский район Херсонской области, ранее получал электроэнергию с подстанции «Титан», на данный момент расположенной в оккупированном Крыму. Третья по мощности ВЭС Украины расположится на землях Мирненский объединенной территориальной общины на площади 55 га. Этот проект стал новым дыханием для Херсонской области и, в частности, для Скадовского порта, который впервые за 4 года получил крупный контракт.

Орловская ВЭС

15 ноября 2019 была введена в эксплуатацию третья ВЭС энергетического холдинга ДТЭК мощностью 98,8 МВт. Инвестиции в Орловскую ВЭС составляют 131 млн евро и около 40 млн евро из них — это оборудование и услуги украинских подрядчиков. Расположена она в Приморском районе Запорожской области. Всего Орловская ВЭС имеет 26 ветротурбин V126 компании Vestas мощностью 3,8 МВт. Высота башни составляет 112 м, а диаметр ротора — 126 м. Ветровые для Орловской ВЭС стали крупнейшим грузом в истории порта Мариуполя. Заметно, что со строительством каждой следующей ветроэлектростанции, ДТЭК развивает все большие мощности единичной ВЭУ. Это связано с тем, что на генерацию ветротурбины влияет диаметр ее ротора — при той же скорости ветра турбина с большим диаметром ротора производит электроэнергии больше, а своей номинальной мощности достигает при меньшей скорости ветра.

Новотроицкая ВЭС

В Новотроицком районе Херсонской области в 2019 году завершили строительство еще двух очередей ВЭС мощностью 72,6 МВт. ВЭС состоит из 12 ветротурбин V126 мощностью 3,65 МВт каждая и 8 ВЭУ модели V136 мощностью 3,6 МВт компании Vestas. Общая высота каждой башни 117 м, при этом размах лопастей 126 м и 136 м. Финансирование предоставил Укргазбанк, а построила ветровую электростанцию ​​компания «Виндкрафт Таврия», которая входит в группу компаний «Виндкрафт».

Оверяновская ВЭС

Эта ветроэлектростанция находится на Херсонщине в пределах Генического района. ВЭС мощностью 68,4 МВт сокращает 210 тыс тонн выбросов СО2 в год. Ежегодная выработка электроэнергии ожидается около 266 млн кВт·ч энергии, что позволит обеспечить чистой электроэнергией 44 тысячи домохозяйств. В проекте использованы ВЭУ модели V136 компании Vestas.

Ветряной парк Новоазовский

Построен Ветряной парк «Новоазовский» еще в далеком 2011 году в Донецкой области и был первым ветроэнергетическим проектом в СНГ, профинансированным Европейским банком реконструкции и развития. Кредит на 20 лет в размере 48,8 миллионов евро был распределен так, что 33,3 миллиона евро являются кредитом ЕБРР, а остальные 15,5 — предоставлены Фондом чистых технологий. Ветряной парк «Новоазовский» состоит 23 ветротурбин FL2500-100 установленной мощностью 2,5 МВт каждая, производителем которых является немецкая компания Fuhrlaender AG. Интересно заметить, что построена ВЭС у побережья Азовского моря, стала образцовым проектом, в ходе реализации которого были учтены все требования ботаников, орнитологов, зоологов для уменьшения вредного влияния ВЭС на окружающую среду. ООО «Ветряной парк Новоазовский» входит в один из крупнейших в Украине ветроэнергетических холдингов «Ветряные парки Украины».

 

Итак, по состоянию на 2019 суммарная установленная мощность ветроэнергетических станций Украины составляет 1170 МВт и это 18,3% от доли сплошной установленной «зеленой» мощности Украины. По прогнозу Украинской ветроэнергетической ассоциации, до конца 2020 года суммарная установленная мощность ветровых станций, расположенных на материковой части Украины, может достичь 1600 МВт. Это означает около 450 МВт новых ВЭС. Благодаря «зеленому буму» 2019 года Украина выполняет свои международные обязательства, и имеет большие шансы достичь 11% ВИЭ в части генерации электроэнергии Украины. Однако, не нужно забывать, что ОЭС Украины без увеличения высокоманевренных и балансирующих мощностей не сможет оперировать большой долей ВИЭ. По расчетам Укрэнерго, максимальная установленная мощность СЭС и ВЭС, которую может принять ОЭС Украины без серьезных отклонений в работе, — 3000 МВт. В то же время, по данным регулятора, общая установленная мощность объектов ВИЭ на конец 2019 уже составила 6779 МВт!

Часто задаваемые вопросы по ветроэнергетике (FAQ)

Земля окружена атмосферой, состоящей из воздуха. Воздух представляет собой смесь газа, твердых и жидких частиц. Энергия Солнца неравномерно нагревает атмосферу и Землю.

Холодный воздух содержит больше частиц воздуха, чем теплый. Поэтому холодный воздух тяжелее и опускается вниз через атмосферу, создавая зоны с высоким давлением. Теплый воздух поднимается над атмосферой, создавая зоны с низким давлением.Воздух пытается уравновесить области низкого и высокого давления — частицы воздуха перемещаются из областей высокого давления (холодный воздух) в области низкого давления (теплый воздух). Это движение воздуха известно как ветер.

На ветер также влияет движение земли. Когда он вращается вокруг своей оси, воздух не перемещается напрямую из областей с более высоким давлением в области с более низким давлением. Вместо этого воздух выталкивается на запад в северном полушарии и на восток в южном полушарии.Это известно как сила Кориолиса. Щелкните, чтобы увидеть схему того, как движение Земли влияет на ветер.

Поверхность Земли отмечена деревьями, зданиями, озерами, морем, холмами и долинами, которые также влияют на направление и скорость ветра. Например, там, где встречаются теплая земля и прохладное море, разница температур создает тепловые эффекты, которые вызывают местные морские бризы.

Ветер обычно измеряется по его скорости и направлению. Атласы ветра показывают распределение скоростей ветра в широком масштабе, давая графическое представление о средней скорости ветра (для заданной высоты) по территории.Они составляются на основе измерений местной метеорологической станции или других зарегистрированных данных, связанных с ветром.

Традиционно скорость ветра измеряется анемометрами — обычно тремя чашами, которые фиксируют ветер, вращающийся вокруг вертикальной оси (на фото ниже). Направление ветра измеряется с помощью флюгера.

После измерения данных о ветре, по крайней мере, за один год, можно рассчитать среднегодовую скорость ветра. Статистика скорости и направления ветра отображается в виде розы ветров, показывая статистическое распределение скорости ветра по направлению.

Статистика ветра показывает лучшие места для размещения ветряных электростанций в соответствии с лучшими ветровыми ресурсами. Они также предоставляют дополнительную информацию о том, как турбины должны быть расположены по отношению друг к другу и каким должно быть расстояние между турбинами.

Ветряная турбина — это машина, преобразующая кинетическую энергию ветра в механическую или электрическую энергию. Ветряки состоят из фундамента, башни, гондолы и ротора. Фундамент предотвращает падение турбины.Башня поддерживает ротор и гондолу (или коробку).

Гондола содержит крупные основные компоненты, такие как главная ось, редуктор, генератор, трансформатор и система управления. Ротор состоит из лопастей и ступицы, которая удерживает их в нужном положении при вращении. Большинство коммерческих ветряных турбин имеют три лопасти ротора. Длина лопастей может составлять более 60 метров.

Посмотрите, как работает ветряная турбина!

Средний размер береговых турбин, производимых сегодня, составляет около 2 штук.5-3 МВт с длиной лопастей около 50 метров. Он может обеспечивать электроэнергией более 1 500 домохозяйств в среднем по ЕС.

Средняя оффшорная ветряная турбина мощностью 3,6 МВт может обеспечить электроэнергией более 3312 средних домашних хозяйств в ЕС.

В 1985 году ветряные турбины имели мощность менее 1 МВт с диаметром ротора около 15 метров.
В 2012 году средний размер составляет 2,5 МВт при диаметре ротора 100 метров.

Турбины мощностью 7,5 МВт являются самыми крупными на сегодняшний день с лопастями длиной около 60 метров — более половины длины ротора диаметром более 120 метров — длиннее футбольного поля.Планируется, что турбины мощностью 15 МВт, а турбины мощностью 20 МВт считаются теоретически возможными.

Башни в основном трубчатые, из стали или бетона, обычно окрашены в светло-серый цвет. Лезвия изготавливаются из стекловолокна, армированного полиэстера или древесно-эпоксидной смолы. Они светло-серые, потому что незаметны при большинстве условий освещения. Поверхность матовая для уменьшения отраженного света.

При проектировании ветряной электростанции учитывается множество факторов.В идеале площадка должна быть как можно более широкой и открытой в направлении преобладающего ветра, с небольшим количеством препятствий. Необходимо учитывать его визуальное влияние — несколько больших турбин обычно лучше, чем многие меньшие.

Турбины должны быть легко доступны для обслуживания и ремонта, когда это необходимо. Уровни шума можно рассчитать, чтобы ферма соответствовала уровням шума, установленным национальным законодательством. Поставщик турбины определяет минимальное расстояние между турбинами, принимая во внимание влияние, которое одна турбина может оказывать на соседние турбины, — «эффект следа».

Затем необходимо выбрать правильный тип турбины. Это зависит от ветровых условий и особенностей ландшафта местности, местных / национальных правил, таких как высота турбины, уровень шума и охрана природы, риск экстремальных явлений, таких как землетрясения, насколько легко транспортировать турбины на площадку и местная доступность кранов.

Время строительства обычно очень короткое — ветряную электростанцию ​​мощностью 10 МВт можно легко построить за два месяца. Более крупная ветряная электростанция мощностью 50 МВт может быть построена за шесть месяцев.

Стоимость варьируется, но самая большая стоимость — это сама турбина. Это капитальные затраты, которые должны быть оплачены заранее и обычно составляют 75% от общей суммы.

После того, как турбина запущена и работает, нет никаких затрат на топливо и углерод, только затраты на эксплуатацию и техническое обслуживание (O&M), которые минимальны по сравнению, например, с газовая электростанция, где ЭиТО составляет 40-70% общих затрат, а остальная часть затрат — топливо.

Ветровые турбины начинают работать при скорости ветра от 4 до 5 метров в секунду и достигают максимальной выходной мощности со скоростью около 15 метров в секунду.При очень высоких скоростях ветра, то есть при ураганном ветре 25 метров в секунду, ветряные турбины отключаются. Современная ветряная турбина вырабатывает электроэнергию в 70-85% случаев, но вырабатывает разную мощность в зависимости от скорости ветра.

В течение года он обычно дает около 24% от теоретической максимальной добычи (41% на шельфе). Это известно как коэффициент мощности. Коэффициент мощности обычных электростанций составляет в среднем 50% -80%. Из-за остановок для обслуживания или поломок ни одна электростанция не вырабатывает энергию в течение 100% времени.

Оптимальное количество лопастей для ветряной турбины зависит от работы, которую она должна выполнять. Турбины для выработки электроэнергии должны работать на высоких скоростях, но не требуют большого крутящего момента. Эти машины обычно имеют три или два лезвия. С другой стороны, ветряным насосам требуется вращающее усилие, но не большая скорость, и поэтому у них много лопастей.

Большинство современных коммерческих ветряных турбин имеют три лопасти, так как они вырабатывают оптимальную мощность.

Двухлопастные машины дешевле и легче, с более высокими скоростями движения, что снижает стоимость коробки передач, и их легче установить. Они работают почти так же хорошо, как трехлопастные турбины. Однако они могут быть более шумными и не такими визуально привлекательными, выглядя «резкими» при повороте.

Турбины

иногда необходимо останавливать для обслуживания, ремонта компонентов или в случае неисправности, которую необходимо проверить. Другой причиной может быть слишком слабый или слишком сильный ветер: если ветер слишком сильный, турбину необходимо остановить, так как она может быть повреждена.

В ветряной электростанции сами турбины занимают менее 1% площади суши. Вокруг них могут развиваться существующие виды деятельности, такие как сельское хозяйство и туризм, и при этом не беспокоить таких животных, как коровы и овцы.

Все больше и больше домовладельцев, сообществ и малых предприятий заинтересованы в выработке собственного электричества с помощью небольших ветряных турбин, установленных на крышах домов или в садах. Если вас интересует, как можно привести в действие свой дом или бизнес с помощью собственной турбины, обратитесь в национальную ассоциацию ветроэнергетики для получения дополнительной информации о том, как это работает в вашей стране.

Щелкните здесь, чтобы найти свою национальную ассоциацию.

Просмотрите наш Каталог участников, чтобы увидеть полный список производителей ветряных турбин.

В настоящее время береговая ветроэнергетика более экономична, чем морская разработка. Кроме того, развитие морских ветряных электростанций занимает больше времени, поскольку море по своей природе является более враждебной средой. Поэтому ожидать, что оффшор станет единственной разрешенной формой ветроэнергетики, означало бы обречь нас на невыполнение наших целей в области возобновляемых источников энергии и приверженности делу борьбы с изменением климата.

Однако в ближайшие годы, когда морские турбины будут производиться в больших масштабах, цены снизятся, что сделает морскую ветроэнергетику все более конкурентоспособной. Над европейскими морями дует ветер, достаточный для того, чтобы семь раз накачать Европу, что делает морской ветер очень жизнеспособным вариантом для использования.

В 2010 году в ЕС насчитывалось 70 488 наземных ветряных турбин и 1132 морских турбин. По мере развития технологий турбины становятся больше и эффективнее, поскольку выработка того же количества энергии может быть достигнута с помощью меньшего количества машин.

В настоящее время в ЕС установлено 19,5 МВт ветроэнергетической мощности на 1 000 км суши, с самыми высокими плотностями в Дании и Германии. Хотя 25 из 27 стран-членов ЕС в настоящее время используют ветроэнергетику, все еще существует значительный объем ветроэнергетических мощностей в таких странах, как Франция, Великобритания и Италия. Более….

Ветровые турбины могут вырабатывать электроэнергию в течение 20-25 лет. В течение своего срока службы они будут непрерывно работать до 120 000 часов.Это сопоставимо с расчетным сроком службы двигателя автомобиля, который составляет от 4000 до 6000 часов.

Лезвия вращаются со скоростью 15-20 оборотов в минуту с постоянной скоростью. Однако все большее количество машин работает с переменной скоростью, при которой скорость ротора увеличивается и уменьшается в зависимости от скорости ветра.

Национальные ветряные часы | Выход промышленной ветряной электростанции

См. Также Wind Watch Wiki: Energy, Capacity factor

Что такое мегаватт или мегаватт-час?

Производители измеряют максимальную или номинальную мощность своих ветряных турбин по выработке электроэнергии в мегаваттах (МВт).Один МВт эквивалентен одному миллиону ватт.

Производство электроэнергии с течением времени измеряется в мегаватт-часах (МВтч) или киловатт-часах (кВтч) энергии. Киловатт — это тысяча ватт. Производство электроэнергии из расчета 1 МВт за 1 час составляет 1 МВтч энергии.

Какова мощность ветряных турбин?

General Electric (GE) выпускает когда-то широко использовавшуюся модель мощностью 1,5 мегаватта. 1,5 МВт — это его номинальная или максимальная мощность, с которой он будет вырабатывать мощность, когда скорость ветра находится в идеальном диапазоне для этой модели, от 27 до 56 миль в час.Турбины сейчас обычно в пределах 2-3 МВт.

От чего зависит, сколько энергии может производить ветровая турбина?

Энергия вырабатывается за счет энергии ветра, поэтому мощность турбины определяется ее способностью улавливать эту энергию и преобразовывать ее во вращающий момент, который может повернуть генератор и подтолкнуть электроны в сеть. Более высокая башня обеспечивает доступ к более устойчивым ветрам, а более крупные лопасти улавливают больше энергии ветра. Для более крупного генератора требуются большие лопасти и / или более сильный ветер.

Сколько энергии вырабатывают ветряные турбины?

Каждая ветряная турбина имеет диапазон скоростей ветра, обычно от 30 до 55 миль в час, при котором она будет работать с номинальной или максимальной мощностью. При более низких скоростях ветра производительность резко падает. Если скорость ветра уменьшается вдвое, выработка электроэнергии снижается в восемь раз. Таким образом, в среднем ветряные турбины не вырабатывают почти своей мощности. По оценкам отрасли, годовой объем производства составляет 30-40%, но реальный опыт показывает, что годовой объем производства в размере 15-30% от мощности является более типичным.

При коэффициенте мощности 25% турбина мощностью 2 МВт будет производить

2 МВт × 365 дней × 24 часа × 25% = 4380 МВтч = 4380000 кВтч

в год.

Что такое «коэффициент мощности»?

Коэффициент мощности — это фактическая выработка за период времени как доля от максимальной мощности ветряной турбины или установки. Например, если турбина мощностью 1,5 МВт вырабатывает электроэнергию в течение одного года со средней мощностью 0,5 МВт, ее коэффициент мощности составляет 33% для этого года.

Каков типичный коэффициент мощности промышленных ветряных турбин?

Средний коэффициент мощности для 137 U.Отчетность по проектам S. wind Энергетическому информационному агентству в 2003 г. составила 26,9%. В 2012 году он составил 30,4%. По данным EIA, общий коэффициент использования мощности для стран ЕС-27 в 2007 году составлял 13%.

В чем разница между коэффициентом мощности и доступностью?

Ветряная турбина может быть «доступной» 90% или более времени, по крайней мере, в первые годы эксплуатации, но ее мощность зависит только от ветра. Без ветра это как велосипед, на котором никто не ездит: доступен, но не крутится.

«Коэффициент мощности» турбины — это ее фактическая средняя мощность как часть ее полной мощности. Обычно это от 15% до 35%.

Ветряные турбины работают 30% времени или 90%?

Ни то, ни другое. Первая цифра — это теоретический коэффициент мощности, количество энергии, фактически произведенной за год, как часть максимальной мощности турбин. Вторая цифра — это доступность, количество времени, в течение которого турбина не останавливается. Ни одна из цифр не отражает количество времени, в течение которого ветряная турбина фактически вырабатывает электричество.

Сколько времени ветряные турбины вырабатывают энергию?

Ветряные турбины вырабатывают электроэнергию, когда они не отключены для обслуживания, ремонта или поездок, а скорость ветра составляет от 8 до 55 миль в час. Однако ниже скорости ветра около 30 миль в час количество вырабатываемой энергии очень мало. Ветровые турбины производят со средней скоростью около 40% времени или выше. И наоборот, около 60% времени они производят мало энергии или не производят ее совсем.

Одинаковы ли коэффициент мощности и эффективность?

№Эффективность — это мера того, какая часть кинетической энергии ветра преобразуется в электрическую. В процессе преобразования неизбежно происходит потеря энергии. Даже когда ветряная турбина вырабатывает электроэнергию на максимальной мощности, вырабатываемая электрическая энергия составляет лишь часть энергии ветра. (В лучшем случае это около 50%, которое обычно достигается до выработки на полную мощность.) Эффективность — это вопрос инженерных и физических ограничений и обычно не имеет отношения к нормальному обсуждению.

Коэффициент мощности — это мера фактической мощности ветряной турбины, которая изменяется в зависимости от скорости ветра в течение определенного периода времени.

Сколько домов может приводить в действие ветряная турбина?

Сторонники

часто выражают прогнозируемую мощность как «достаточно для питания домов размером x ». По данным Агентства энергетической информации, среднее домашнее хозяйство в США использует 888 кВтч в месяц или 10 656 кВтч в год. Средняя турбина мощностью 1,5 МВт (коэффициент мощности 26,9%) будет производить столько же электроэнергии, сколько используется почти 332 домохозяйствами в течение года.

Однако следует помнить, что ветровая энергия является непостоянной и изменчивой, поэтому ветряная турбина вырабатывает мощность со среднегодовой скоростью или выше ее только в 40% случаев. То есть в большинстве случаев это , а не , обеспечивая среднюю мощность для среднего количества домов. И времена сильного ветра редко соответствуют времени фактического спроса в сети.

Следует также помнить, что на бытовое использование приходится только треть нашего общего потребления электроэнергии.

Как изменчивость ветра влияет на надежность ветроэнергетики?

Производство ветряной турбины обычно выражается как среднегодовое значение, что скрывает ее весьма изменчивую мощность. Но поскольку производство резко падает при падении скорости ветра (в восемь раз на каждое уменьшение скорости ветра вдвое), большую часть времени ветряная турбина производит значительно ниже своего среднего уровня. Средняя скорость вывода или более наблюдается только около 40% времени.

Как переменная мощность ветра влияет на сеть?

Ветряная турбина, производящая энергию, реагирует на ветер, который даже на «лучших» участках резко меняется от часа к часу и от минуты к минуте.Однако сетка должна отвечать требованиям пользователей. Поскольку сетевые диспетчеры не могут контролировать производство энергии ветра больше, чем они могут контролировать спрос пользователей, ветровые турбины в сети не способствуют удовлетворению спроса. Подавая мощность в сеть, они просто добавляют еще один источник колебаний, который сеть должна уравновесить.

Также см. Периодичность в FAQ «The Grid».

Что такое кредит мощности ветроэнергетики?

У ветровой энергии очень низкий «кредит мощности», то есть ее способность заменять другие источники энергии.Например, в Великобритании, которая может похвастаться самой ветреной страной в Европе, Королевская инженерная академия прогнозирует, что 25000 МВт ветровой энергии сократят потребность в традиционной мощности на 4000 МВт, что составляет 16% кредита на мощность. Два исследования в Германии показали, что 48 000 МВт ветровой энергии позволят снизить обычную мощность всего на 2 000 МВт, что составляет 4% кредита (как описано в «Wind Report 2005», Eon Netz). Аналогичным образом Irish Grid подсчитала, что 3500 МВт энергии ветра могут заменить 496 МВт обычной энергии, что составляет 14% кредита, и что по мере добавления новых ветряных турбин их кредит мощности приближается к нулю.В марте 2005 года Управление энергетических исследований и разработок штата Нью-Йорк обнаружило, что ветроэнергетика на суше будет иметь 10% -ный кредит мощности, исходя из теоретического коэффициента мощности 30%. (См. Некоторые из этих и других документов здесь, в Национальной службе ветра.)

Сколько резервной мощности требуется для ветровой энергии?

По словам Эона Нетца, одного из четырех управляющих сетью в Германии, с установленной на его территории ветроэнергетической мощностью 7 050 МВт в конце 2004 г., объем необходимого резервного питания составил более 80%, что являлось максимальной наблюдаемой мощностью. от всех их ветроэнергетических объектов вместе.То есть на каждые 10 МВт ветровой энергии, добавленной к системе, в этом случае также должно быть выделено не менее 8 МВт резервной мощности.

Другими словами, ветру требуется 100% резервирование максимальной мощности.

Разве единица электроэнергии, произведенной ветряными турбинами, не сокращает единицу электроэнергии из другого источника?

Поскольку сеть должна постоянно уравновешивать спрос и предложение, да, она должна сокращать предложение откуда-то еще, когда ветер усиливается достаточно, чтобы начать производство электроэнергии.

Если в системе есть гидроэлектроэнергия, это наиболее вероятный источник, который будет сокращен, потому что он может быть включен и выключен наиболее легко.Некоторые газовые установки также могут быстро включаться и выключаться (хотя и за счет повышения эффективности, т. Е. Сжигания большего количества топлива). В противном случае мощность установок сжигания топлива снижается или она переключается с генерации на резерв. В любом случае он по-прежнему сжигает топливо.

Могут ли ветряные турбины помочь избежать отключений электроэнергии?

Нет. Сами ветровые турбины для работы нуждаются в электричестве. Их тоже вырубает затемнение. Если они обеспечивали электроэнергию в то время, эта потеря усугубляет эффект затемнения.

В чем разница между большими и маленькими турбинами?

Малые турбины предназначены для непосредственного питания дома или другого здания. Их переменная мощность уравновешивается аккумуляторной батареей и дополняется сетью или резервным генератором на месте.

Большие турбины предназначены для питания самой сети. Переменная мощность больших ветряных турбин усложняет балансирование спроса и предложения, поскольку в сети нет крупномасштабного хранилища.

Сколько энергии вырабатывает ветряная турбина?

Обновлено 9 ноября 2020 г.

Кевин Ли

Ветровые турбины способны вращать свои лопасти на склонах холмов, в океане, рядом с заводами и над домами.Идея о том, чтобы природа предоставляла бесплатную электроэнергию вашему дому, может показаться привлекательной, но важно научиться вычислять мощность ветряной турбины перед ее покупкой — и особенно важно понимать разницу между номинальной мощностью машины и фактической мощностью, которую вы можно ожидать от этого. Проверьте карты ветров, предоставленные Национальной лабораторией возобновляемой энергии, чтобы узнать, делает ли ветровая энергия хорошим выбором для вашего дома скорость ветра и его наличие в вашем районе.

Скорость ветра

Большинство ветряных турбин состоит из установленных на роторе лопастей, напоминающих воздушные винты.Когда через них проходит воздух, они заставляют ротор вращать вал, приводящий в действие электрический генератор. Большинство турбин автоматически отключаются, когда скорость ветра достигает 88,5 километров в час (55 миль в час), чтобы предотвратить механическое повреждение. Это снижает выработку электроэнергии, когда возникает сильный ветер, и людям требуется постоянная энергия ветра. Они также не производят электричество, если ветер дует слишком медленно. Если скорость ветра уменьшается вдвое, выработка электроэнергии снижается в восемь раз.Время, в течение которого ветровые условия являются оптимальными в данном регионе, определяет доступность ветряной турбины. Турбины, расположенные на более высоких позициях, получают больше ветра, что приводит к большей мощности. У каждого есть диапазон скорости ветра — от 30 до 50 миль в час — при котором он работает оптимально.

Рейтинг эффективности

В современных ветряных турбинах используются различные конструкции, предназначенные для более эффективного улавливания ветра. Эффективность — важная ценность, которую необходимо знать при оценке ветряной турбины.3} {2}

Площадь указывается в квадратных метрах, плотность воздуха — в килограммах на кубический метр, а скорость ветра — в метрах в секунду.

Критические отличия

Тот факт, что ветряная турбина имеет номинальную мощность 1,5 мегаватт, не означает, что на практике она будет производить такую ​​большую мощность. Ветряные турбины обычно производят значительно меньше номинальной мощности, что является максимальным количеством энергии, которое они могли бы производить, если бы работали все время. Например, ветряная турбина мощностью 1,5 мегаватта с коэффициентом полезного действия 33 процента может производить только пол мегаватта в год — меньше, если ветер не дует надежно.Турбины промышленного масштаба обычно имеют номинальную мощность от 2 до 3 мегаватт. Однако количество фактически произведенной энергии снижается из-за эффективности и наличия ветра — процента времени, в течение которого объект имеет достаточно ветра для движения.

Советы по покупке ветряных турбин

Если вы знаете мощность и коэффициенты эффективности установки, вы можете рассчитать ее расчетный годовой объем производства по следующей формуле:

365 \ frac {\ text {days}} {\ text {year} } \ times 24 \ frac {\ text {hours}} {\ text {days}} \ times \ text {максимальная мощность} \ times \ text {capacity factor} = \ text {киловатт-часов в год}

Например, турбина с номинальной мощностью 1.Ожидается, что мощность 5 мегаватт и КПД 25 процентов составит:

365 \ times 24 \ times 1500 \ times 0,25 = 3 285 000 \ text {киловатт-часов в год}

Этот расчет предполагает наличие ветра в течение 24 часов в сутки. круглый год. На практике этого не происходит. Вы можете использовать карты ветров NREL для корректировки цифр времени для получения более точных цифр для конкретного местоположения.

Как работает ветряная турбина?

Что такое ветряк?

Ветряная турбина — это самая современная версия ветряной мельницы.Проще говоря, он использует силу ветра для производства электричества. Наиболее заметны большие ветряные турбины, но вы также можете купить небольшую ветряную турбину для индивидуального использования, например, для обеспечения энергией каравана или лодки.

Что такое ветряная электростанция?

Ветряная электростанция — это группа ветряных турбин. Довольно впечатляет мысль о том, что электричество, которое так сильно влияет на нашу жизнь — от зарядки наших телефонов до того, что позволяет нам приготовить чашку кофе и, все чаще, заправлять наши автомобили — могло начаться с простого порыва ветра. .

Как работает ветряная турбина?

Сначала давайте начнем с видимых частей ветряной электростанции, которые мы все привыкли видеть — этих высоких белых или бледно-серых турбин. Каждая из этих турбин состоит из набора лопаток, коробки рядом с ними, называемой гондолой, и вала. Ветер — а это может быть просто легкий ветерок — заставляет лопасти вращаться, создавая кинетическую энергию. Вращающиеся таким образом лопасти также заставляют вращаться вал в гондоле, а генератор в гондоле преобразует эту кинетическую энергию в электрическую.

Что происходит с электричеством, вырабатываемым ветряной турбиной?

Для подключения к национальной сети электрическая энергия затем пропускается через трансформатор на объекте, который увеличивает напряжение до уровня, используемого в национальной электроэнергетической системе. Именно на этом этапе электричество обычно направляется в передающую сеть National Grid, готовую к передаче, чтобы в конечном итоге ее можно было использовать в домах и на предприятиях. В качестве альтернативы, ветряная электростанция или отдельная ветряная турбина могут вырабатывать электроэнергию, которая используется частным образом отдельным лицом или небольшой группой домов или предприятий.


Почему ветряки обычно белые или бледно-серые?

Ветряные турбины обычно бывают белыми или очень бледно-серыми — идея состоит в том, чтобы сделать их визуально ненавязчивыми, насколько это возможно. Обсуждается, следует ли их перекрашивать в другие цвета, особенно в зеленый, в некоторых условиях, чтобы помочь им лучше вписаться в окружающую среду.

Насколько сильным должен быть ветер для работы ветряной турбины?

Ветровые турбины могут работать при любых скоростях ветра — от очень слабого до очень сильного.Они генерируют около 80% времени, но не всегда на полную мощность. При очень сильном ветре они отключаются, чтобы предотвратить повреждение.

Где расположены ветряные электростанции?

Ветряные электростанции, как правило, располагаются в самых ветреных местах, чтобы максимально использовать энергию, которую они могут производить — вот почему вы с большей вероятностью увидите их на склонах холмов или на побережье. Ветряные электростанции, расположенные в море, называются оффшорными ветряными электростанциями, а расположенные на суше — наземными ветряными фермами.

Где была первая ветряная турбина и первая ветряная электростанция?

Самая первая ветряная турбина, вырабатывающая электричество, была создана профессором Джеймсом Блайтом в своем доме отдыха в Шотландии в 1887 году.Он был 10 метров в высоту и имел парусину.

Первая в мире ветряная электростанция открылась в Нью-Гэмпшире в США в 1980 году.

Вредны ли ветряные электростанции для птиц?

Дело в том, что изменение климата представляет собой самую серьезную долгосрочную угрозу для птиц и других диких животных. А возобновляемые источники энергии, ключевым компонентом которых являются ветряные турбины, играют важную роль в сокращении парниковых газов .

Королевское общество защиты птиц Великобритании ( RSPB ) признает эту более широкую картину, заявляя: «Переход на возобновляемые источники энергии сейчас, а не через 10 или 20 лет, необходим, если мы хотим стабилизировать выбросы парниковых газов в атмосфера на безопасном уровне.

Разработчики ветряных электростанций в тесном сотрудничестве с RSPB и местными экологическими группами проводят консультации по выбору ветряных электростанций, чтобы продолжить рост наземной и морской ветроэнергетики, одновременно компенсируя любой потенциальный вред птицам из-за потери среды обитания, нарушения и столкновение.

В отчете США делается вывод о том, что влияние энергии ветра на популяции птиц относительно невелико по сравнению с падением жертвой кошек и столкновениями с высотными зданиями.

Сколько энергии в Великобритании вырабатывается ветром?

Узнайте, сколько энергии в Великобритании вырабатывается ветром, с помощью приложения National Grid ESO для Google Play или Apple iOS .

Ветряные турбины вырабатывают столько энергии в Индиане

5 энергетиков в вашем доме

Как перестать тратить энергию впустую.

Indianapolis Star

По мнению экспертов, благодаря порывам ветра с озера Мичиган и стратегическому положению между двумя электрическими сетями Индиана является одним из лучших штатов в стране для строительства ветряных турбин.И в результате отрасль в штате Хузье растет.

В период с 2018 по 2019 год производство энергии ветра в Индиане увеличилось на 14%, согласно отчету Американской ассоциации ветроэнергетики, опубликованному в прошлом году, что сделало Индиан седьмым по темпам роста штатом в стране. В настоящее время только 11 других штатов производят больше энергии ветра, чем Индиана.

Ветроэнергетика также распространяется по всей стране. К 2050 году ветер сможет поддерживать более 600 000 рабочих мест и сэкономить потребителям миллиарды долларов.С. Оценки Министерства энергетики. В настоящее время ветер производит около 8% электроэнергии страны.

Но с ростом отрасли тоже возникают вопросы. Мы слышали от читателей IndyStar вопрос: как именно работает ветряная турбина? Сколько энергии он может производить? И действительно ли это надежный источник энергии?

В этом выпуске Scrub Hub мы поговорили с экспертами, чтобы ответить на ваши вопросы о ветроэнергетике. Чтобы узнать, что они сказали, продолжайте читать.

Краткий ответ

Ветровые турбины работают во многом так же, как гидроэнергетика: они используют кинетическую энергию для создания электричества.

Движение ветра вращает большие лопасти турбины, которая, в свою очередь, вращает ротор в квадратной коробке в верхней части турбины, называемой гондолой.

Генератор в гондоле использует это движение для выработки электричества, которое затем перемещается по валу турбины в подземные линии электропередач, в конечном итоге попадая в коллекторные линии электрической сети. Сеть, состоящая из большего количества взаимосвязанных линий электропередач, передает электроэнергию в дома людей и предприятия.

«Это простая концепция, хотя она может производить довольно много энергии», — сказал Джефф Дэниэлсон, директор Центрального региона Американской ассоциации чистой энергии.

На Среднем Западе одна ветряная турбина вырабатывает около 2,5 мегаватт энергии, которая может обеспечить электроэнергией около 2 500 домов. Однако это средний показатель: повседневная выработка электроэнергии может варьироваться в зависимости от того, насколько сильный ветер дует в данный момент.

Индиана — желанный штат для ветроэнергетических компаний, сказал Дэниэлсон, что может означать увеличение инвестиций в ближайшие годы.Северная часть штата получает выгоду от порывов ветра, дующих с озера Мичиган, но есть еще одна причина, по которой энергетические компании хотят больше ветра в Индиане: штат также находится на границе двух основных электрических сетей.

Больше Scrub Hub: Дым от фейерверков пронизан токсинами, частицами, которые могут отправить вас в ER

Подробнее: Почему на набережной озера Мичиган в Индиане наблюдается самая сильная эрозия за десятилетия

Индиана составляет восточную окраину сеть, управляемая Независимым системным оператором Среднего Континента, или MISO, которая охватывает большую часть Среднего Запада.Штат Хузьер также граничит с сетью PJM Interconnection, которая обеспечивает электроэнергией более семи восточных штатов. По словам Дэниэлсона, это выгодное положение, поскольку при необходимости энергия ветра может быть использована для обеих этих электрических сетей.

В конце 2020 года ветряные электростанции Индианы были способны производить около 3000 мегаватт электроэнергии, что было 12-м по величине в США, но это лишь небольшая часть того, что мог бы производить штат.

«Индиана способна на многое другое, — сказал Натан ЛаФранс, вице-президент по государственной политике Альянса чистых сетей.«Судя по количеству ветровых ресурсов, которыми располагает штат, он может установить десятки тысяч мегаватт».

Длинный ответ

Каким образом количество энергии, производимой ветряной турбиной, сравнивается с количеством энергии, производимой природным газом, углем или другими энергоресурсами?

Что ж, если вы смотрите только на одну ветряную турбину, она не имеет большого значения. Некоторые угольные электростанции могут производить до 1200 мегаватт, а это значит, что вам потребуются сотни ветряных турбин, чтобы заменить их.Но когда вы смотрите на целые фермы ветряных турбин, разбросанные по всей стране, это начинает оказывать влияние.

Тем не менее, использование энергии ветра имеет преимущества по сравнению с энергией, генерируемой ископаемым топливом.

Одним из наиболее очевидных преимуществ, по словам Дэниэлсона, является его воздействие на окружающую среду. Энергия ветра не производит выбросов, вызывающих изменение климата, в отличие от угольной. По его словам, это также позволяет сэкономить «огромное» количество воды, которая требуется другим источникам энергии для охлаждения.На электростанции приходится почти половина воды, забираемой в США каждый день.

«По сравнению с другими источниками энергии, — сказал Дэниелсон, — это самая чистая форма энергии, которую вы можете произвести».

Ветровая энергия также не требует больших затрат на содержание. По словам ЛаФранса, после установки ветряной турбины затраты на производство электроэнергии практически равны нулю, что делает ее одним из самых дешевых доступных видов энергии.

Несмотря на то, что энергия ветра дешевая и чистая, она имеет один существенный недостаток: для этого используется огромное количество земли.Например, для каждой турбины мощностью 2,5 мегаватта требуется несколько акров, а ферме, производящей 1000 мегаватт, требуются сотни.

«Одним из самых больших недостатков ветра является интенсивность суши», — сказал ЛаФранс. «В отличие от электростанции, работающей на ископаемом топливе, где вы можете производить сотни мегаватт электроэнергии из электростанции, которая потребляет с точки зрения земли, может быть, несколько десятков акров».

Иногда это может быть выгодно для фермеров и землевладельцев, которые сдают свои земли в аренду ветряным компаниям, сказал Дэниэлсон.Хотя ветряным электростанциям требуется огромное количество земли, более 90% из них все еще можно использовать в качестве сельскохозяйственных угодий, а это означает, что фермеры потеряют относительно небольшой урожай в обмен на некоторый дополнительный доход.

Дэниэлсон характеризует эти отношения как выгодные для фермеров, ветряных компаний и окружных властей. Тем не менее, некоторые местные чиновники с этим не согласны.

Более 30 округов Индианы приняли постановления, ограничивающие или запрещающие использование энергии ветра в Индиане, отчасти из-за страха, что проекты снизят стоимость собственности или что такие эффекты, как шум или мерцающие тени, негативно повлияют на жизнь тех, кто живет поблизости. их.

Эти постановления существенно остановили рост ветров на большей части Индианы. Фактически, ЛаФранс сказал, что все 3000 МВт ветровой энергии, вырабатываемой в Индиане, поступают всего из шести округов.

Ветряные компании и сторонники возобновляемых источников энергии заявили, что они хотят, чтобы местные органы власти открыли дверь для дальнейшего развития ветроэнергетики в Индиане, особенно в связи с тем, что коммунальные компании проявляют повышенный интерес к чистой энергии.

Другие, однако, сомневаются, что энергия ветра достаточно надежна, чтобы полагаться на нее как на источник энергии.В конце концов, ветер не может дуть круглосуточно, и ветряные турбины будут вырабатывать электроэнергию, только если скорость ветра составляет не менее 5-8 миль в час.

При 11% по стране возобновляемые источники энергии по-прежнему составляют относительно небольшой процент электроэнергии в сети. Но исследования показали, что США, вероятно, могли бы получать 50% своей энергии из возобновляемых источников без каких-либо проблем с надежностью, сказал ЛаФранс. Однако для того, чтобы получить что-то большее, необходимо усовершенствовать технологию аккумуляторов для хранения энергии в случае ее избытка.

До получения такого количества энергии из возобновляемых источников энергии еще далеко. До тех пор, сказал Дэниэлсон, будущее ветровой энергии в Индиане все еще растет, наряду с потенциалом возобновляемых источников энергии.

«Мне нравится говорить, что ветер дует нам в спину, будущее светлое, и наши батареи заряжены и готовы к работе», — сказал Дэниелсон.

У вас есть еще вопросы о ветроэнергетике в Индиане? Ждем вашего ответа! Отправьте вопрос в Scrub Hub, используя форму Google ниже.

Не видите форму? Кликните сюда.

Свяжитесь с репортером IndyStar Лондоном Гибсоном по телефону 317-419-1912 или [email protected]. Следуйте за ней в Twitter @londongibson.

Свяжитесь с репортерами IndyStar по окружающей среде: присоединяйтесь к The Scrub на Facebook.

Проект экологической отчетности IndyStar стал возможным благодаря щедрой поддержке некоммерческой организации Nina Mason Pulliam Charitable Trust.

Оптимизация мощности ветряной электростанции за счет управления следом

Значение

Эффект следа в ветряных электростанциях может значительно снизить выработку энергии и увеличить стоимость электроэнергии.Здесь мы разработали схему управления следом для увеличения выработки энергии ветряными электростанциями. Метод управления в спутном следе был протестирован на группе из шести турбин коммунального масштаба, где он увеличил выработку энергии для скоростей ветра в районе средней годовой скорости от 7% до 13% и снизил изменчивость до 72% для выбранных направлений ветра в ночное время. . Эти улучшения могут способствовать повышению способности ветряных электростанций обеспечивать надежную, недорогую и эффективную базовую энергетическую нагрузку.

Реферат

Мировое производство электроэнергии все больше и больше полагается на ветряные электростанции в качестве источника энергии с низким содержанием углерода.В недавнем специальном отчете Межправительственной группы экспертов по изменению климата (МГЭИК) прогнозируется, что производство возобновляемой энергии должно вырасти с 20% мирового энергобаланса в 2018 году до 67% к 2050 году, чтобы глобальные температуры не повысились на 1,5 ° C по сравнению с доиндустриальными уровнями. Это увеличение требует надежного и недорогого производства энергии. Однако ветряные турбины часто размещаются в непосредственной близости от ветряных электростанций из-за ограничений по земле и линиям электропередачи, что приводит к снижению эффективности ветровой электростанции до 40% для направлений ветра, совпадающих с колоннами турбин.Чтобы увеличить выработку энергии ветряной электростанцией, мы разработали схему управления следом. Такой подход максимизирует мощность ветряной электростанции за счет смещения по рысканью, которое отклоняет следы от расположенных ниже по потоку турбин. Оптимизация проводилась с помощью аналитического градиентного подъема для конкретного участка на основе исторических операционных данных. Протокол был протестирован на действующей ветряной электростанции в Альберте, Канада, что привело к статистически значимому (P <0,05) увеличению мощности на 7–13% для скорости ветра вблизи средней площадки и направлений ветра, которые происходят менее чем в 10% ночной работы. и 28–47% для малых скоростей ветра при тех же направлениях ветра.Управление в спутном следе также снизило изменчивость выработки энергии ветряной электростанцией на 72%. Хотя результирующий прирост годовой выработки энергии на этой ферме был незначительным, эти статистически значимые результаты контроля за следом демонстрируют потенциал повышения эффективности и предсказуемости производства энергии за счет снижения потерь за счет следа.

Специальный доклад 15 Межправительственной группы экспертов по изменению климата (МГЭИК) о глобальном потеплении (1) обнаружил, что нынешние темпы выбросов приведут к повышению температуры с доиндустриального уровня, равного 1.5 ° C к 2040 г. Между тем недавние исследования предсказали, что Парижское соглашение по климату (2) не сможет удержать потепление ниже заявленной цели 2 ° C (3, 4). В Специальном отчете 15 установлено, что производство электроэнергии на основе угля должно снизиться с нынешних 40% мирового производства энергии до 1–7%. В результате возобновляемые источники энергии должны компенсировать этот переход, увеличившись с 20% выработки энергии в 2018 году до 67% к 2050 году (1). Ветровая и солнечная энергия, вероятно, составят основную часть этих добавленных мощностей из-за снижения стоимости электроэнергии (5).Хотя недавние исследования (5) показали, что береговая ветровая энергия является экономически выгодной по сравнению с углем и природным газом с комбинированным циклом, такие оценки относятся к объектам с надежными и надежными ветровыми ресурсами. Чтобы достичь целей Парижского климатического соглашения, ветряные фермы должны значительно увеличиться в количестве и плотности, а также распространиться на участки с менее определенным ветровым ресурсом (6). В результате методы повышения эффективности ветряных электростанций по-прежнему имеют первостепенное значение для сокращения выбросов углерода.

Хотя основной причиной снижения эффективности ветряных электростанций является изменчивость скорости ветра, аэродинамические потери в больших массивах турбин также являются ключевой проблемой при эксплуатации ветряных электростанций (7).Из-за процесса извлечения энергии из пограничного слоя атмосферы ветровые турбины обязательно создают область следа с уменьшенным импульсом непосредственно ниже по потоку (8). Этот след снизит выработку энергии турбинами, расположенными ниже по потоку в группе. Потери мощности в следе в ветряной электростанции зависят от скорости и направления падающего ветра.

Потери в следе возникают, когда скорость ветра ниже номинального значения (9) и турбины, по крайней мере, частично выровнены по углу набегающего ветра.Средняя скорость ветра на большинстве ветряных электростанций значительно ниже расчетного значения (10). Направления ветра в турбулентном пограничном слое атмосферы по своей природе изменчивы и будут меняться в зависимости от времени суток, сезона и других геофизических параметров (11). Компоновки ветряных электростанций предназначены для извлечения максимальной прибыли с учетом исторически наблюдаемых распределений направления и скорости ветра, что обычно приводит к увеличению продольного расстояния между турбинами в наиболее распространенных направлениях ветра. Однако для других направлений ветра ветровые турбины расположены ближе друг к другу (12).В наихудших сценариях размещения ветряных турбин и направлений притока в современных ветряных электростанциях происходит потеря более 40% эффективности, когда ветер смещается в направлении, совмещенном с колоннами турбин (13).

Чтобы свести к минимуму аэродинамические потери между турбинами в условиях преобладающего ветра, было обнаружено, что оптимальное продольное расстояние составляет 10–15D, где D — диаметр турбины (14⇓ – 16). Современные турбины увеличиваются в размерах, при этом морские турбины теперь имеют диаметр ротора более 200 м (17).Соответствующее расстояние между турбинами в несколько километров значительно увеличивает стоимость линий электропередачи и землепользования (18). В результате проектировщики ветряных электростанций сталкиваются со сложной многокритериальной задачей оптимизации, которая обычно приводит к рабочему расстоянию между турбинами 6-10D (18). При таком расстоянии в современных ветряных электростанциях сохраняются значительные аэродинамические потери в следе, когда поток направлен относительно колонн турбин и скорость ветра ниже номинального значения (13).

В то время как влияние потерь в спутной струе на эффективность ветряной электростанции может быть большим для некоторых направлений притока, совокупное влияние на годовое производство энергии меньшими ветряными электростанциями обычно ниже, поскольку турбины хорошо разнесены в направлениях с высокой скоростью ветра.Тем не менее, влияние потерь в следе может быть значительным, как на морской ветряной электростанции Хорнс Рев, где было обнаружено, что они снижают годовую выработку энергии примерно на 20% (13, 19). С увеличением размера и количества ветряных электростанций (20) потери в следе становятся все более важным фактором эффективности ветряных электростанций (21). В то время как масштабы снижения эффективности из-за следа будут зависеть от конкретной площадки ветряной электростанции, методы, которые могут снизить потери в следе, после разработки, вероятно, будут широко применимы к глобальному флоту ветроэнергетики.Таким образом, потенциальные методы смягчения последствий следа были в центре внимания многолетних исследовательских инициатив, проводимых Министерством энергетики США, таких как кампания от атмосферы к электронам (A2e) и объект Scaled Wind Farm Technology (SWiFT) (22). Учитывая широкое потенциальное влияние метода уменьшения потерь в следе, мы разработали схему управления и протестировали ее на шести турбинах коммунального масштаба на ветряной электростанции в Альберте, Канада, для скоростей ветра и направлений, где потери в следе наблюдались исторически.Наш метод увеличил выработку энергии для этих направлений ветра от 7% до 13% для умеренных скоростей ветра вблизи площадки и до 47% для низких скоростей ветра, что представляет собой статистически значимую демонстрацию оптимизации мощности рулевого управления в спутной струе для ветряной электростанции с несколькими турбинами. .

Помимо средней выработки электроэнергии, следы от ветряных турбин способствуют прерывистости. Прерывистое производство электроэнергии вызывается как ветровыми колебаниями в турбулентном пограничном слое атмосферы, так и внутренней нелинейностью выработки энергии ветровыми турбинами в зависимости от скорости ветра (23).Кроме того, следы турбин вносят свой вклад в отсутствие точного управления производством энергии ветряной электростанцией. Прерывистые возобновляемые источники энергии увеличивают потребность в дорогостоящих системах резервирования энергии, чтобы гарантировать надежность сетевых услуг (24). При низкой скорости ветра ветряные турбины могут колебаться примерно со скоростью включения в результате порывов ветра и динамического меандрирования следа (25). Методы управления, которые уменьшают изменчивость производства энергии ветряными электростанциями, измеряемую здесь как SD временной записи выработки электроэнергии, могут снизить потребность в дополнительных услугах для энергосистемы (26).Наш метод, примененный на ветряной электростанции в Альберте, Канада, снизил SD производства энергии ветряной электростанцией до 72% для рассматриваемых ветровых условий.

Управление рулевым управлением по следу

В последнее время внимание было сосредоточено на уменьшении потерь в следе за счет использования протоколов управления турбиной и оптимизации систем, которые приносят в жертву индивидуальные характеристики турбины для улучшения производительности коллективной ветровой электростанции. В нескольких исследованиях была предпринята попытка оптимизировать выработку электроэнергии ветряной электростанцией за счет работы турбины, расположенной выше по потоку, в неоптимальном состоянии для повышения эффективности турбины ниже по потоку (27, 28), но результаты еще не привели к окончательному решению, которое может можно экстраполировать на произвольные конфигурации ветряных электростанций (29).

Современная работа турбины сводит к минимуму угол несоосности рыскания, который представляет собой угол между осью гондолы турбины и направлением набегающего ветра. В то время как ветряные турбины обычно демонстрируют небольшое отклонение по рысканью из-за ошибок управления, шума и неопределенности датчиков (30), цель промышленных алгоритмов управления состоит в том, чтобы минимизировать это рыскание. Когда ветровые турбины смещены относительно набегающего ветра, они создают боковое усилие, которое отклоняет область следа (31), как показано на рис.1 А . Хотя смещенная турбина вырабатывает неоптимальную мощность, след больше не может напрямую сталкиваться с турбиной, расположенной ниже по потоку, в результате рулевого управления в следе. Применение управления в спутной струе для ветряной электростанции с шестью турбинами показано на рис. 1 B и C . Такая стратегия управления оказалась полезной для турбин с подветренной стороны в ряде экспериментов в аэродинамической трубе (32, 33) и вычислительных исследованиях (34–37). Рулевое управление по кильватерной струе также использовалось в полевом эксперименте с двумя турбинами, который продемонстрировал увеличение выработки энергии турбиной по ветру в зависимости от стабильности атмосферы (38).Влияние рулевого управления в спутном следе на сумму выработки энергии турбинами по ветру и по ветру было безрезультатным в отдельном полевом эксперименте с двумя турбинами (39). Здесь мы демонстрируем статистически значимый эффект управления следом в полевых условиях с шестью турбинным агрегатом.

Рис. 1.

( A ) Ветряная турбина диаметром D наклонена под углом γ относительно набегающего ветра и вид сверху. Набегающий ветер со скоростью u∞ падает слева. Центральная линия стандартного рабочего следа без отклонения от курса будет следовать по пунктирной синей линии.Центральная линия следа по рысканию следует за сплошной красной линией. ( B и C ) Поле продольной скорости модели спутного следа для управления отслеживанием базовой точки максимальной мощности ( B ) и оптимального управления рысканием ( C ). Скорость набегающего ветра на самой верхней турбине составляет u∞ = 7,5 м⋅с-1, и моделируются шесть турбин. След за шестой турбиной не показан, поскольку модель следа автоматически игнорирует калибровку параметров шестой турбины для повышения эффективности вычислений.

Из-за сложности экспериментов и затрат на вычисления параметрические исследования и оптимизация мощности ветряных электростанций в реальном времени ограничены предыдущими подходами (29). Таким образом, для облегчения управления с обратной связью в реальном времени требуется разработка точной и эффективной с вычислительной точки зрения модели выработки электроэнергии ветряной электростанцией в зависимости от срабатывания рулевого управления в спутном следе (40).

Оптимизация мощности для конкретного объекта

Мощность ветровой турбины, P, зависит от компоновки ветряной электростанции и условий притока.Кроме того, выработка энергии ветряной турбиной является функцией угла смещения по рысканью, а также смещения по рысканью турбин, расположенных выше по потоку, что проявляется в виде отклонений в следе. Мы разработали аналитическую формулировку для прогнозирования выработки энергии ветровыми турбинами в зависимости от атмосферных условий и решений о несоосности ветровых турбин по рысканью. Управление в спутной струе фиксируется с помощью недавно разработанной модели подъемной линии (41). Хотя величина поворота в спутном следе (42), а также скорость и направление ветра (43) являются функциями вертикального размера, измерения, доступные на месте в настоящем исследовании, были ограничены точечными датчиками на высоте ступицы.В то время как включение трехмерности изогнутого следа (42) может улучшить точность модели в определенных атмосферных условиях, 2D-модели достаточно, чтобы уловить основные физические аспекты нынешнего эксперимента ветряной электростанции. Подробная информация об аналитической модели прогнозируемого следа приведена в Приложении SI . Максимизация выработки энергии ветряной электростанцией за счет использования следящего управления позиционируется как оптимизация, максимизация γ → ∑i = 1NtPis при условии γi∈ [γmin, γmax], [1] где γi — угол рыскания для турбины i, Nt — количество турбин, а γmin и γmax являются границами несоосности рыскания для каждой турбины.Уравнение 1 не является выпуклым, но может быть оптимизирован с помощью ряда алгоритмов. Подобные исследования ранее использовали генетические алгоритмы (44) или дискретные градиенты (35). Поскольку мы разработали аналитическую функцию для прогнозирования производства энергии ветряной электростанцией, уравнение. 1 можно эффективно оптимизировать, используя аналитические градиенты в сочетании с общей стратегией подъема градиента, называемой оптимизацией Адама (45).

Калибровка модели следа для конкретной площадки

Модель ( SI, приложение ) откалибрована с использованием исторических полевых данных в масштабе полезности из пяти 1.Ветряные турбины Vestas V80 мощностью 8 МВт и одна турбина Vestas V80 мощностью 2,0 МВт на действующей ветряной электростанции в Альберте, Канада. Шесть турбин в ветряной электростанции выровнены под углом ∼335 °, где север равен 0 °, а угол продолжается по часовой стрелке до 360 ° на севере. При ветре от 335 ° турбины разнесены на ∼3,5D в преобладающем направлении ветра. Условия ветрового притока задаются установленными на гондоле системой диспетчерского управления и сбора данных (SCADA), измеряющей скорость ветра и направление гондолы.В настоящем исследовании интенсивность турбулентности не измерялась из-за ограничений оборудования ветряной турбины. Подробности измерений ветровых условий обсуждаются в Приложении SI . Пять лет усредненных за 1 минуту эксплуатационных данных SCADA, включая мощность, направление гондолы и скорость ветра, были использованы для калибровки константы пропорциональности предполагаемого гауссова следа и коэффициента распространения следа. Последний параметр определяет диаметр следа, который является функцией продольного расстояния после ветряной турбины.Эта модель позволяет каждой турбине иметь независимые значения для двух параметров модели, поскольку эти параметры, как известно, являются функцией условий атмосферного пограничного слоя (46), а также количества турбин против ветра (47). Параметры модели были определены с помощью аналитического градиентного спуска ( SI Приложение ). Результирующая откалиброванная модель с использованием ночных исторических фоновых данных показана на рис. 2 для притока 330 ° ± 5 ° при u∞ = 5-6 м⋅с-1 и u∞ = 7-8 м⋅с-1. Выработка электроэнергии нормирована на мощность самой наветренной турбины.Вторая турбина в среднем вырабатывает около 30% и 40% мощности предшествующей турбины при низкой и умеренной скорости ветра соответственно. Потери в следе больше при более низких скоростях ветра из-за более высокой относительной тяги, которую турбина передает полю скоростей при низких скоростях ветра.

Рис. 2.

( A и B ) Калибровка модели следа с использованием 5-летних исторических данных о мощности турбины SCADA для притока от 330 ° ± 5 ° для ( A ) u∞ = 5-6 м⋅с −1 и ( B ) u∞ = 7−8 м⋅с − 1.Планки погрешностей представляют 1 стандартное отклонение в данных. Турбина 4 — это Vestas V80 мощностью 2,0 МВт, а остальные — Vestas V80 мощностью 1,8 МВт. Выработки турбинной мощности нормируются самой противоточной турбиной Р1.

Модель, подходящая для умеренной скорости ветра, имеет среднюю абсолютную ошибку 0,02, в то время как модель для низкой скорости ветра имеет среднюю абсолютную ошибку 0,09 (выраженную как отношение, нормированное на мощность первой турбины). Менее точная подгонка в интервале низкой скорости ветра ожидается из-за присущей ему нелинейности при эффективной скорости включения 5 м⋅с-1 для турбин Vestas V80 на интересующем участке.В частности, выше точки включения турбина вырабатывает мощность и оказывает сопротивление жидкости, создавая зону следа. Ниже точки включения вырабатывается нулевая мощность и нет значимой области следа. Из-за динамического меандрирования следа турбины, расположенные ниже по потоку, будут колебаться между включением и отключением при очень низких скоростях ветра, а статические модели, которые учитывают только усредненное по времени поведение, также не могут уловить эту динамику (48). Это проиллюстрировано на рис. 2 A , где производство нулевой мощности происходит в пределах 1 стандартного отклонения от среднего.Поскольку контроллер рыскания на турбинах Vestas V80 не позволял выполнять динамические маневры рыскания, такие динамические расширения не применялись в рамках моделирования. Калибровки модели спутного следа для других направлений и скоростей притока северо-западного ветра для краткости не показаны.

План полевого эксперимента

В то время как ветряная электростанция в Альберте была спроектирована для высокоскоростного потока с юго-запада, ночные ветры с низкой и умеренной скоростью ветра с северо-запада наблюдаются летом и осенью. Настоящий эксперимент направлен на оптимизацию углов отклонения от курса для этих скоростей ветра с северо-запада, для которых существуют значительные эффекты следа.

Оптимизация несоосности по рысканью была проведена с откалиброванной моделью для притока от 315 ° до 355 °, для которого наблюдаются потери в следе. Эти углы составляют ~ 8% от ночной работы ветряной электростанции, при этом почти все пробы приходятся на летний и осенний сезоны. Роза ветров с историческими данными представлена ​​в приложении SI , рис. S1 A . Оптимизация угла рыскания привела к смещению рыскания по часовой стрелке на ~ 20 ° по отношению к набегающему ветру для каждой из первых пяти турбин в колонне и нулевому смещению для турбины, которая находилась дальше всего по ветру.Из-за аппаратных ограничений систем управления рысканием ветряных турбин, только один набор углов отклонения от рыскания мог быть выбран для диапазона северо-западного притока. Следовательно, смещенные турбины постоянно смещались на 20 ° для всех северо-западных направлений притока, от 315 ° до 355 °. Хотя измерения интенсивности турбулентности не были доступны на площадке ветряной электростанции, ночная работа обычно приводит к довольно низкой интенсивности турбулентности и, следовательно, к большим потерям в следе из-за подавленного перемешивания в следах (11).Подробная информация об оптимизации несоосности по рысканью приведена в Приложении SI . Другие углы смещения по рысканью не тестировались из-за экспериментальных ограничений реализации и увеличения количества уникальных дней экспериментов с одним набором смещений. Более длительная продолжительность эксперимента была необходима для достижения статистической достоверности.

Настоящая стратегия оптимизации, основанная на управлении, была протестирована в полномасштабном полевом эксперименте с шестью промышленными турбинами с 15 по 25 октября 2018 года.Фотография смещенных по рысканию турбин представлена ​​на рис. 3 A . Эскиз вида сверху оптимальных углов рыскания для эталонного притока с северо-запада можно увидеть на рис. 3 B .

Рис. 3.

( A ) Фотография шести турбин Vestas V80 на действующей ветряной электростанции в Альберте, Канада. ( B ) Оптимизированный перекос шести турбин, вид сверху. Поток возникает с северо-запада, что представляет интерес для данного эксперимента по оптимизации.Турбины с первой по пятую смещены на 20 ° по часовой стрелке относительно набегающего ветра. Турбина шестерка не смещена. Координаты в метрах. ( C и D ) Мощность в зависимости от номера турбины сравнивается для базовой работы с историческими данными SCADA за 5 лет (синие кружки), экспериментальной кампанией по рысканию (зеленые треугольники) и прогнозами модели (красные ромбы). ) на основе калибровок, приведенных на рис. 2. Условия притока показаны для 330 ° ± 5 ° при ( C ) u∞ = 5-6 м⋅с-1 и ( D ) u∞ = 7− 8 м⋅с − 1.Планки погрешностей представляют 1 стандартное отклонение в данных.

Результаты полевых экспериментов

Значительное увеличение мощности по сравнению с базовой линией наблюдалось для скорости ветра от низкой до умеренной с северо-запада. Влияние наведения в следе на среднее и стандартное отклонение выработки электроэнергии для условий северо-западного притока показано в таблице 1. Показаны направления и скорости ветра с более чем 15 усредненными за 1 мин выборками данных.

Таблица 1.

Шесть эффектов управления следом от ветряных турбин в масштабе коммунальных предприятий на среднее (Δm), стандартное отклонение (Δs) и скорость отклонения выработки электроэнергии по сравнению с базовой работой

Для низких скоростей ветра u∞ = 5-6 м⋅с − 1 и приток 325 ° ± 5 °, общая мощность шести турбин увеличилась со среднего временного значения 390 кВт до 570 кВт, что на 47% больше.Между тем, для притока 330 ° ± 5 ° при u∞ = 5-6 м⋅с-1 увеличение мощности составило 28% (рис. 3 C ). Большое процентное увеличение в этих случаях происходит из-за низкой выработки энергии при низких скоростях ветра и близости скоростей ветра к скорости включения 5 м⋅с-1. Значительное улучшение в этих двух случаях можно объяснить отклонением восходящего следа. Частичное перекрытие в следе происходит, когда часть области ротора ветряной турбины находится в следе за встречной турбиной, в то время как другая часть находится в невозмущенном набегающем потоке.Такой случай имеет место для шести турбин с потоком от 325 ° до 330 °. Во время сценария частичного следа небольшое отклонение от курса для турбины против ветра может привести к тому, что турбина, расположенная ниже по потоку, будет работать исключительно в условиях набегающего потока. Уменьшение частичного пробуждения полезно для выработки электроэнергии и значительно снижает усталость и отказы турбины (49). Модель учитывает влияние несоосности рыскания в сценарии частичного следа, как показано на рис. 1 B и C , где следы турбин выше по потоку отклоняются от турбин ниже по потоку.Следы воздействуют на турбины, расположенные ниже по потоку, более непосредственно при 330 °, чем при 325 °. В результате для отклонения следа от турбин, расположенных ниже по потоку, требуются большие отклонения следа при 330 °, чем при 325 °. Следовательно, ожидаемое увеличение мощности выше для 325 °, где сценарий частичного следа наиболее заметен.

При более высокой скорости ветра u∞ = 7-8 м⋅с-1 с ​​330 ° ± 5 ° общая мощность увеличилась с 1,86 МВт до 2,11 МВт, что на 13% больше (рис. 3 D ). Процентное увеличение меньше в случаях с более высокой скоростью ветра в результате уменьшения эффекта следа на этих скоростях.

Поток, непосредственно падающий вдоль трассы колонны ветряной электростанции под углом 335 ° ± 5 °, имел место в значительной степени только при скорости ветра между u∞ = 7-8 м⋅с-1. В этих условиях выработка электроэнергии шести турбин увеличилась на 7%. Ветряные электростанции обычно располагаются в местах со средней скоростью ветра около 8 м⋅с-1 (10). Таким образом, для ветряных электростанций с аналогичным шагом в продольном направлении и прямым выравниванием в среднем ожидается увеличение мощности на 7%, наблюдаемое в этих ветровых условиях.

Управление по кильватерному следу также значительно уменьшило изменчивость суммы выработки энергии шестью турбинами, измеренной здесь как стандартное отклонение во временном ряду данных, усредненных за 1 мин (таблица 1).Уменьшение SD суммы мощности связано с уменьшением эффекта следа между турбинами. Это проявляется в заметном уменьшении процента времени, в течение которого турбины не производят мощность (сбой) при всех ветровых условиях. Стоит отметить, что все рассматриваемые здесь ветровые условия превышают скорость включения турбин Vestas V80 и, следовательно, без эффектов следа скорость отключения будет 0% для всех случаев ветровых условий. Высокие коэффициенты отключения в случае базового управления являются результатом падения скорости столкновения с данной турбиной ниже скорости включения.В результате рулевого управления в следе процент времени, в течение которого скорость снижается ниже значения включения для турбин по ветру, заметно снизился.

Модель низкого порядка способна предсказать влияние рыскания на тенденции выработки энергии в полевом эксперименте на основе калибровки с использованием только исторических данных (рис. 3 C и D ). Как и ожидалось, выработка мощности турбинной (т. Е. Самой наветренной турбины) была снижена из-за работы с несоосностью рысканья.Однако выработка энергии турбинами со второй по пятую, и особенно шестой турбиной, находящейся дальше всего по ветру, значительно увеличилась. Имеются расхождения в случае низкой скорости ветра, показанном на рис. 3 C , в результате нелинейности скорости включения и динамического меандрирования следа, не зафиксированных в модели. Тем не менее, качественное согласие с тенденциями прогнозирования модели способствует использованию данной модели для управления в реальном времени произвольными ветряными электростанциями в масштабе коммунальных предприятий.

Самым большим источником ошибок в существующей структуре моделирования является функциональная зависимость мощности от угла несоосности рысканья.В настоящем подходе предполагалось, что производство мощности как функция рыскания соответствует экспериментальному результату в аэродинамической трубе cos2 (γ) (50). Хотя эта модель достаточно хорошо работает в случае низкой скорости ветра, показанном на рис. 3 C , она неточна для случая более высокой скорости ветра, показанного на рис. 3 D . В результате, вероятно, существует функциональная зависимость показателя косинуса от скорости набегающего ветра, а также ранее описанная зависимость от типа турбины (44) и сдвига и поворота в пограничном слое атмосферы.

Результаты увеличения мощности статистически значимы (P <0,05) по двухвыборочному критерию Колмогорова – Смирнова. Подробности статистических экспериментов приведены в документе Materials and Methods . Однако статистический тест не исследует доминирующие причины неопределенности, которыми являются условия притока атмосферного пограничного слоя, включая скорость и направление ветра, а также ограниченное количество уникальных дней экспериментальной кампании по рысканью. Полный набор данных доступен по адресу https: // purl.stanford.edu/rn821pp7681.

Обсуждение

Мы демонстрируем статистически значимый полевой эксперимент по управлению в следе, увеличивающий выработку энергии многотурбинной ветровой электростанцией для ветровых условий, которые демонстрируют потери в следе. В то время как влияние управления в спутном следе на годовое производство энергии зависит от конкретной площадки (например, ниже 0,3% на этой ветряной электростанции), этот эксперимент служит доказательством концепции потенциала управления в спутном следе для значительного снижения потерь в спутном следе, которые сокращают годовое производство энергии. ветропарков (13).Управление рулевым управлением в спине также снизило прерывистость выработки мощности. Поскольку вспомогательные услуги частотного регулирования требуются в масштабе времени в минутах (26), SD в отношении временных рядов производства электроэнергии, усредненных за 1 минуту, имеют отношение к планированию энергосистемы. Это демонстрирует, что управление в спутном следе может снизить непостоянство энергии ветра и, таким образом, повысить надежность этого компонента энергосистемы. Прогресс в нашем понимании физики ветряных электростанций в сочетании с улучшениями в моделировании, проектировании и оптимизации управления еще больше повысит ценность этой технологии возобновляемых источников энергии и ее способность обеспечивать недорогую и надежную энергию для устойчивой сети.

Для достижения такого потенциального увеличения мощности глобального парка ветряных электростанций требуется эффективная вычислительная модель. Данная формулировка аналитической модели была выбрана из-за ее вычислительной эффективности, которая облегчает ее использование для управления ветряными электростанциями в масштабе коммунальных предприятий в реальном времени. Вычислительная стоимость предыдущих методов масштабируется как O (NxNy), где Nx и Ny — количество точек сетки, используемых в вычислительной области, тогда как стоимость настоящего метода масштабируется как O (Nt), где Nt — количество турбин. .Обычно для каждой турбины ветряной электростанции (34) используется O (10) точек сетки, что приводит к приблизительному масштабированию O (100Nt2). Следовательно, настоящий метод имеет вычислительное сокращение, по крайней мере, на два порядка. Это масштабирование обеспечивает калибровку модели в реальном времени и управление ветровой фермой с помощью только стандартного персонального компьютера. Учитывая, что все ветряные турбины коммунального масштаба построены с контроллерами рыскания, настоящая схема управления может быть напрямую реализована в любой действующей ветряной электростанции, таким образом, немедленно увеличивая выработку энергии с этих площадок без дополнительных затрат.

Недавнее моделирование отметило потенциальное влияние направления несоосности рыскания на выработку энергии в упрощенном, выровненном сценарии управления в следе с двумя ветряными турбинами (51, 52). Это наблюдение не было подтверждено во всех других исследованиях управления движением в спутном следе и, вероятно, во многом зависит от компоновки турбины (53). Потенциальная асимметрия выработки мощности в зависимости от направления несоосности рыскания, вероятно, вызвана изогнутым трехмерным следом (42), а также изменением и сдвигом скорости ветра.Недавняя работа предполагает, что эта асимметрия связана с эффектом Кориолиса (37). Эти эффекты являются предметом продолжающейся работы по моделированию (36, 43, 54, 55) и поэтому не были включены в настоящую структуру.

Помимо наблюдаемого здесь эффекта смещения рысканья на выработку мощности, управление в спутном следе также будет влиять на неустойчивую нагрузку ветряной турбины и, следовательно, на механическую усталость. Теоретические и численные исследования предсказывают, что смещение по рысканью может уменьшить или увеличить механическую усталостную нагрузку на лопасти ветряной турбины в зависимости от направления смещения по рысканью (56).Однако влияние перекоса по рысканью на усталостную нагрузку является функцией конкретной ветряной турбины и системы управления, поскольку недавние исследования показали разные результаты в зависимости от интересующей ветряной турбины (49, 57). Кроме того, смещение по рысканью может уменьшить частичное перекрытие спутного следа, которое, как известно, значительно увеличивает усталостную нагрузку (58). В описанном здесь эксперименте на ветряной электростанции в Альберте частичное перекрытие следа значительно уменьшилось. Хотя усталостная нагрузка ветряной турбины не измерялась в текущем полевом эксперименте, она является предметом будущих работ и контрольно-измерительных приборов на этом полевом участке.В более общем плане, точные прогнозы влияния перекоса по рысканью на усталостную нагрузку всех ветряных турбин в ветряной электростанции, вероятно, потребуются до широкого внедрения управления в спутном следе в качестве оптимальной схемы управления для ветряных электростанций промышленного масштаба. Это является предметом текущей работы в рамках программы A2e Министерства энергетики с использованием инструмента моделирования FAST Национальной лаборатории возобновляемых источников энергии (59).

Материалы и методы

Статистические тесты.

Статистическая значимость результатов экспериментальной оптимизации мощности рыскания проверялась с помощью двухвыборочного теста Колмогорова – Смирнова. Был выбран критерий Колмогорова – Смирнова, поскольку наборы данных являются ненормальными распределениями. Нулевая гипотеза состоит в том, что сумма выработки электроэнергии шестью турбинами из исходных исторических данных и экспериментальных измерений рыскания является одним и тем же распределением. Статистический тест проводится для конкретных условий притока, показанных в Таблице 1. Существует более чем на порядок больше выборок из набора исторических базовых данных, чем для кампании рыскания из-за ограниченной продолжительности полевого эксперимента.Таким образом, значения P вычисляются с использованием случайной выборки из полного распределения, так что базовый набор данных имеет такое же количество точек данных, что и данные эксперимента по несовпадению рыскания. Значения P затем усредняются вместе как метод Монте-Карло. Полученные значения P показаны в таблице 2. Все результаты статистически значимы (P <0,05), за исключением притока под углом 320 ° ± 5 ° со скоростью 5–6 м⋅с − 1. Образцы во время экспериментальной кампании по смещению по рысканью не являются строго независимыми, поскольку они могут возникать в аналогичных условиях атмосферного пограничного слоя.Результаты будут аналогичными, если для расчета условных средних используются меньшие интервалы скорости или направления ветра. Полный набор данных доступен по адресу https://purl.stanford.edu/rn821pp7681.

Таблица 2.

Двухвыборочный статистический тест Колмогорова – Смирнова для нулевой гипотезы о том, что базовые исторические данные о мощности SCADA и экспериментальные данные о мощности отклонения от вертикали являются образцами одного и того же распределения

Благодарности

Мы благодарим TransAlta Corporation и TransAlta Renewables за любезно предоставив исторические эксплуатационные данные ветряной электростанции и для проведения экспериментальной кампании по смещению рыскания на действующих турбинах.М.Ф.Х. финансируется через стипендию для аспирантов Национального научного фонда в рамках гранта DGE-1656518 и стипендию для аспирантов Стэнфордского университета.

Сноски

  • Автор: M.F.H. и J.O.D. спланированное исследование; М.Ф.Х. проведенное исследование; M.F.H., S.K.L. и J.O.D. предоставил новые аналитические инструменты; M.F.H., S.K.L. и J.O.D. проанализированные данные; и M.F.H., S.K.L. и J.O.D. написал газету.

  • Авторы заявляют об отсутствии конфликта интересов.

  • Эта статья представляет собой прямое представление PNAS.

  • Размещение данных: данные из этого документа были депонированы в Стэнфордском цифровом репозитории, https://purl.stanford.edu/rn821pp7681.

  • Эта статья содержит вспомогательную информацию на сайте www.pnas.org/lookup/suppl/doi:10.1073/pnas.10116/-/DCSupplemental.

  • Авторские права © 2019 Автор (ы). Опубликовано PNAS.

Миссисипи одобряет первый объект ветряной электростанции


Объект будет использовать существующие фермерские дороги и позволит землеустроителям продолжать обеспечивать продовольствием, кормами и волокном, а также энергией в дельте Миссисипи.

Ветровые турбины помогли этому фермеру выйти на пенсию

Том Каннингем говорит, что дополнительный доход, который он получает от сдачи своей земли в аренду ветряной электростанции, помог ему и его жене выйти на пенсию

Джаспер Кольт, США СЕГОДНЯ

Комиссия по коммунальным услугам штата Миссисипи имеет расчистил путь для Миссисипи, чтобы увидеть свою первую ветряную турбину для выработки электроэнергии в Дельте.

В своем объявлении в среду MPSC сообщило, что объект будет построен на 13 000 акров в округе Туника и будет включать до 100 турбин и вырабатывать достаточно энергии для обеспечения энергией примерно 70 000 домов.

По данным Vestas, материнской компании Tunica Windpower LLC, строительство начнется этим летом и завершится к концу 2022 года.

«Для меня большая честь быть частью празднования первой ветроэнергетической фермы штата Миссисипи в округе Туника, которая будет принесет ряд рабочих мест и возможности экономического развития в дельте Миссисипи », — сказал председатель MPSC Дэйн Максвелл в пресс-релизе. «Я хотел бы поблагодарить Tunica Windpower LLC и работу законодательного собрания нашего штата и местного руководства за то, что они сделали возможным привнести в наш штат еще один возобновляемый источник энергии.”

Оффшорная ветроэнергетика в Мексиканском заливе ?: Возможность для районов за пределами Миссисипи, другие штаты

По словам комиссара Центрального округа MPSC Брента Бейли, проект диверсифицирует производство в Дельте и сосуществует с сельским хозяйством.

Добавить комментарий