Армирование ленточного фундамента: Упс… Кажется такой страницы нет на сайте

Содержание

Страница не найдена — ГидФундамент

Содержание статьи1 Об «устаревших»  стандартах2 О квалификации сварщика при армировании3 Основные критерии выбора способа фиксации арматуры Дискуссии на тему «вязать […]

Содержание статьи1 Определение и назначение2  3 Нормативы4 Параметры4.1 Ширина4.2 Глубина4.3 Угол наклона5 Типы и структура6 Самые распространённые виды отмосток6.1 Бетонная6.2 […]

Содержание статьи1 Функции армопояса из кирпича2 Виды поясов3 Пояс из кирпича под перекрытие4 Кирпичный пояс под мауэрлат5 Гидроизоляция и утепление6 […]

Содержание статьи1 Для кровли1.1 Основные функции1.2 Способы возведения1.3 Геометрические параметры1.4 Правила  армирования2 Для перекрытий3 Общие принципы устройства армопояса3.1 Утепление3.2 Бетонирование3.3 […]

Содержание статьи1 Как избежать работ по выравниванию поверхности2 Инструменты для контроля горизонта3 Основной способ4 Практические советы и рекомендации5 Другие способы […]

Содержание статьи1 Виды  армопояса2 Материалы опалубки для армопояса3 Виды опалубки для армопояса4 Крепление опалубки В технологический процесс устройства монолитного армированного […]

Содержание статьи1 Кирпичные фронтоны2 Требования к материалу3 Завершение кладки3.1 Ровный обрез3.2 Кладка кирпича уступом4 Гидроизоляция под мауэрлат5 Способы крепления мауэрлата5.1 […]

Содержание статьи1 Последствия неправильного выбора арматуры2 Понимание процесса работы арматуры в ленточном фундаменте3 Критерии надёжности4 Виды5 Классификация5.1 Классы5.2 Дополняющие литеры5.3 […]

Содержание статьи1 Виды монолитных лестниц2 Типы и назначение арматуры3 Практические рекомендации4 Особенности расчёта армирования лестницы4.1 Задачи армирования4.2 Угол подъёма4.3 Место […]

Содержание статьи1 Задачи армирования2 Основная функция защитного слоя3 Факторы формирования толщины4 Нормативы и допуски защитного слоя бетона5 Ошибки6 Восстановление защитного […]

Страница не найдена — ГидФундамент

Содержание статьи1 Об «устаревших»  стандартах2 О квалификации сварщика при армировании3 Основные критерии выбора способа фиксации арматуры Дискуссии на тему «вязать […]

Содержание статьи1 Определение и назначение2  3 Нормативы4 Параметры4.1 Ширина4.2 Глубина4.3 Угол наклона5 Типы и структура6 Самые распространённые виды отмосток6.1 Бетонная6.2 […]

Содержание статьи1 Функции армопояса из кирпича2 Виды поясов3 Пояс из кирпича под перекрытие4 Кирпичный пояс под мауэрлат5 Гидроизоляция и утепление6 […]

Содержание статьи1 Для кровли1.1 Основные функции1.2 Способы возведения1.3 Геометрические параметры1.4 Правила  армирования2 Для перекрытий3 Общие принципы устройства армопояса3.1 Утепление3.2 Бетонирование3.3 […]

Содержание статьи1 Как избежать работ по выравниванию поверхности2 Инструменты для контроля горизонта3 Основной способ4 Практические советы и рекомендации5 Другие способы […]

Содержание статьи1 Виды  армопояса2 Материалы опалубки для армопояса3 Виды опалубки для армопояса4 Крепление опалубки В технологический процесс устройства монолитного армированного […]

Содержание статьи1 Кирпичные фронтоны2 Требования к материалу3 Завершение кладки3.1 Ровный обрез3.2 Кладка кирпича уступом4 Гидроизоляция под мауэрлат5 Способы крепления мауэрлата5.1 […]

Содержание статьи1 Последствия неправильного выбора арматуры2 Понимание процесса работы арматуры в ленточном фундаменте3 Критерии надёжности4 Виды5 Классификация5.1 Классы5.2 Дополняющие литеры5.3 […]

Содержание статьи1 Виды монолитных лестниц2 Типы и назначение арматуры3 Практические рекомендации4 Особенности расчёта армирования лестницы4.1 Задачи армирования4.2 Угол подъёма4.3 Место […]

Содержание статьи1 Задачи армирования2 Основная функция защитного слоя3 Факторы формирования толщины4 Нормативы и допуски защитного слоя бетона5 Ошибки6 Восстановление защитного […]

Как армировать ленточный фундамент своими руками: инструкция

Армирование ленточного фундамента – процедура обязательная, без выполнения которой невозможно гарантировать качественное возведение будущей постройки. Работа по армированию фундамента очень важна, но в исполнении не очень сложна и если разобраться во всех тонкостях и нюансах, то сделать ее можно без проблем своими руками.

Материалы и инструмент

Для армирования ленточного фундамента используют, как стальные пруты, так и стеклопластиковую арматуру, мы остановимся на стальных прутах (как выбрать стальную арматуру читайте тут), потому как стеклопластик во – первых дорогое удовольствие, во – вторых его очень редко применяют для загородного домостроения по ряду причин.

Итак, с этим разобрались идем дальше, для работы нам нужно приобрести:

МатериалПараметры
Рабочая арматура
Диаметром 12мм.
Конструктивная арматураДиаметром 8мм.
Вязальная проволокаПредназначенная для армирования
ЦементМарки М – 250, 300.
ПесокСредней фракции

 

Из инструментов подготовим:

  • Емкость для замешивания бетона или бетономешалку;
  • Строительный миксер;
  • Болгарку;
  • Лопату;
  • Плоскогубцы;
  • Перчатки.

Подготовительные работы

Первое: Нужно рассчитать и приобрести арматуру и вязальную проволоку. В расчете необходимого количества арматуры нет ничего сложного. Горизонтальные направляющие, для которых используется арматура 12мм, обычно укладывается с шагом 30 — 60 см. Поперечные и вертикальные секций формируются арматурой 8мм, с шагом 40 – 70см. Зная эти данные очень легко прикинуть сколько погонных метров арматуры необходимо купить именно для ваших целей, плюс берите небольшой задел и приобретайте на 10% больше чем вам надо.

Важно: Для ленты высотой меньше 90 см обычно используется двухрядный каркас, при высоте более 90 см вяжется трех и более ярусный каркас.

Насчет вязальной проволоки все еще проще, ее на каждое соединение уходит примерно 25 – 30см.

Второе: После того, как материал доставили на место строительства, его нужно тщательно осмотреть и очистить от грязи и ржавчины. Многие данной операцией пренебрегают, но нужно помнить, что посторонние «включения» могут хоть несущественно, а все же ухудшить рабочие характеристики бетона.

Пошаговая инструкция по армированию ленточного фундамента

Шаг 1: Формируем бетонное основание. Для этого на дно траншеи, толщиной 20 -30 см насыпаем песок, трамбуем его и заливаем бетоном слоем 5 – 10см. Так мы защитим нижнюю арматуру от появления коррозии.

Совет: в целях экономии можно не «заморачиваться» с заливкой «подошвы», а гидроизолировать траншею обыкновенной плотной полиэтиленовой пленкой.

Шаг 2: Устанавливаем опалубку. На этом этапе останавливаться не будем потому, как у нас есть статья на тему «как поставить опалубку для фундамента», где все подробнейше расписано.

Шаг 3: Начинаем вязать арматуру. Проделать данную работу можно, как непосредственно в траншее, так и рядом с ней. Удобнее конечно же связать отдельные секции недалеко от места монтажа, а потом установить их в положенное место. Общая схема будет следующей.

Важно: Сварку для соединения арматуры между собой применять крайне не рекомендуется, при таком способе крепления места стыков очень быстро начнут ржаветь. 

Сборку конструкции следует начинать с нижних поперечных прутов (8мм), их выкладываем с шагом не более 80см друг от друга. Затем на них продольно укладываем рабочую арматуру (12мм), расстояние между продольными прутами не должно превышать 40 см, если же оно больше 40 см, то добавляем в конструкцию еще один стержень. Места соединений поперечных и продольных прутьев закрепляем вязальной проволокой.

Итак, ранее мы сформировали нижний уровень каркаса, далее следует закрепить вертикальные перемычки (8мм). Делается это так – в местах соприкосновения продольных и поперечных прутьев арматуры устанавливаем вертикально еще один прут и связываем его проволокой с основной конструкцией, таким образом производим монтаж всех необходимых вертикальных элементов.

Важно: Будьте внимательны и при установке следите чтобы вертикальная арматура была закреплена по отношению к продольной четко под 90 градусов.

Следующим этапом сборки каркаса будет установка верхних поперечных и продольных прутьев. Все действия те – же, к вертикально закрепленной арматуре с помощью вязальной проволоки с перехлестом по краям не менее 20см, крепим сначала поперечные, а затем продольные элементы арматуры.

Способом, описанным выше собираем необходимое количество секций, устанавливаем их в траншею если сборка проводилась не в ней и с помощью дистансеров жестко закрепляем каркас по отношению к опалубке, зазор между ними оставляем в 3 -5 см.

Основная часть работ на этом закончена, но остался самый важный этап, армирование ленточного фундамента по углам.

Шаг 4: Крепление арматуры по углам. Здесь нужно быть предельно внимательными и сделать работу максимально качественно, потому как углы фундамента принимают на себя наибольшее концентрированное напряжение. Для армирования фундамента по углам применяют П или Г- образные техники усиления. Как правильно сделать данную работу смотрите ниже.

Для прямых углов:

Для углов больше 160 градусов:

Ну и перекрестия армируются так:

Все на этом работа закончена, удачного вам строительства.

Видео:

Армирование ленточного фундамента – основа прочности здания

Правильно построенный фундамент – гарантия прочного, сухого, теплого дома. Из разновидностей фундаментов ленточный средний по затратам материалов и трудоемкости. Использованный арматурный каркас делает из бетонной ленты жесткую раму, выдерживающую значительные нагрузки от стен, перекрытий, кровли, внутреннего наполнения дома.

Для чего нужно армировать ленточный фундамент?

Особенностью мелкозаглубленного облегченного ленточного фундамента является обязательность его армирования. Известно, что бетонные изделия очень прочные на сжатие, менее прочные на сдвиг, и малопрочные на изгиб и разрыв. Компенсируют такие недостатки бетона традиционным способом – созданием композитного материала, в котором одно вещество прекрасно работает на сжатие, а другое – на разрыв. Хорошо сжимаемое вещество дополняют волокнами или стержнями из материала плохо рвущегося и получают новый материал, свойства которого расчетом можно изменять в больших пределах.

Поэтому тонкий слой бетона, известного людям уже более 3 тыс. лет только в XIX веке придумали упрочнить стальной сеткой. Хотя строители знали, что хорошо разрывающаяся глина прекрасно армируется прочной на разрыв соломой.

В случаях, когда на участке неоднородные грунты, армирование ленточного фундамента обеспечит жесткость его рамной конструкции, берущей на себя всю нагрузку от здания и равномерно ее распределяющую.

Общая высота ленточного фундамента обычно от 0,7 – 0,8 м до 1,5 м при ширине от 0,3 до 0,5 м. При длине стены здания от 7 – 10 м такая полоса бетона рассматривается как бетонная балка. Она будет работать на прогиб, когда ее края нагрузить значительно больше, чем середину или наоборот. Т. е. бетон будет нагружен изгибающими усилиями. Защитить балку от разрушения можно поместив в ее толщу в верхней и нижней части продольные стальные или композитные стержни с регулярной профилировкой поверхности. Они за счет профилировки воспримут на себя разрывающие усилия и не дадут растрескаться бетону.

Особенности конструкции армирующего каркаса

Ленточный фундамент фактически состоит из монолитных длинных балок, работающих на изгиб при неравномерных нагрузках сверху от элементов здания и неравномерных просадок снизу от разной плотности грунта.

Поэтому и армируются они в двух зонах балки:

  • сверху, под защитным слоем из бетона – от нагрузок на концах балки, когда середина находится на опоре;
  • снизу, чуть выше нижнего защитного слоя – при нагрузке на середину полосы ленты и опорах под углами здания.

В схеме армирования ленточного фундамента несколько продольных стержней нижнего ряда удерживаются на определенном расстоянии от слоя стержней верхнего ряда вертикальными поперечными стержнями, идущими с шагом от 300 до 500 – 700 мм.

По ширине продольные пруты арматуры удерживаются горизонтальными поперечными стержнями, расположенными с тем же шагом, что и вертикальные.

Поперечные стержни арматуры предназначены:

  • воспринимать поперечные усилия, прилагаемые к балке;
  • ограничивать увеличение образовавшихся трещин;
  • удерживать положение продольных стержней по требованиям чертежа;
  • удерживать стержни от выпучивания в любую сторону.

Стержни связываются проволокой или свариваются в объемный каркас. Его высота и ширина меньше на удвоенную толщину защитного слоя бетона.

Основные функции защитного слоя бетона:

  • сохранение арматуры от внешнего, в т. ч. и агрессивного воздействия, в основном, воды или водяного пара;
  • передача нагрузок от бетона на арматуру;
  • обеспечение анкеровки, т. е. «зацепляемости» арматуры в толще бетона;
  • обеспечение стыка элементов арматуры;
  • обеспечение стойкости арматуры в пламени пожара.

Обычно толщина защитного слоя от 25 – 30 мм до 50 – 60 мм.

Требования к арматуре для ленточного фундамента

В качестве продольной арматуры для мелкозаглубленных фундаментов используют стальную или композитную арматуру с профилированной поверхностью. Профили на стержнях обеспечивают передачу большей нагрузки от изгибающегося бетона на арматурный стержень, чем при гладкой поверхности стержня.

Обычно используют стержни диаметром от 10 до 16 – 18 мм.

Для поперечного армирования обычно берут гладкие стержни диаметром 6 – 8 мм.

Количество стержней, их диаметр, шаг арматуры при установке, толщину защитного слоя, способы и конструкции для армирования углов фундамента и мест пересечения с внутренними несущими стенами должен рассчитывать профессиональный строитель, имеющий высшее образование и практику в этом деле. Он же и отразит принятые решения в чертежах ленточного фундамента, в т. ч. и разработает схему армирования ленточного фундамента.

В СНиП 52-01-2003 по бетонным и железобетонным конструкциям в п. 5.3 изложены требования к арматуре как стальной, так и композитной.

Стальная арматура может быть гладкая и профилированная, горячекатаная, профилированная упрочненная термомеханически, холоднодеформированная, т. е. упрочненная механически без нагревания.

Правильное армирование углов ленточного фундамента

Угловые участки ленточного фундамента – зоны концентрации разнородных напряжений. Две сходящиеся под углом «балки» монолитной конструкции могут иметь в этой зоне нагрузки противоположного направления. Кроме того может быть разная по величине нагрузка от разных стен. На угол могут действовать напряжения растяжения от одной стены и сжатия от другой. Разнородные напряжения должна выдерживать каркасная конструкция угла. Для этого должно быть обеспечено сопряжение каркасов.

Поэтому армирование производится усилением арматурного каркаса как минимум в 2 раза. Для этого поступают следующим образом:

  • арматурный продольный стержень первого каркаса, являющийся внутренним по отношению к наружной части фундамента пропускается вперед и загибается под прямым углом, так, чтобы отогнутая длина была не менее 50 диаметров стержня;
  • стержень передвигается, пока он не примкнет к наружному стержню перпендикулярного второго арматурного каркаса, образуется первый нахлест;
  • наружный стержень перпендикулярного второго каркаса тоже сгибается и подводится к наружному стержню первого каркаса, образуется второй нахлест;
  • внутренний стержень второго каркаса сгибается, сгиб передвигается к наружному стержню первого каркаса и прикладывается ко второму нахлесту;
  • первый и второй нахлесты и перекрест внутренних стержней перевязываются проволокой или свариваются, обвязываются (свариваются) и вертикальные и горизонтальные поперечные стержни.

Как вариант – наружные стержни не сгибаются, а гнется кусок арматуры в виде Г-образного хомута, оба конца которого перевязываются с обоими наружными стержнями.

Для стыковки балок для несущих внутренних стен с наружными балками вязку делают так, как указано на рисунках.

Идея та же, что и при армировании в углах – перевязка или сварка внутренних стержней с наружными или с добавочными элементами в виде Г- или П-образных элементов или петель из арматуры. Ни в коем случае не делать простое пересечение стержней.

Этапы строительства ленточного армированного фундамента

Этапы строительства такие:

  • Выкапывание котлована или траншей. Глубина должна учитывать глубину тела фундамента и противопучинистой подушки.
  • Разметка. (см. статью «Как разметить ленточный фундамент своими руками»).
  • Засыпать в траншею песчаную подушку и утрамбовать ее, потом – щебневую.
  • Установить и закрепить щиты опалубки. Уложить на дно и стены слой гидроизоляции в виде полиэтиленовой пленки.
  • Связать и подготовить продольные куски арматурных каркасов. Установить их в опалубку и проверить равенство расстояний от опалубки до каркаса с обеих сторон. В качестве дистанционных элементов использовать заранее заготовленные бруски из бетона или специальные пластиковые стойки-«стульчики». Те же расстояния обеспечить и в нижней части каркаса. Куски кирпича не использовать.
  • Правильно связать угловые части каркасов и места пересечения с несущими стенами.
  • Проверить установку каркасов – защитные расстояния, высоту, горизонтальность, правильность и полноту увязки, и другие требования, изложенные в чертеже фундамента.
  • Залить бетонный раствор одним заходом и тщательно провибрировать его. Выждать 10 – 15 дней и можно снимать опалубку.
  • Основа дома будет готова на 10 – 15 день после заливки, ее можно понемногу нагружать строительством стен. Полная готовность будет на 28 – 30 день после окончания бетонирования.

Основные ошибки при армировании

Ошибок делается много и разных, но главные из них такие:

  1. Для арматурного каркаса не делается защитный слой бетона или делается недостаточной толщины. Как дистанционные прокладки используются куски керамического или даже силикатного кирпича, хорошо пропускающие воду.
  2. Не используется пленка для предотвращения вытекания жидкого цементного «молочка» через деревянную опалубку. Или большие щели в опалубке – через них тоже течет.
  3. Нет гидроизоляции между подошвой и стенками ленточного фундамента – при высокой водопроницаемости бетона коррозия его разрушит за 10 – 15 лет, в т. ч. его будет «рвать» ржавеющая арматура.
  4. Песчано-щебневая смесь под подошвой имеет крупный щебень и не закрыта сверху гидроизоляцией от бетона.
  5. Бетон при заливке подается порциями через день или реже – получают две или три балки с независимым армированием. Интервалы – не более 1,5 – 2 часов.
  6. Укладка стержней в углах с обычным поворотом

наружных и внутренних стержней или, что еще хуже с их простым перекрещиванием.

Как армировать ленточный фундамент для газобетонного дома

Правильное армирование ленточного фундамента залог его жесткости и долговечности. Помимо самого арматурного каркаса, на долговечность фундамента влияет пучинисость грунта, правильная песчано-щебневая подушка, марка бетона и другие аспекты.

Из данной статьи вы узнаете конкретно про особенности создания каркаса из арматуры. О других важных элементах ленточного малозаглубленного фундамента вы можете узнать в нашей предыдущей статье по ссылке..

  1. Минимальное сечение продольной арматуры в фундаменте должно составлять 0.1% от сечения фундамента.
  2. Определить количество и диаметр арматуры можно по таблице. 
  3. Основную нагрузку воспринимает продольная арматура.
  4. Продольную арматуру нужно использовать от 12 до 16 мм.
  5. Максимальное расстояние между рабочими стержнями продольной арматуры – 40 см.
  6. Расстояние между (рамками) – 30-40 см, на углах по 20 см.
  7. Рамки изготавливаются из арматуры 6-8 диаметра.
  8. Весь каркас связывается вязальной проволокой.
  9. Нахлест продольных прутков арматуры — 50 диаметров.
  10. Для фундаментной ленты высотой более 70 см, должен добавляться конструктивный ряд продольной арматуры диаметром 8 мм. 
  11. Расстояние между рядами конструктивной продольной арматуры должно быть менее 40 см.
  12. Диаметр поперечной арматуры должен быть не менее ¼ от диаметра рабочей продольной арматуры, но не менее 6 мм.
  13. Углы фундамента должны быть усилены дополнительными г-хомутами и загибами, смотрите схемы армирования углов.
  14. Защитный слой бетона должен составлять 5 см со всех сторон.
  15. Перед установкой каркаса в траншею, постелите снизу пленку, она будет служить дополнительной гидроизоляцией.
  16. Если у вас проблемные грунты под фундаментом, то для большей жесткости, рекомендуется армировать ленту шестью рабочими прутками продольной арматуры, или увеличить их диаметр.
  17. Если ширина основания составляет более 50 см, то лучше использовать схему армирования шестью прутами.
  18. Чем выше марка бетона, тем лучше защищена арматура от воды.
  19. Рекомендуется заливать ленту бетоном класса B20-B25, что соответствует марке М250-М350.
  20. Бетон должен заливаться за один раз, монолитно, промежуток между заливками не должен превышать двух часов.

Схемы армирования углов фундамента

Неправильные варианты армирования углов

Стоит отметить, что ленточный малозаглубленный фундамент обязательно нужно утеплять, также обязательно наличие утепленной отмостки, которая будет уменьшать глубину промерзания и отводить воду от подушки фундамента. Ведь самые главные враги фундамента – мороз и вода. Распирающая сила морозного пучения не должна деформировать фундамент, так как это приведет к раскрытию трещин в газобетонных стенах.

чертежи и схемы, технология по шагам, ошибки

Процессы, происходящие в грунте, например, морозное пучение, растягивают ленточный монолитный фундамент в разные стороны. Бетон без армирования не выдерживает такие нагрузки, так как он удлиняется без разрыва только на 0,2‒0,4 мм. Сталь растягивается на 4‒25 мм без ущерба, поэтому железобетонная конструкция гораздо прочнее. Для качественной работы этой системы важно рассчитать схему и правильно выполнить армировку. Сделать это можно самостоятельно, главное — не нарушать требований инструкции.

Оглавление:

  1. Инструкция по армированию
  2. Рекомендации специалистов
  3. Распространенные ошибки

Пошаговое руководство по армированию

1. Рисуют чертеж.

Перед расчетом материалов составляют схему, которая соответствует строительным нормам. Арматура для фундамента делится на рабочую и конструкционную. Первая группа работает на растяжение, а вторая сохраняет форму каркаса во время заливки.

Для мелкозаглубленного ленточного фундамента хватит двух рядов продольной рабочей арматуры вверху и внизу, в середине вставляют для прочности при бетонировании. Заглубленную ленту армируют равномерно, максимальное расстояние между продольными стержнями — 40 см. В обоих случаях основная роль вертикального армирования — поддержка каркаса, поэтому для него выбирают пруты с меньшим диаметром. Если высота ленты двухэтажного дома больше 70 см, для прочности связывают бетонную подготовку и фундамент.

Минимальные расстояния между элементами:

  • Между вертикальными прутьями — не более 50 см.
  • Защитный слой бетона — 3‒5 см, если под основанием есть бетонная подготовка; 7 см, когда ее нет.
  • Расстояние между продольной арматурой — не менее 3‒6 см, в зависимости от количества стержней в ряду, и не более 20 см.

Углы и места соединения внешней и внутренней ленты испытывают большие нагрузки. Внимательно изучите чертежи и схемы армирования ленточного фундамента. Для углов используют П- и Г-образные схемы. Чтобы их выполнить, стержни предварительно сгибают, так как вязка отдельных элементов в этих местах приводит к расслаиванию бетона и сколам. Поперечную арматуру в таких зонах ставят в 2 раза чаще.

2. Выбирают и рассчитывают материалы.

Чаще всего используют класс A-III (А400‒А500) ребристой арматуры с диаметром 6‒16 мм, так как она лучше схватывается с бетоном. Для вертикальных хомутов в ленточном фундаменте иногда берут гладкие A-I‒A-II. Диаметр зависит от веса и конструкции фундамента, ниже приведены минимальные размеры сечений для каждой цели. Если вы делаете схему армирования тяжелого строения, поручите выполнение расчетов проектировщикам. Правильно рассчитать нагрузки и выбрать оптимальный диаметр и количество стержней самостоятельно сложно.

Вид арматурыМинимальный диаметр, мм
Продольная до 3 м10
Продольная больше 3 м12
Поперечная до 0,8 м6
Поперечная больше 0,8 м8

3. Очищают поверхность основания от лишнего мусора, размечают месторасположение каркаса.

4. Сгибают стержни для хомутов и углов.

Нет единой последовательности укладки арматуры, выбор зависит от площади и количества работников. Для небольших оснований элементы сначала связывают, а потом частями размещают их в траншее. Но так устанавливать каркас своими силами тяжело, особенно если предстоит выполнить армирование ленточного фундамента большой площади. Поэтому дальше мы разберем порядок укладки, который часто используют небольшие строительные бригады.

5. Устанавливают хомуты на бетонные подставки или фиксаторы-лягушки. Чтобы каркас не смещался, через него пропускают туго натянутую веревку или привязывают каждый элемент к опалубке.

6. В конструкцию вставляют продольные стержни и фиксируют их на лягушках.

7. Выполняют армирование углов, если для этого используют дополнительные элементы.

8. Вяжут или спаивают всю конструкцию. Подробнее о способах соединения — в разделе рекомендации.

9. Устанавливают фиксаторы между стенками опалубки и арматурой.

10. Проверяют прочность и отклонения от осей, чтобы ленточный фундамент не покосился со временем.

Нюансы работ

1. Расчет материалов армирования.

Предусмотрите, чтобы арматуры хватило на нахлест (30‒50 мм). Стандартная длина стержня 11,7 м. Не заказывайте обрезки, так как трудоемкость работы повысится, а рассчитать нужное количество будет невозможно, ведь арматуру продают в килограммах.

2. Соединение.

Стержни спаивают, вяжут или скрепляют муфтами. Лучше вязать элементы армировки, а не паять, так как прочность каркаса падает, особенно если оставить его без бетона во влажную погоду. Чтобы сократить расход арматуры для ленточного фундамента, применяют муфты, так как для пайки рекомендуется соединять пруты с нахлестом 10‒15 см, в зависимости от диаметра. Если их вяжут, длина места скрепления составляет 10 диаметров для марок бетона от М300 и 15 — для М200.

Вязать можно с помощью крючка, специального пистолета и шуруповерта или дрели с насадкой из гвоздя. ПроцСхема усиления ленточного основанияесс ручной вязки крючком занимает много времени.

3. Сгибание стержней.

В продаже есть станки, чтобы согнуть арматуру, но они стоят дорого, поэтому мастера придумали разные способы для изготовления хомутов самому. Например, приваривают два уголка к ровной вертикальной поверхности, вставляют туда прут и гнут, надевая на него трубу. Арматуру с диаметром 6‒8 мм осилят тиски. Если у вас есть смекалка, реализовать идею с двумя параллельными уголками будет легко. Главное, чтобы все углы были прямые, а стороны хомутов находились в одной плоскости, иначе ленточное основание не будет надежным.

4. Подготовка элементов армировки.

Стержни слегка намачивают за пару дней до заливки, чтобы увеличить сцепление стали с бетоном, но перед этим обязательно удаляют отслоившуюся ржавчину металлической щеткой.

Возможные ошибки

Когда люди без опыта армируют конструкцию своими руками, часто они не смотрят руководство и совершают типичные просчеты, это приводит к печальному результату.

ОшибкаПочему нельзя
Нагревать стержни перед сгибом.Армирование получается непрочным.
Паять арматуры без литеры «С».Каркас не выдержит высоких температур и быстрее разрушается.
Вставлять поперечную арматуру в песчано-грунтовую подушку.Сталь быстро ржавеет в таком положении.
Использовать в армировании одни обрезки.Каркас не будет функционировать. Максимальная доля соединений в конструкции — 50 %.
Соединять параллельные стержни без разбежки.Такая арматура не будет работать. Минимальная длина между скреплениями соседних стержней — 61 см.
Не загибать на углах.Бетон быстро отслоится от этих мест, так как нагрузка на них выше.
Заливать кривой армокаркас.Ленточный фундамент тоже со временем покосится.

Чтобы железобетон работал, обязательно выполнять армирование монолитного фундамента по правильно составленному чертежу. Это важно для ленточного мелкозаглубленного основания, так как она находится в зоне постоянного движения грунта.

Если вы выполняете армирование своими руками, внимательно следуйте инструкции, даже если вам помогают специально нанятые работники. Контролируйте процесс, так как иногда компании нанимают людей, которые не знают элементарные стандарты строительства или просто халтурят.

Статья о правильном армировании ленточного фундамента своими руками

К рассмотрению предлагаем монолитный ленточный фундамент, т.к. сборный менее распространен.

Основные ошибки армирования ленточного фундамента.

Фундамент в процессе эксплуатации подвергается различным нагрузкам от веса самого дома, от движения грунтов и от морозного пучения. При давлении дома нижняя часть испытывает нагрузку на растяжения, верхняя на сжатие. Так же необходимо помнить о силах морозного пучения, подъемная сила которых может превысить вес дома и вызвать растяжение в верхней части ленточного фундамента. Неправильное армирование ленточного фундамента может привести к его разрушению, и, как следствие, разрушению стен и всего здания. Поэтому к армированию ленточного фундамента надо подойти очень серьезно, фундамент — основа всего здания. В этой статье мы приведём подробные чертежи и схемы армирования ленточного фундамента.

Чертёж 1. Нагрузки действующий не фундамент дома

Основную нагрузку на сжатие воспринимает бетон, а на растяжение арматура. Поэтому необходимо армировать нижнюю и верхнюю части фундамента. Армирование средней части фундамента смысла не имеет, так как он почти не испытывает нагрузок.

Чертёж. 2  Схема армирования каркаса ленточного фундамент; 1 — продольные стержни, 2 — хомуты

Продольная арматура, воспринимает основные нагрузки, она укладывается в нижней и верхней части фундамента. Для продольных стержней используется горячекатаная стержневая арматура класса А3. Если высота фундамента больше 150 мм, то необходимо установить вертикальную и поперечную арматуру. Для нее обычно используется горячекатаная стержневая  гладкая арматура класса А1 диаметром 6-8мм. Поперечное и вертикальное армирование лучше выполнить единим хомутом, который свяжет армирование в единый каркас. Продольная арматура должна быть расположена внутри каркаса. Связка арматуры в единый каркас ограничивает распространение трещин в бетоне и закрепляет арматурные стержни в нужном положении. Расстояния между прутами продольного армирования и шаг поперечного армирования ленточного фундамента определяется СНиП 52-01-2003:

7.3.4 Минимальное расстояние между стержнями арматуры в свету следует принимать в зависимости от диаметра арматуры, размера крупного заполнителя бетона, расположения арматуры в элементе по отношению к направлению бетонирования, способа укладки и уплотнения бетона.
Расстояние между стержнями арматуры следует принимать не менее диаметра арматуры и не менее25 мм.
Продольная арматура
7.3.6 Расстояние между стержнями продольной рабочей арматуры следует принимать с учетом типа железобетонного элемента (колонны, балки, плиты, стены), ширины и высоты сечения элемента и не более величины, обеспечивающей эффективное вовлечение в работу бетона, равномерное распределение напряжений и деформаций по ширине сечения элемента, а также ограничение ширины раскрытия трещин между стержнями арматуры. При этом расстояние между стержнями продольной рабочей арматуры следует принимать не более двукратной высоты сечения элемента и не более400 мм, а в линейных внецентренно сжатых элементах в направлении плоскости изгиба — не более500 мм.
Поперечное армирование
 7.3.7 В железобетонных элементах, в которых поперечная сила по расчету не может быть воспринята только бетоном, следует устанавливать поперечную арматуру с шагом не более величины, обеспечивающей включение в работу поперечной арматуры при образовании и развитии наклонных трещин. При этом шаг поперечной арматуры следует принимать не более половины рабочей высоты сечения элемента и не более300 мм.

Для соединения арматуры не рекомендуется использовать сварку, так как при высокой температуре свойства металла ухудшаются. Сваривать допускается только арматуру, которая в своей маркировке имеет букву «С», например А500С. Все другие марки арматуры связываются между собой при помощи вязальной проволоки.

Чертёж 3.  Схема армирования ленточного фундамента, связка арматуры

Так же при армировании ленточного фундамента надо помнить, что арматура не должна соприкасаться с грунтом и опалубкой, чтобы не допустить ее ржавления. Защитный слой для фундамента должен быть 50-80мм.

Следует уделить повышенное внимание армированию углов примыканий ленты фундамента, ведь угол железобетонной конструкции испытывает концентрированное напряжение. Для армирования углов и перекрестий требуется гнуть из арматуры класса А3 специальные углы. Нельзя армировать углы железобетонных лент простым перекрестием. При таком армировании фундамент будет представлять собой не единую жесткую раму, а набор отдельных не связанных друг с другом балок.

В народном строительстве родилась и прочно закрепилась недопустимая форма армирования углов и стыков лент фундамента при помощи простых связанных перекрестий. На рисунке ниже нарисованны чертежи армирования углового премыкания каркаса. Сверху — неправильный вариант (продольная арматура просто перекрещивается, дополнительных усилений, нет дополнительной поперечной и вертикальной арматуры). Снизу — изображен правильный вариант армирования.

Чертёж. 4  Неправильное армирование углов фундамента

Чертёж. 5  Схема армровния углов фундамента

При армировании премыканий лент фундамента («Т» образных перекрестий) так же не допускается простых перекрестий, требуются дополнительные усиления (рис 6-7).

На чертеже стыки продольной арматуры (1) выполнены «перекрестиями», без дополнительных усилений. В зоне перекрестия нет дополнительных хомутов.

Чертёж. 6 Неправильная схема армирования примыканий каркасов

Чертёж. 7 Правильная схема армирования примыканий каркасов

Для украшения дома часто используют эркер — выступающая из плоскости фасада часть помещения. В каркесе фундамента под эркер сгибается тупой угол. При армировании тупых углов лент надо внутреннюю продольную арматуру пропускать через каркас и подвязывать к наружной, ставить дополнительное «Г» — образное усиление и дополнительные поперечные хомуты (рис 8).

Чертёж. 8 Армирование тупого угла фундамента. Слева — неправильное, Справа — правильное

Наверное, каждый, кто сталкивался с заливкой фундамента, видел неправильные схемы армирования стыков каркаса. На строительных форумах много мастеров и советчиков. Люди не сведующие в строительстве строят так свои дома, есть даже фотографии с примерами такого армирования. Но все эти советы не соответствуют строительным нормам. Неизвестно сколько простоит такое здание, так как такое  «армирование» со временем приводит к отколам слоев фундамента по ширине и образованием трещин у углов.

Общий смысл правильного армирования угла – это обеспечение жесткой связи лент фундамента. Для этого требуется связать арматуру в единый каркас, при помощи хомутов. В местах стыка арматуры и на углах устанавливаются дополнительные П-образные или Г-образные усиления. Поперечное и вертикальное армирование (хомуты) для ленты фундамента рекомендуется ставить не реже 3/8 от высоты сечения фундамента, но не реже 25 см.  В зоне угловой анкеровки арматуры хомуты ставится в два раза чаще, чем для средней части ленты.

P.S. Фундамент — основа Вашего дома. Существует множество факторов, таких как конфигурация здания, грунты, технология стоительства стен, этажность, тип перекрытий и пр., которые необходимо учитывать при выборе типа фундамента и его конфигурации. Настоятельно рекомендуем перед началом строительства проконсультироваться со специалистами! Если вы планируете строительство дома по технологии несъёмной опалубки Техноблок, обратитесь к нам до начала строительства. Мы поможем Вам не допустить ошибок, разработаем конфигурацию фундамента, сделаем проект, проведём контроль качества на всех этапах строительства и всё это совершенно бесплатно!

Статья выполненна специалистами компании «ТЕХНОБЛОК».


Ступенчатых железобетонных фундаментов в Revit | Поиск

В материалах Revit вы можете найти обширный набор предустановленных семейств Structural Families. В Metric UK Library вы можете найти папку Structural Foundations , которая содержит ряд различных типов фундаментов: подушечный, ленточный, свайный и т. Д.

Недавно мой коллега спросил меня: « Хорошо, Томек, у меня есть все эти семейства в этой папке, и это нормально, но как насчет опорной плиты, которая является ступенчатой? Я не могу найти такое семейство в папке, как мне смоделировать его в Revit? »

Фундаменты с подкладкой используются для поддержки отдельной точечной нагрузки, например, несущей колонны.Они могут быть круглыми, квадратными или прямоугольными. Обычно они состоят из блока одинаковой толщины, но они могут быть ступенчатыми, или изогнутыми, если они необходимы для распределения нагрузки на конструкцию от тяжелой колонны. Фундаменты с подушками обычно неглубокие, но можно использовать и глубокие фундаменты с подушками.

Мой коллега был прав. Папка состоит из семейства Footing-Rectangular.rfa , которое не является ступенчатым, но это семейство может быть легко изменено любым пользователем Revit и сохранено как Stepped Footing-Rectangular.rfa и используется в будущих проектах.

Семейства

являются неотъемлемой частью работы в Revit и ключом к созданию настраиваемого содержимого. Создание собственных семейств — отличный способ создать библиотеку пользовательского контента.

На следующем этапе я хотел бы показать вам, как создать ступенчатую опорную основу.

Вместо того, чтобы начинать с нуля, я собираюсь использовать существующее семейство Footing-Rectangular.rfa в качестве отправной точки.

1. Отредактируйте семейство и откройте редактор семейства .Редактор семейств — это инструмент для создания новых семейств или внесения изменений в существующие семейства.

2. Перейдите на Уровень и создайте дополнительные опорные плоскости. Базовые плоскости придают нашей семье структуру, и мы будем использовать новые для создания нового фундаментного блока.

3. Добавьте размеры к каждой группе опорных плоскостей. Два вертикальных и два горизонтальных. Должна быть общая и непрерывная струна, включая центральную линию в каждом направлении.

4. Выберите каждую из непрерывных строк и включите Equality .

5. Выберите новый общий горизонтальный размер. На ленте рядом с раскрывающимся списком Label щелкните небольшой параметр Create Parameter.

6. В появившемся диалоговом окне «Parameter Properties» назовите новый параметр: Width 2 , выберите радио-кнопку Type и нажмите OK.

7.Повторите это для вертикального габаритного размера и назовите новый параметр: Длина 2 .

8. Имея хорошую основу, пора добавить в Семейство прочную форму. На вкладке Create нажмите Extrusion.

9. На Modify | Вкладка «Создание выдавливания», на панели « Draw », щелкните «Прямоугольник » «Привязать к пересечению двух опорных плоскостей» для первого угла, а затем «привязать» к противоположному пересечению для другого угла.

10. Пришло время проверить то, что мы уже сделали. Когда вы тестируете свою гибкую семью, она называется « изгибает ». На ленте щелкните Типы семейств .

11. Введите разные значения для всех полей «Ширина», «Ширина 2», «Глубина» и «Глубина 2», а затем нажмите кнопку «Применить». Расположение базовых плоскостей должно корректироваться, но оставаться на одинаковом расстоянии от центра. Соответственно должна обновиться геометрия блока.

12. Теперь пора позаботиться о высоте фундамента. На виде Front установите флажок. Перетащите ручку треугольной формы внизу. Зафиксируйте верхнюю часть новой коробки с нижней частью существующей.

13. Добавьте новое измерение.

14. Назначьте параметры вновь созданному размеру ( Толщина основания 2 ).

15. Перейдите к 3D виду и снова согните его. На ленте щелкните Типы семейств Щелкните Удалить тип , чтобы удалить один из существующих типов.Щелкните Rename Type и назовите его: Foundation 1 , а затем щелкните OK. Настройте параметры для проверки своих семей.

16. Если все работает правильно, пора назначить параметр материала. Выберите блок и нажмите кнопку Associate Family Parameter , затем выберите параметр Structural Material и нажмите OK.

17. Теперь вы можете сохранить свою семью как Stepped- Footing-Rectangular.rfa и загрузите в свой проект.

18. Остальное — детализация арматуры.

Подробнее: http://blogs.autodesk.com/bim-and-beam/2017/01/12/stepped-foundations-in-revit/

Что такое фундамент здания — Полное руководство (2021)

Фундамент — это основа любой строительной конструкции. Фундамент передает нагрузку от конструкции на почву, а также обеспечивает сопротивление нагрузкам от земли.Создание фундамента — важный процесс. Давайте подробнее рассмотрим фундамент здания. К тому времени, когда вы дочитаете эту статью, вы будете иметь хорошее представление о различных аспектах, связанных с основанием строительной конструкции.

ВИДЫ ФУНДАМЕНТОВ

1) Фундамент мелкого заложения

2) Фундамент глубокий

Слова «мелкий» и «глубокий» просто обозначают глубину выемки грунта для формирования фундамента.

Фундамент мелкого заложения

Неглубокие фундаменты обычно делаются на глубину от 3 футов до 5 футов (1–1,5 м).

Фундаменты мелкого заложения также называются «Открытые фундаменты» или «Раздвижные фундаменты». Причина в том, что на ранних этапах работы вся основа полностью видна глазам. Для устройства фундамента сначала выкапывается грунт до основания фундамента, а затем сооружаются фундаменты.

Идея заключается в том, что каждая опора несет сосредоточенную нагрузку от колонн, а затем распределяет ее по очень большой площади.Это гарантирует, что определенный вес почвы не превышает допустимую несущую способность почвы.

Типы неглубоких фундаментов:
  • Индивидуальные опоры
  • Комбинированные опоры
  • Ленточная опора
  • Фундаменты на плотах

Индивидуальные опоры

Индивидуальные опоры — один из самых простых и привычных видов оснований. Они используются в случае, если нагрузку на здание несут колонны.Как правило, каждая колонна имеет свою опору. Основание — это просто квадратная или прямоугольная бетонная площадка, на которой стоит колонна.

Чтобы получить оценку размеров основания, инженер возьмет всю нагрузку на колонну и разделит ее на безопасную несущую способность (SBC) почвы. Например, в случае колонны с вертикальной нагрузкой 10 тонн и SBC грунта = 10 тонн / м2 площадь основания будет 1 м2. На практике проектировщик проверяет несколько других факторов, прежде чем подготовить проект строительства фундамента.

Комбинированные опоры

Комбинированная опора создается, когда две или более колонны расположены достаточно близко и их изолированные опоры перекрывают друг друга. Это смесь изолированных опор, но их конструкция отличается.

Форма этой опоры может быть прямоугольной и используется, когда нагрузки от конструкции воспринимаются колоннами.

Ленточная опора

Ленточные опоры обычно используются в несущих каменных конструкциях. Они действуют как удлиненная полоса, которая выдерживает нагрузку на всю стену.Они используются, когда строительные нагрузки полностью переносятся стенами, а не изолированными колоннами, как в старых зданиях из кирпича.

Плотные фундаменты

Плотные фундаменты, также иногда называемые матами, чаще всего используются при строительстве фундаментов. В фундаменте на плоту вся плита цокольного этажа становится фундаментом; нагрузка на здание распределяется равномерно по всей площади здания. Его называют плотом, потому что здание представляет собой своего рода судно, которое «плывет» в море почвы.

Фундаменты из матов

используются там, где почва слабая или рыхлая, и поэтому строительные нагрузки должны распределяться по большей площади или там, где колонны расположены близко друг к другу. Следовательно, если будут использоваться отдельные опоры, они будут касаться друг друга.

Глубокие фундаменты

Глубокие фундаменты обычно закладываются на глубине от 10 до 200 футов (3–65 м).

Свая, которая по сути представляет собой удлиненный цилиндр из прочного и прочного материала, такого как бетон, вдавливается в землю, чтобы на нее можно было опираться строительной конструкции.

Использование свайных фундаментов рассматривается в следующих случаях: —

(a) Когда на поверхности имеется слой рыхлой почвы, который не может выдержать вес здания. Нагрузки от здания должны преодолевать этот слабый слой и передаваться на более прочный слой почвы или породы под ним.

(b) Когда здание испытывает очень тяжелые сосредоточенные нагрузки, например, высотное здание.

Критерии выбора для фундамента

Критерии выбора фундамента для зданий зависят от двух факторов: i.е. факторы, связанные с условиями грунта (грунта) и факторы, связанные с нагрузками от конструкции. Характеристики фундамента зависят от взаимодействия нагрузок со стороны конструкции и, следовательно, от опорного грунта или пластов.

Природа и условия каждого из них различаются. Поэтому выбор подходящего основания для этих вариаций становится необходимым в зависимости от обстоятельств.

Критерии выбора фундамента для зданий
  1. Нагрузки на конструкцию

Условия нагрузки, исходящие от конструкции и связанные с ней, являются одним из многих факторов, определяющих выбор фундамента.На нее влияют тип здания и строительный материал, факторы окружающей среды и сейсмическая восприимчивость.

Выбор строительного материала, такого как кирпич, камень, сталь и бетон, влияет на выбор фундамента. Расчет осадки фундамента — еще один фактор, связанный с нагрузками от конструкции, который влияет на выбор фундамента.

Неглубокий фундамент предпочтителен в случае малоэтажных домов. Однако для многоэтажек требуется глубокий фундамент.Фундаменты глубокие, потому что почвы на больших глубинах сильно уплотнены.

  1. Несущая способность почвы (SBC)

Несущая способность грунта — один из важнейших критериев, влияющих на выбор правильного типа фундамента. Часто принимаются решения о выборе мелкого или глубокого фундамента в зависимости от нагрузки на грунт.

Допустимое опорное давление минимум 100 кН / м² или выше эффективно для фундаментов мелкого заложения высотой до 4 этажей.Тем не менее, для высотных конструкций можно выбрать плотный фундамент, учитывая, что при расчетах нельзя превышать модуль реакции грунтового основания.

  1. Типы грунтов

Существуют разные типы почв, такие как песчаная почва, рыхлая почва, глинистая почва и обширная почва. Глубина 3 м от поверхности называется верхним слоем почвы. После глубины 3 м начинается подпочва. Несущая способность верхнего и нижнего слоев почвы в значительной степени влияет на выбор фундамента.

Для почвы с низкой несущей способностью следует выбирать более прочный и подходящий фундамент по сравнению с почвой с высокой несущей способностью. Несущая способность — это способность грунта надежно выдерживать структурные нагрузки без разрушения при сдвиге и недопустимой осадки.

Фундамент — это та конструктивная часть здания, которая находится ниже уровня цоколя. Находясь в прямом контакте с почвой, нагрузка надстройки передается на землю.

3.1 Глиняная почва

Глиняный грунт обладает большой способностью удерживать воду, поэтому такие грунты сильно расширяются и сжимаются. В этом типе фундамента фундаментная конструкция может пострадать от сильной осадки и подъемного давления. Так что глинистая почва нежелательна. Применимые нормы, такие как Британский стандарт, рекомендуют минимальную глубину 1 м для фундамента и 3 м, если вокруг есть деревья.

Глиняный грунт лучше всего подходит для фундамента из плотного / матового покрытия. В него часто добавляют ребра и балки, чтобы увеличить его жесткость.В случае, если плотный фундамент стоит дорого, приложенные нагрузки велики или прочный слой недоступен на небольшой глубине, тогда можно выбрать просверленную сваю.

В глинистой почве рекомендуется: —

A: Сбор и отвод дождевой воды.

B: Расширение фундамента на глубину, при которой не происходит изменения влажности.

C: Удаление неглубокого и слабого слоя почвы, например черной хлопковой почвы.

D: Строительство, если возможно, в сухой сезон.

E: Равномерное распределение нагрузок на конструкцию.

В случае, когда неглубокий твердый слой почвы покрывает мягкий слой глинистой почвы, всегда рекомендуется закладывать широкий армированный ленточный фундамент. Таким образом снижается влияние нагрузок на слабый слой почвы. Свайные фундаменты рекомендуются для высотных зданий и всякий раз, когда прогнозируется подъем.

3,2 Торфяная почва

Это значительно пористая, легко сжимаемая почва темно-коричневого или черного цвета, которая обычно присутствует вблизи заболоченных территорий.Он подвергается расширению и усадке из-за колебаний влажности и чрезвычайно слаб с точки зрения несущей способности.

Значит, следует удалить прочный слой и ленточный фундамент — хороший вариант для этого грунта. Если толщина торфяного грунта велика и его удаление неэкономично, следует рассмотреть другие типы фундаментов.

Например, бетонные сваи, которые простираются до твердого слоя грунта ниже, подушечка и балочный фундамент превращаются в твердые слои под ними для небольших проектов или фундамент для случая, когда твердые слои недоступны на разумной глубине, но есть корка дорожного покрытия с 3 -4м толщиной подходящей несущей способности.

3,3 Ил

Илистый грунт, хотя и гладкий на ощупь, в большинстве случаев не подходит для строительства фундамента из-за его расширения. Расширение приводит к давлению на фундамент и может повредить его.

илистая почва имеет тенденцию удерживать влагу и не способствует дренажу воды. Если ил или илистая глина жесткие и простираются на большую глубину, рекомендуется использовать изолированные опорные площадки и насыпать железобетон. Глубина фундамента должна быть больше зоны размыва, а также зоны набухания и усадки.

3,4 Песок и гравий

Песок и гравий способствуют хорошему дренажу воды и поэтому не вызывают смещения конструкции. Влажное уплотнение почвы и песка является отличной опорой для конструкции фундамента.

Несущая способность уменьшается вдвое, если гравий погружен в воду. Поэтому важно, чтобы фундамент оставался как можно выше. Также может подойти неглубокий, усиленный, широкий ленточный фундамент.

Песок имеет тенденцию достаточно хорошо удерживаться вместе, когда он влажный, уплотненный и однородный.Но траншеи могут обрушиться, и поэтому шпунт часто используется для удержания грунта в траншеях до тех пор, пока бетон не будет залит.

Если рыхлый песок расширяется на большую глубину, то рекомендуется утрамбовать его и использовать раздвижные опоры. В качестве альтернативы можно выбрать забивную сваю, забивную сваю или забивную сваю без использования энергии уплотнения.

Сухой плотный гравий или гравийно-песчаный грунт подходят для насыпных и ленточных фундаментов. Обычно глубина 700 мм подходит для тех случаев, когда грунт имеет достаточную несущую способность.

  1. Простота конструкции

При выборе типа фундамента следует учитывать удобство его возведения на площадке. Различные типы фондов требуют труда с разным набором навыков, а также с разным уровнем квалификации.

  1. Уровень грунтовых вод

Уровень грунтовых вод — еще один важный критерий, влияющий на выбор фундамента.Фундамент нельзя укладывать на почву, которая подвергается расширению и сжатию из-за колебаний уровня грунтовых вод. Таким образом, он должен быть построен на полностью сухой или влажной почве.

Метод неглубокого или комбинированного фундамента применяется, когда уровень образования фундамента находится ниже уровня грунтовых вод. Изолированная опора также является методом, используемым в такой ситуации.

Это метод, используемый для предотвращения опрокидывающих моментов на начальных этапах строительства, вызванных водой, которая возникает из-за противодействия подъемному давлению.В ситуации, когда описанный выше метод не может быть реализован, считается, что глубокие фундаменты, такие как буронабивные или микросваи, обеспечивают необходимое сопротивление поднятию.

  1. Прилегающая конструкция / водоемы / откосы

Выбор типов фундамента осуществляется с использованием таких параметров, как уклоны, прилегающие конструкции и водоемы. На выбор и решения по безопасности соседнего пласта влияет то, находится ли фундамент соседнего сооружения близко к целевому фундаменту.

Фундамент соседней конструкции контролируется, чтобы он не находился рядом с целевым фундаментом, так как это может повлиять на выбор и помешать процессу. Безопасность прилегающего здания важна, так как от этого зависит выбор типа фундамента. Сложнее, если по соседству старый дом или многоэтажка.

Естественный сток, близость к склону, озеру, близость к реке — это факторы, которые следует учитывать. Здания, расположенные на наклонной территории, используют функции изолированной площадки ПКР под сваями.Категорически нельзя допускать строительство жилых домов на склонах крутизной более 25 градусов.

7. Стихийные бедствия и экстремальные погодные условия

Место, где наблюдались экстремальные погодные условия или серьезные природные явления, исследуется, и при этом будут приняты во внимание определенные параметры и меры предосторожности. В процессе выбора фундамента изучаются прошлые данные или записи. Тем самым создавая базу для процесса отбора.

  1. Экономичный дизайн

Когда существует несколько возможных вариантов фундамента для данного участка проекта, экономический фактор может повлиять на выбор фундамента.Тем не менее, выбор экономичного фундамента не должен ставить под угрозу безопасность, качество изготовления, прочность и долговечность фундамента

.

Глубина фундамента зависит от следующих факторов:

  1. Должна быть доступна соответствующая несущая способность.
  2. Следует контролировать факторы, которые могут вызвать значительные движения, такие как глубина усадки и набухания в случае глинистых почв из-за сезонных изменений.
  3. Глубина промерзания мелкого песка и ила.
  4. Возможные раскопки поблизости.
  5. Глубина залегания грунтовых вод
  6. Минимальная практическая глубина фундамента не должна быть менее 50 см. Для удаления верхнего слоя почвы и перепадов уровня земли.

Следовательно, рекомендуемая глубина фундамента составляет от 1,00 метра до 1,5 метра от первоначального уровня земли.

Подготовка основания под фундамент

Бетонный фундамент следует возводить на твердом ненарушенном грунте, инженерной насыпи или крупном гравии.Следует удалить стоячую воду, грязь, мерзлую землю и прочий мусор. Если грунт земляного полотна некачественный, его следует выкопать и уложить слой гравия толщиной 100 мм. Допуски по уровню для подготовленного земляного полотна не должны превышать + 5мм, -15мм.

Стоящая вода до 25 мм должна вытесняться бетоном, если он не смешивается с водой. Требуется разработать прочное основание земляного полотна для фундамента, чтобы удалить несоответствующие материалы ниже расчетной нижней части фундамента.В случае чрезмерной выемки грунта его можно заполнить конструкционным бетоном.

Опалубка фундамента
  • Для достижения требуемой чистоты поверхности бетона опалубочные материалы устанавливаются выборочно.
  • Стыки между панелями опалубки должным образом загерметизированы, чтобы предотвратить утечку раствора во время заливки и уплотнения бетона.
  • Опалубка измеряется перед заливкой бетона. Он подтвердит верх бетонных уровней, расположение и выравнивание.
  • В случае, когда опалубка выступает над уровнем бетона, уровень отмечается на каркасе мелом или гвоздями.
  • Каркас фундамента подбирается и выбирается с учетом жесткости, устойчивости, позволяющей удерживать вес влажного бетона во время укладки, и соответствующей прочности.
  • Чтобы предотвратить значительную деформацию каркаса в процессе бетонирования, каркас при необходимости усиливают.

Расположение арматурных стержней
  • Армирование фундамента имеет решающее значение для обеспечения устойчивости конструкции и целостности.Очень важно отслеживать и изучать районы, которые подверглись землетрясениям или находятся на плохих грунтах.
  • Стальная арматура в фундаменте состоит из укрепляющих стержней, размещенных поперечно, продольно или в обоих направлениях в направлении основания.
  • Продольная арматура иногда используется для перекрытия небольших траншей и мягких участков или для увеличения прочности в узких выемках.
  • Поперечное усиление фундамента обычно не требуется, если только нагрузка на стену не велика или несущая способность грунта недостаточна.
  • Продольные или поперечные арматурные стержни должны располагаться в центре фундамента с минимальным покрытием 75 мм по бокам и снизу.
  • Армирование фундамента можно установить на кирпичи, стулья, конструкции или другие опорные устройства.
  • Минимальное расстояние между отдельными стержнями должно составлять 150 мм.
  • Следующие элементы должны быть визуально одобрены и проверены после установки арматуры.
  • Минимальный размер арматурного стержня составляет 16 мм.
  • Допуск положения арматурных стержней не должен превышать ± 6 мм.
  • Арматурные стержни должны быть наложены внахлест, чтобы обеспечить полную растягивающую способность стержней в стыке в случае, если они не могут быть установлены на одной длине в соответствии с требованиями.
  • Согласно ACI-318, минимальная длина нахлеста, в 40 раз превышающая диаметр арматурного стержня, требуется для стыков в арматуре.
  • Расстояние между нахлестанными или сращенными стержнями не должно превышать 6 дюймов или восемь диаметров стержня арматуры, в зависимости от того, что меньше.

Бетон для фундаментов
  1. Прочность бетона должна быть не менее 17 МПа. Его необходимо увеличить, если фундамент подвергается агрессивным условиям окружающей среды и землетрясениям.
  2. Бетонное покрытие должно составлять 75 мм для фундамента, непосредственно контактирующего с почвой.
  3. Бетон для опор можно укладывать любым обычным способом, включая прямой желоб, тачки, кран, насос или конвейер.

Снятие опалубки

Время снятия опалубки 12 часов. Опалубку не снимают ранее, чем через 12 часов после завершения отделочных работ по бетону.

Коррекция дефектов поверхности

После снятия опалубки и завершения отверждения каждую бетонную конструкцию необходимо осмотреть на предмет дефектов поверхности. Пункты, которые должны быть проверены, должны быть следующими:

  1. Уровни готового бетона.
  2. Выравнивание готового бетона.
  3. Уровни и выравнивание закладных элементов, таких как анкерные болты.
  4. Допуски уровней и центровок

Обработанная поверхность бетона должна быть проверена на наличие следующих дефектов:

  1. Соты.
  2. Отслаивание и пыление.
  3. Трещины.
  4. Депрессии.
  5. Выпуклости.
  6. Резкие неровности

Ремонт дефектов поверхности фундамента
  1. Взломайте весь бетон с трещинами и трещинами на глубину более 50 мм.Удалите бетон за арматурой в местах, где арматура обнажена.
  2. С корродированной арматуры отдельные окалины ржавчины удаляются проволочной щеткой. Обработайте арматуру антикоррозийным грунтом.
  3. Растушеванные края удаляются по периметру надрезанной области с помощью дисковой шлифовальной машины.
  4. Очистите подготовленную поверхность от пыли и грязи чистой водой. Удалите рыхлую пыль и грязь с подготовленной поверхности чистой водой.
  5. Используйте вымытые вручную заполнители, чтобы аккуратно упаковать в изрезанную область, чтобы гарантировать, что они закреплены с помощью тонкой проволочной сетки.
  6. Используйте надежный каркас с подходящими стяжками для установки герметичного каркаса на подготовленную поверхность.
  7. Убедитесь, что подготовленная поверхность и заполнители достигли состояния насыщенной сухости поверхности (SSD). Используйте ручной насос для раствора через впускные отверстия, чтобы подать чистую воду в опалубку.
  8. При подагре смешивают с достаточным количеством воды с помощью смесительного барабана. Помешивая, убедитесь, что раствор имеет однородную консистенцию.
  9. Используйте впускные отверстия для подачи раствора в опалубку.Процесс затирки начинается с самого нижнего впускного отверстия. Закройте первый порт и нанесите раствор через соседний входной порт, как только заметите, что раствор выходит из соседнего порта. Следуйте последовательности затирки, пока вся опалубка не будет заполнена раствором.
  10. Снимите опалубку и закрепите с помощью влажных мешков-рожков или отвердителя.
  11. При необходимости отшлифовать поверхность до однородного состояния.

Заключение

Создание фундамента — сложный процесс, и соблюдение правильных процессов и методов имеет решающее значение.Недостатки в фундаменте могут привести к серьезным дефектам конструкции, таким как трещины, наклон или даже падение здания. Очень важно найти правильного строительного партнера. В Constructure у нас есть только нужные инструменты и кадры с нужными навыками и опытом. Гарантия — соблюдение правильных техник и практик. Свяжитесь с нами сегодня, если у вас возникнут вопросы и потребности, связанные со строительством.

Разница между ленточным фундаментом и подушечным фундаментом »Engineering Basic

Ленточный и блочный фундамент — это обычно наиболее распространенные типы фундаментов / фундаментов на строительной площадке.

Чаще всего ленточный фундамент используется для поддержки линии нагрузки, особенно несущей стены. В то время как фундамент Pad используется для выдерживания сосредоточенных нагрузок от одной точечной нагрузки, такой как несущие колонны.

ЛЕНТОЧНЫЙ ФУНДАМЕНТ

Ленточный фундамент — это тип неглубокого фундамента, который используется для обеспечения непрерывной, ровной (или иногда ступенчатой) полосы поддержки линейной конструкции, такой как стена или близко расположенные ряды колонн, построенных по центру над ними.

Ленточный фундамент можно использовать для большинства грунтов, но он больше всего подходит для грунта с относительно хорошей несущей способностью. Они особенно подходят для легких структурных нагрузок, подобных тем, которые встречаются во многих жилых домах низкой и средней этажности — где можно использовать ленточный фундамент из массивного бетона . В других ситуациях может потребоваться железобетон.

ПОДКЛАДКА FOUNDATION

Падовый фундамент , как правило, неглубокий фундамент, но может быть глубоким в зависимости от условий грунта.Они представляют собой форму основания, образованного прямоугольными, квадратными или иногда круглыми бетонными «подушками», которые выдерживают локализованные одноточечные нагрузки, такие как несущие колонны, группы колонн или каркасные конструкции. Эта нагрузка затем распределяется подушкой на несущий слой почвы или скал ниже. Подушечки фундамента также можно использовать для опоры грунтовых балок.

Обычно они имеют одинаковую толщину, но иногда верхняя поверхность может быть наклонной или ступенчатой. Их форма в плане будет зависеть от характера приложенной нагрузки и допустимой несущей способности нижележащих слоев.Их толщина должна быть достаточной для распределения нагрузки по форме в плане. Как правило, они армируются на всех конструкциях, кроме самых маленьких, причем армирование позволяет создавать более высокие нагрузки и строить более мелкие опорные площадки, которые требуют меньше земляных работ и используют меньше бетона.

Любите этот пост, и вам нравится получать копию

Нажмите кнопку ниже, чтобы получить файл PDF и прочитать его в автономном режиме.

Глава 3.Обзор литературы по предыдущей работе в области инженерных работ — синтез и оценка предельного состояния инженерных насыпей для опор мостов, февраль 2016 г.

ГЛАВА 3.


ОБЗОР ЛИТЕРАТУРЫ ПРЕДЫДУЩИХ РАБОТ В ИНЖЕНЕРИИ

3.1 Обзор каталога данных деформации нагрузки инженерных заполнений для опор мостовидных протезов

Различные факторы могут повлиять на поведение опор моста при использовании инженерных насыпей. В их число входят:

  • Типы, удельный вес и прочностные характеристики грунтов обратной засыпки.
  • Геосинтетический тип и предел прочности при растяжении ( T f ).
  • Шаг арматуры, общая глубина размещения арматуры ( N ) и горизонтальная длина (протяженность) арматуры.
  • Геометрия опоры моста.
  • Форма и размер фундамента.
  • ГРС тип грунта основания, плотность, параметры прочности и армирование.
  • Естественный тип грунта, удельный вес и параметры прочности под фундаментом из GRS.
  • Условия нагрузки.
  • Диапазон температуры окружающей среды.
  • Влияние переходной нагрузки по сравнению со статической нагрузкой на SLS опор моста.

Работоспособность опор мостов с инженерными насыпями можно охарактеризовать следующим образом:

  • Сопротивление нагрузке (проверка, соответствующая пределу прочности (ULS)).
  • Непосредственные и длительные вертикальные и горизонтальные деформации армированных и фундаментных грунтов (элементы конструкции SLS).

В этой главе факторы, влияющие на поведение фундаментов мелкого заложения, синтезируются на основе результатов, опубликованных в литературе. К ним относятся факторы, влияющие на осадку фундаментов мелкого заложения с армированием и без, а также факторы, влияющие на вертикальные и поперечные деформации опор и опор моста с использованием инженерных насыпей. Далее рассматривается влияние переходных нагрузок на деформации опор мостов на зернистых грунтах и ​​определение распределения напряжений в зернистых грунтах под фундаментом мелкого заложения.На основе обзора литературы каталог данных нагрузки-деформации был составлен в неопубликованную электронную таблицу Microsoft ® Excel.

3.2 Синтез факторов, влияющих на осадку фундаментов мелкого заложения

Влияние относительной плотности почвы на осадку фундаментов мелкого заложения

Фрагази и Лоутон провели серию лабораторных модельных испытаний, предназначенных для определения влияния относительной плотности грунта ( D R ) на поведение осадки армированного песка. (53) Самородный песок с равномерным распределением во всех испытаниях армировался тремя слоями алюминиевой фольги. Как показано на рисунке 5, во всех случаях предельная несущая способность увеличивалась с увеличением D R . Кроме того, поведение осадки ленточных опор на армированном грунте было более жестким, чем у несущих на неармированном грунте при той же относительной плотности. Результаты показывают, что при увеличении на 10 процентов D R при давлении 14,5 фунтов на квадратный дюйм (100 кПа) осадка фундамента уменьшилась примерно на 20 процентов.За счет усиления грунта предельная несущая способность фундамента увеличилась как минимум на 60 процентов при соотношении осадки фундамента к его ширине ( s / B ), равном 10 процентам. Обратите внимание, что увеличение удержания с добавлением слоев армирования подавило растягивающее поведение, что наблюдается через подавленный пик в реакции осадки нагрузки. Basudhar et al. провели экспериментальное исследование круглых опор на песке, армированном геотекстилем. (54) Они пришли к выводу, что немедленная осадка фундамента уменьшилась с увеличением D R (см. Рисунок 6).


1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Фрагази и Лоутона. (53)

Рисунок 5. График. Результаты расчета нагрузки на неармированный и армированный песок.


1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после того, как Basudhar et al. (54)

Рисунок 6. График. Результаты расчета нагрузки для различных относительных плотностей.

Влияние
N на отстойку фундаментов мелкого заложения

Омар и др.провели серию лабораторных модельных испытаний ленточных и квадратных фундаментов, поддерживаемых песком, армированным слоями георешетки. (55) Как показывают их результаты на рисунках 7 и 8, при одинаковых значениях приложенной нагрузки осадка опор на армированном грунте была ниже, чем на неармированном грунте. Для испытаний с ленточным фундаментом, когда значение N увеличилось с 1 до 3, предельная нагрузка на подшипник увеличилась вдвое, в то время как оседание при соответствующей предельной нагрузке также увеличилось почти вдвое.При каждом прилагаемом давлении величина осадки уменьшалась с увеличением Н. для N больше или равной 4, оседание при предельной нагрузке на подшипник оставалось практически постоянным, что указывает на наличие оптимума N , за пределами которого осадка при предельная нагрузка на подшипник улучшилась незначительно. Следует учитывать, что на основании исследования Омара и др. Эффективная глубина армирования составляет около 2 B для ленточных фундаментов. (55) Следовательно, в их эксперименте, имея u / B = h / B = 0.33 (обозначения показаны на рисунке 4), усиления с N больше или равным 7 размещаются вне зоны влияния.


1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после того, как Омар и др. (55)

Рисунок 7. График. Результаты расчета нагрузки для ленточного фундамента для u / B = h / B = 0,333, b / B = 10.


1 дюйм = 25.4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после того, как Омар и др. (55)

Рисунок 8. График. Результаты расчета нагрузки для квадратного фундамента для u / B = h / B = 0,333, b / B = 6.

Chen et al. исследовали поведение квадратного фундамента на геосинтетическом армированном глинистом грунте с индексом эффективности 15 процентов с использованием лабораторных модельных испытаний фундамента. (56) В качестве опор для испытаний использовались стальные пластины размером 5.98 на 5,98 на 1 дюйм (152 на 152 на 25,4 мм) (ширина, длина, толщина). Испытания модели проводились в стальном испытательном стенде размером 4,92 на 2,98 на 2,98 фута (1,5 на 0,91 на 0,91 м) (длина, ширина, глубина). Процедуру тестирования выполняли в соответствии с ASTM D 1196-93, в котором приращения нагрузки применялись и поддерживались до тех пор, пока скорость оседания не стала менее 0,001 дюйма / мин (0,03 мм / мин) в течение 3 минут подряд. (57) Результаты, представленные на рисунке 9, показывают, что при увеличении N величина осадки при каждом приложенном давлении уменьшалась до N = 4.Для N больше или равно 4 осадка квадратного фундамента не увеличилась с дополнительными слоями армирования. Это снова указывает на то, что существует оптимум N , за пределами которого урегулирование незначительно улучшается. Следует отметить, что по данным Чена и др., Эффективная глубина армирования составляет около 1,5 B для глины, армированной георешеткой. (56) Следовательно, в эксперименте Чена и др., Имея u / B = h / B = 0.33, усиления с N больше или равным 7 размещаются вне зоны влияния. (56)


1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание. Этот рисунок был создан FHWA после того, как Chen et al. (56)

Рисунок 9. График. Результаты расчета нагрузки для квадратного фундамента на неармированном и армированном грунте со слоями георешетки из полипропилена (ПП).

Das et al. провели лабораторные модельные испытания для исследования предельной несущей способности поверхностных ленточных фундаментов на песке и глине, армированных георешеткой. (58) Каждый фундамент был сделан из алюминиевой пластины размером 3 на 12 дюймов (76,2 на 304,8 мм) ( B × L ). Испытания на несущую способность проводились в двух коробках, каждый с внутренними размерами 3,61 на 0,98 на 2,95 фута (1,1 на 0,3 на 0,9 м) (длина, ширина, глубина). Результаты показывают, что включение армирования георешеткой увеличило нагрузку на единицу площади, которую мог выдержать фундамент на любом заданном уровне осадки. Это верно для тестов как в песке, так и в глине.Как показано на рисунке 10, осадка фундамента уменьшалась с увеличением слоя армирования до N = 5. Когда значение N было больше 5, осадка фундамента больше не уменьшалась с увеличением слоев арматуры. Результаты могут быть связаны с тем, что дополнительные слои армирования были размещены ниже эффективной глубины армирования, которая составляла около 2 B для ленточного фундамента в песчаном грунте.


1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6.89 кПа
Примечание: этот рисунок был создан FHWA после того, как Das et al. (58)

Рисунок 10. График. Результаты расчета нагрузки для песчаного грунта для u / B = 0,4, h / B = 0,33 и b / B = 4.

Basudhar et al. провели экспериментальное исследование круглых опор на песке, армированном геотекстилем. (54) Они пришли к выводу, что с увеличением N расчет постепенно уменьшался в цене.Как показано на рисунке 11, когда N больше или равно 2, осадка фундамента больше не уменьшается с увеличением слоев арматуры, за исключением осадки при предельной нагрузке. Для испытания с трехслойным армированием геотекстиль был размещен на глубине 0,25 B , B и 2 B ниже основания основания. Учитывая результаты, представленные в разделе, эффективная глубина армирования была меньше 2 B для квадратного фундамента; Таким образом, слой 3 и дополнительные слои были размещены вне зоны влияния и больше не влияли на осадку фундамента.


1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после того, как Basudhar et al. (54)

Рисунок 11. График. Результаты расчета нагрузки для круглой опоры диаметром 1,18 дюйма (30 мм).

Phanikumar el al. выполнила серию лабораторных нагрузочных испытаний плиты на песчаных пластах, армированных георешеткой. (59) Свойства испытательных песков представлены в таблице 5. На рисунке 12 показано, что в некоторых поселениях несущая нагрузка, необходимая для достижения этого оседания, также зависела от N и типов грунтов.

Таблица 5. Свойства тестовых песков. (59)
Имущество Мелкий песок Песок средний Крупный песок
Масса сухого агрегата (при D R = 50 процентов) (кН / м 3) 15,2 14,9 14,7
Максимальный размер заполнителя ( d max ) (мм) 0.425 2,36 4,75
Диаметр частиц, при котором 10 процентов образца мельче, по массе ( D 10 ) (мм) 0,25 0,59 1,3
Внутренний Φ * (градус) 32 35 40
Коэффициент однородности 1.4 1,995 2,07
Коэффициент кривизны 1,17 1,12 1,25
1 кН / м 3 = 6,37 фунт-сила / фут 3
1 дюйм = 25,4 мм
* Внутреннее значение Φ песков для испытаний было определено путем проведения испытаний на прямой сдвиг. Пескоструйные пески для испытаний были уплотнены до их соответствующего веса в сухом состоянии, соответствующего относительной плотности 50 процентов.


1 фунт-сила = 0,0044 кН
Примечание: этот рисунок был создан FHWA после того, как Phanikumar et al. (59)

Рисунок 12. График. Влияние количества геосеток на нагрузку, необходимую для осадки 0,02 дюйма (0,5 мм).

Результаты влияния различного количества арматуры на поведение фундамента, размещенного на армированном песке со слоями фосфористой бронзы, показаны на рисунке 13. (60) Результаты также показывают тенденцию к уменьшению осадки с увеличением N при двух соотношениях армирования: L против B .


1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа

Рисунок 13. График. Результаты расчета нагрузки для различного количества металлической арматуры.

Влияние арматуры
L и T f на осадку фундаментов мелкого заложения

Результаты лабораторных модельных испытаний, проведенных Латха и Сомванши, показаны на рисунке 14. (61) Результаты показывают, что с увеличением b величина предельной несущей способности фундаментов на армированном грунте увеличивалась, а осадка уменьшалась. .


1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Латхи и Сомванши. (61)

Рисунок 14. График. Результаты расчета нагрузки для геосети разной ширины ( N = 4, d = 2 B ).

Элтон и Патаваран провели экспериментальное исследование образцов армированного грунта, чтобы оценить влияние геотекстиля T f на соотношение напряжения и деформации в армированном грунте. (62) Свойства шести геотекстильных материалов, использованных в их экспериментах, представлены в таблице 6. На рисунке 15 показаны результаты испытаний на неограниченное сжатие. Вертикальные смещения измерялись тремя преобразователями наверху стальной нагружающей пластины. Как показывают результаты, кривая первоначально достигла пика прочности при деформации приблизительно от 3 до 8 процентов, имела некоторое уменьшение прочности, а затем постепенно увеличивалась, достигая второго пика, прежде чем, наконец, резко снизилась. Пиковая прочность и соответствующая деформация образцов увеличивались по мере увеличения прочности арматуры.

Таблица 6. Свойства геотекстиля. (62)
Имущество Тип геотекстиля (G)
G4 G6 G8 G12 G16 G28
Масса на единицу площади (г / м 2) 135,64 203,46 271,28 406.92 542,56 949,48
Прочность в широком направлении в продольном направлении (кН / м) 9,0 14,0 14,5 18,6 20,1 24,9
Прочность в поперечном направлении большой ширины (кН / м) 14,4 19,3 19,8 20.3 22,9 21,7
1 г / м 2 = 2,05 ´ 10 -4 фунт / фут 2
1 кН / м = 68,5 фунт-сила / фут


1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Элтона и Патаварана. (62)

Рисунок 15. График. Напряжение-деформация армированного грунта.

Адамс и Коллин провели пять лабораторных экспериментов на опорах уменьшенного размера в рамках исследовательского проекта FHWA. (41) Из пяти экспериментов один был неармированным, а остальные были усилены с различным шагом армирования и T f . Как показывают результаты на рисунке 16, образец с шагом 0,66 фута (0,2 м) и меньшей прочностью по ширине 1439 фунт-сила / фут (21 кН / м) мог выдерживать более высокие нагрузки по сравнению с образцом с длиной 1,31 фута (0,4- м) и более высокая прочность по ширине 4797 фунт-сила / фут (70 кН / м) при любой заданной деформации. Таким образом, они пришли к выводу, что расстояние между арматурой играет более важную роль, чем ее прочность.


1 фунт / кв. Дюйм = 6,89 кПа
1 кН / м = 68,5 фунт-сила / фут
1 фут = 0,305 м
Примечание: этот рисунок был создан FHWA после Адамса и Коллина. (41)

Рисунок 16. График. Напряжение-деформация экспериментов на мини-пирсе.

Abu-Hejleh et al. провела оценку нового моста Founders / Meadows Bridge около Денвера, штат Колорадо, которая была завершена в июле 1999 года. (63,64) Исследование было сосредоточено на характеристиках и поведении системы GRS при эксплуатационных нагрузках.Три секции системы GRS были оснащены инструментами для измерения перемещений передней стены GRS, осадки основания моста и дифференциальной осадки между опорой моста и приближающейся проезжей частью. Земля для обратной засыпки, использованная в этом проекте, представляла собой смесь гравия (35 процентов), песка (54,4 процента) и мелкозернистой почвы (10,6 процента). Грунт для засыпки был классифицирован как хорошо рассортированный илистый песок в соответствии с ASTM D 2487 и как фрагменты камня, гравий и песок (A-1-B (0)) в соответствии с AASHTO M145-91. (65,66) Средний удельный вес и сухой удельный вес уплотненного грунта обратной засыпки, измеренный во время строительства, составил 140.6 и 133,7 фунт / фут 3 (22,1 и 21 кН / м 3) соответственно, а содержание воды составляло 5,6 процента. Результаты испытаний на большой прямой сдвиг и на большой трехосный сдвиг показали, что для Φ 47,7 и 39,5 градусов и c 16,06 и 5,73 фунтов на кв. Дюйм (110,7 и 39,5 кПа), соответственно, для испытаний на прямой и трехосный сдвиг. В этом проекте использовались три сорта армирования георешеткой: одноосное (UX) 6 под фундаментом и UX 3 и UX 2 за опорной стеной. В таблице 7 приведены значения предельной прочности и долгосрочной расчетной прочности (LTDS) для этих геосеток.

Таблица 7. Прочность размещенной георешетки. (64)
Тип и обозначение георешетки Предел прочности (кН / м) LTDS (кН / м)
UX 6 157,3 27
UX 3 64,2 11
UX 2 39,3 6.8
1 кН / м = 68,5 фунт-сила / фут

Данные были собраны во время строительства стен GRS, во время размещения надстройки моста и в течение 18 месяцев после открытия моста для движения. Результаты представлены в таблице 8 и показывают отличные характеристики конструкции GRS. Контролируемые общие смещения были меньше ожидаемых в проекте и допускались эксплуатационными требованиями, не было никаких признаков развития проблемы неровностей моста или каких-либо повреждений конструкции, а смещения после строительства стали незначительными в течение года после открытия моста для движение.

Таблица 8. Сводка максимальных смещений облицовки лицевой стены и осадки подошвы опоры моста.
Типы максимальных движений индуцировано только GRS Wall Construction Только за счет установки надстройки моста (надбавка 115 кПа) индуцируется только во время эксплуатации моста (доплата 150 кПа)
6 Пн 12 Пн 18 Пн
Максимальное смещение наружу облицовки передней стенки (мм) 12 10 8 12 13
Максимальное оседание выравнивающей подушки, поддерживающей облицовку передней стены (мм) 8 7 4 5 5
Максимальное оседание опоры опоры моста (мм) 13 7 11 10
Максимальный процент осадки опоры моста от высоты стены (в процентах) 0.29 0,17
1 кПа = 0,145 фунта на кв. Дюйм
1 дюйм = 25,4 мм
Примечание: эта таблица была создана FHWA после Abu-Hejleh et al. (64) Пустые ячейки показывают, что значение не было записано.

Хуанг и Тацуока использовали различные типы металлических полос для укрепления почвы под неглубоким фундаментом. (60) На рисунке 17 показаны результаты лабораторных испытаний модели, усиленной полосами из фосфористой бронзы.Результаты показывают, что с увеличением L величина осадки при каждой приложенной нагрузке уменьшалась. Однако это снижение не было пропорционально увеличению L . Например, при приложенном давлении 4 177 фунтов на квадратный фут (200 кПа) осадка фундамента была одинаковой для двух разных длин арматуры: L / B = 3,5 и L / B = 6.


1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Хуанга и Тацуока. (60)

Рисунок 17. График. Результаты расчета нагрузки для арматуры различной длины ( N = 3).

Влияние стандарта
B на отстойку фундаментов мелкого заложения

Дас и Омар провели экспериментальное исследование поверхностных ленточных фундаментов на песке, армированном георешеткой. (67) Как показано на рисунке 18, они пришли к выводу, что оседание при предельной несущей способности увеличилось с уменьшением B . Рисунок также выявил незначительное влияние размера опоры на осадку при давлении в подшипниках менее примерно 6 266 фунтов на квадратный дюйм (300 кПа).Отмечается, что эти наблюдения были получены в мелкомасштабных экспериментах.


1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA в честь Даса и Омара. (67)

Рисунок 18. График. Расчет нагрузки приводит к армированному песку ( D R = 75 процентов).

Влияние глубины заделки верхнего слоя арматуры на осадку фундаментов мелкого заложения

Mandal and Sah провели испытания на несущую способность опор моделей на глиняных основаниях, армированных георешетками. (68) Их результаты, представленные на рисунке 19, показывают, что максимальное процентное уменьшение осадки с использованием армирования георешеткой в ​​уплотненной и насыщенной глине составило около 45 процентов, и это произошло на глубине от 0 до 0,25 B ниже основания квадратного фундамента.


1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Мандала и Сах. (68)

Рисунок 19. График. Результаты осадки модели опор на глиняном земляном полотне, армированном георешеткой.

Бинке и Ли провели серию экспериментов с ленточным фундаментом шириной 2,99 дюйма (76 мм), помещенным на песчаный грунт, укрепленный металлическими полосами. (69) На рисунке 20 показаны результаты исследований влияния u верхнего армирующего слоя на осадку фундамента. Они пришли к выводу, что оптимальным расположением верхнего слоя было u / B = 1,3. Кроме того, на основании экспериментальных результатов, полученных для фундаментов, размещенных на армированном грунте с георешеткой, был сделан вывод, что оптимальная глубина для укладки верхнего слоя арматуры находится в пределах 0.25 B ниже основания фундамента. Следовательно, верхний слой металлической полосы может быть расположен на меньшей глубине по сравнению с арматурой из георешетки, чтобы обеспечить минимальную осадку при каждой приложенной нагрузке.


1 дюйм = 25,4 мм = 2,54 см
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Бинке и Ли. (69)

Рисунок 20. График. Результаты расчета нагрузки для разной глубины верхнего слоя металлической арматуры ( N = 3).

Влияние вертикального расстояния между слоями арматуры (
S v ) на осадку фундаментов мелкого заложения

Chen et al. исследовали поведение квадратного фундамента на геосинтетическом армированном глинистом грунте от низкой до средней пластичности с использованием лабораторных модельных испытаний фундамента. (56) Как показано на рисунке 21, за счет уменьшения h между тремя армирующими слоями (расположенными в зоне влияния под основанием) величина осадки при каждом приложенном нагрузочном давлении уменьшалась.


1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание. Этот рисунок был создан FHWA после того, как Chen et al. (56)

Рисунок 21. График. Результаты расчета нагрузки при испытаниях квадратного фундамента с тремя слоями георешеток, размещенными с разным шагом по вертикали.

Влияние коэффициента покрытия (CR) арматуры металлической полосой на осадку фундаментов мелкого заложения

Эффективным параметром расчетной нагрузки фундамента на грунте, армированном металлическими полосами, является CR арматуры в каждом слое.На рис. 22 представлены экспериментальные результаты осадки фундамента на армированном грунте слоями фосфорно-бронзовой ленты. (60) На рисунке показано, что при увеличении CR осадка при каждом приложенном давлении уменьшается. По результатам можно сделать вывод, что уменьшение осадки не было пропорционально CR . Это говорит о том, что существует верхняя граница CR , , выше которой уменьшение расчетов с увеличением CR не ожидается.


1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Хуанга и Тацуока. (60)

Рисунок 22. График. Результаты расчета нагрузки для различных CR арматуры ( L = 2 B , N = 3).

3.3 Синтез зависимости нагрузки и деформации опор мостовидных протезов и опор

Влияние параметров грунта на зависимости деформации нагрузки

Адамс и Никс провели экспериментальное исследование характеристик вторичной деформации GRS в качестве опор моста в условиях рабочей нагрузки. (27) Поведение четырех опор из GRS, построенных с использованием двух типов грунтов и тканого геотекстиля, отслеживалось при давлении 30,45 фунтов на квадратный дюйм (210 кПа). Характеристики использованных материалов и результаты, представленные Адамсом и Никсом, показаны в таблице 9. (27) Результаты показывают, что в условиях эксплуатационной нагрузки не наблюдалось значительного увеличения осадки пирса со слабым геотекстилем (пирс A ). Кроме того, опоры с заполнителями №8 открытого типа испытывали немного большее сжатие (примерно на 5 процентов выше) по сравнению с грунтом обратной засыпки с хорошей сортировкой A-1-a.Результаты исследования деформации опоры в течение 4 мес. Показали, что вторичная осадка произошла в зернистом материале, но она все еще находилась в типичных допустимых пределах для мостов и составляла до 2% вертикальной деформации в течение срока службы моста. (32)

Таблица 9. Материалы сваи GRS и результаты съемки вертикальной деформации.
Категории измерений Свойства материалов и специальные полевые исследования Причал A Причал B Причал C Причал D
Свойства засыпного материала AASHTO тип грунта # 8 А-1-а А-1-а # 8
Φ (градусы) 55 54 54 55
c (кПа) 0 5.5 5,5 0
Свойства армирования T f (кН / м) 35 70 70 70
Минимальная средняя величина сопротивления качению при деформации 2% (кН / м) 3,5 19,3 19,3 19,3
Результаты опроса Осадка композитного ГРС через 105 дней после размещения груза (мм) 24 23.6 22,5 24,8
Вертикальная деформация в композите GRS (в процентах) 1,03 1.01 0,97 1,07
1 фунт / кв. Дюйм = 6,89 кПа
1 кН / м = 68,5 фунт-сила / фут
1 дюйм = 25,4 мм
Примечание. Эта таблица была создана FHWA после Адамса и Ника. (27)

Nicks et al. провели 19 GRS PT в рамках исследования FHWA, в котором изучались осевая нагрузка в сравнении с характеристиками вертикальной деформации опор GRS. (42) Всего было проведено 5 испытаний в округе Дефайенс (округ Колумбия), штат Огайо, на предприятии по техническому обслуживанию шоссе, а 14 — в Исследовательском центре шоссе Тернер-Фэрбэнк (TFHRC). Параметры, которые варьировались между испытаниями, включали расстояние между арматурой, прочность геотекстиля, тип грунта и фрикционно связанный облицовочный элемент. Параметры опор, испытанные для исследования влияния типа заполнителя на нагрузочно-деформационные характеристики опор, и результаты испытаний показаны в таблице 10 и на рисунке 23.Приложенное давление рассчитывалось как среднее значение измеренных значений за период нагрузки, а вертикальная деформация рассчитывалась как средние значения четырех линейных преобразователей смещения напряжения (LVDT) и потенциометров (POT), расположенных на основании в конце каждое приращение нагрузки. Согласно результатам, пирс, построенный из самого крупного испытанного заполнителя (камень № 57), имел самый низкий предел эксплуатации из всех испытаний, что указывает на большую деформацию под приложенной нагрузкой. Кроме того, пирс, построенный из окатанного мелкого гравия, имел более низкие пределы прочности и эксплуатационных характеристик, чем более угловатый заполнитель, отвечающий тем же спецификациям градации для материала AASHTO # 8.

Таблица 10. Параметрическое исследование размера агрегата.
Тест № Засыпка Арматура Облицовка
Тип Φ
(градус)
c
(кПа)
Агрегат
Размер
(мм)
T f
(кН / м)
S v
(мм)
DC-1 8 54 0 12.7 70 194 CMU
DC-2 46 0 19,05 70 194 CMU
DC-3 57 52 0 25,4 70 194 CMU
DC-4 9 49 0 9.525 70 194 CMU
1 фунт / кв. Дюйм = 6,89 кПа
1 кН / м = 68,5 фунт-сила / фут
1 дюйм = 25,4 мм
CMU = Бетонная кладка.
Примечание. Эта таблица была создана FHWA после того, как Nicks et al. (42)


1 фунт / кв. Дюйм = 6,89 кПа
Примечание. Этот рисунок был создан FHWA после того, как Nicks et al. (42)

Рисунок 23.График. Поведение при нагрузке и деформации от ФП на опорах из GRS с использованием пяти типов засыпок постоянного тока.

Путем сравнения идентичных опор, которые были похожи по всем своим характеристикам, за исключением градации, Nicks et al. пришли к выводу, что использование хорошо рассортированного материала привело к значительно более жесткой реакции нагрузка-деформация, чем наблюдаемая при использовании материала с открытой сортировкой. (42)

Helwany et al. провели анализ методом конечных элементов (МКЭ) двух полномасштабных нагрузочных испытаний опор мостов из GRS и параметрическое исследование для изучения характеристик облицовки модульных блоков опор мостов из GRS, подверженных действующим и статическим нагрузкам от пролетного строения моста. (70) Они пришли к выводу, что более благоприятный деформационный отклик был достигнут при использовании типов грунта, которые имеют более высокие внутренние Φ и соответствующие более высокие модули объемности и сдвига. На рисунке 24 показано, что когда Φ увеличился с 34 до 40 градусов, вертикальное смещение в гнезде абатмента уменьшилось с 1,89 до 1,18 дюйма (от 48 до 30 мм) при приложенном давлении 4 177 фунтов на квадратный дюйм (200 кПа), в то время как вертикальное смещение было незначительным. изменение при более низком прилагаемом давлении 2088 фунтов на квадратный дюйм (100 кПа).


1 дюйм = 2,54 см
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Helwany et al. (70)

Рисунок 24. График. Влияние внутренней засыпки Φ на вертикальное смещение в опорной зоне (расстояние между арматурой = 7,87 дюйма (20 см))

Helwany et al. также пришел к выводу, что при использовании типов грунта с более высокими внутренними Φ и более высокими модулями насыпи и сдвига был достигнут более благоприятный деформационный отклик для горизонтального смещения в опоре упора и для максимального бокового смещения сегментной облицовки (см. рисунок 26). (70) При прилагаемом давлении 4 177 фунтов на квадратный фут (200 кПа) за счет увеличения внутреннего Φ с 34 до 40 градусов горизонтальное смещение седла уменьшилось примерно на 14 процентов. Как показано на рисунке 26, при различных приложенных давлениях максимальное боковое смещение сегментной облицовки линейно уменьшалось с увеличением Φ .


1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Helwany et al. (70)

Рисунок 25. График. Влияние внутренней засыпки Φ (расстояние между арматурой = 7,87 дюйма (20 см)) на горизонтальное смещение в месте опоры.


1 дюйм = 2,54 см
Примечание: этот рисунок был создан FHWA после Helwany et al. (70)

Рисунок 26. График. Влияние внутренней засыпки Φ (расстояние между арматурой = 7,87 дюйма (20 см)) на максимальное боковое смещение облицовки.

Hatami and Bathurst исследовали влияние типа засыпки на характеристики сегментных подпорных стен (SRW) из армированного грунта в условиях рабочего напряжения в конце строительства (EOC) с использованием численного моделирования конечных разностей. (71) Как показано на рисунке 27, прогиб облицовки уменьшался по величине по мере увеличения прочности грунта на сдвиг из-за увеличения Φ , увеличения кажущегося c или того и другого. На характер отклоненной формы также повлияло увеличение кажущегося c .Увеличение кажущегося c сместило точку максимального прогиба стены ниже по стене и было особенно эффективным для уменьшения прогибов на гребне стены. Результаты также показывают различное влияние Φ и c

.


1 фут = 0,305 м
1 дюйм = 2,54 см
Примечание: этот рисунок был создан FHWA после Хатами и Батерста. (71)

Рисунок 27. График. Влияние видимых c и Φ на боковое смещение стены.

Результаты, представленные на рисунке 28, показывают, что нагрузки на арматуру были больше для стен с более слабой засыпкой, а распределение максимальной нагрузки по высоте стены варьировалось от параболической формы для гранулированной засыпки и линейной формы, когда засыпка имела более высокое значение видимого c и был более сплоченным. (71)


1 фут = 0,305 м
1 кН / м = 68,5 фунт-сила / фут
Примечание: этот рисунок был создан FHWA после Хатами и Батерста. (71)

Рисунок 28. График. Влияние очевидных значений засыпки c и Φ на максимальные нагрузки арматуры в моделях стен при EOC

Скиннер и Роу численно исследовали краткосрочное и долгосрочное поведение 6-метровой сегментной усиленной геосинтетической подпорной стены с облицовкой из блоков, построенной на жестком основании; они также изучили два глинистых фундамента толщиной 32,8 фута (10 м), чтобы исследовать влияние текучести фундамента на устойчивость стены. (72) Горизонтальные смещения поверхности стены, рассчитанные для жесткого фундамента и двух глинистых фундаментов, показаны на рисунке 29. Глинистые фундаменты значительно более сжимаемы, чем жесткий фундамент. Из рисунка видно, что деформации лицевой стороны и основания стены были значительно выше для грунтов 1 и 2, чем для жесткого фундамента. Повышенная деформация фундамента существенно способствовала смещению облицовки. Для грунта с более низкой вязкостью 1 не было значительных изменений в поведении между моментом 95-процентного уплотнения (достигнутое через 1 год после EOC) и последующим временем (например.г., 7 лет). Более вязкий грунт 2 достиг приблизительно 20-процентной консолидации через 1 год после EOC и приблизительно 95-процентной консолидации через 7 лет после EOC. Незначительное вращение поверхности стены назад от EOC до 7 лет (95% уплотнение) для грунта 1 было вызвано локальными смещениями на поверхности и особенно на носке стены.


1 фут = 0,305 м
1 дюйм = 25,4 мм
Примечание: этот рисунок был создан FHWA после Скиннера и Роу. (72)

Рисунок 29.График. Горизонтальные смещения у стены

Helwany et al. провели FEAs, чтобы исследовать влияние типа засыпки и прочности арматуры на поведение подпорных стен GRS. (73) Всего было применено 3 различных значения жесткости арматуры и 16 различных материалов обратной засыпки при расчете 3 стен с разной высотой для получения 144 расчетных комбинаций. Подпорные стены из GRS находились под избыточным давлением 15,23 фунтов на кв. Дюйм (105 кПа). Размеры и свойства различных грунтов представлены в таблицах 11 и 12, а результаты показаны на рисунках с 30 по 33.

Таблица 11. Размеры подпорной стенки GRS.
Высота стены (м) Глубина засыпки (м) Длина геотекстиля (м)
3 3,7 1,8 10
4,5 5,5 2,7 15
6 7.3 3,7 20
1 фут = 0,305 м
Примечание: этот рисунок был создан FHWA после Helwany et al. (73)

Таблица 12. Репрезентативные параметры почвы.
Тип почвы по Единой классификации почв Номер обозначения засыпки RC на основе процента от стандартного Proctor Вес влажного блока
(кН / м 3)
Φ для ограничивающего давления =
1 Атмосферное давление
(градусы)
Уменьшение Φ для 10-кратного увеличения ограничивающего давления
(градусы)
c
(кН / м 2)
Гравий с хорошей сортировкой, гравий с плохой сортировкой, песок с хорошей сортировкой, песок с плохой сортировкой 1 105 23.6 42 9 0
2 100 22,8 39 7 0
3 95 22,1 36 5 0
4 90 21.3 33 3 0
илистый песок 5 100 21,3 36 8 0
6 95 20,5 34 6 0
7 90 19.7 32 4 0
8 85 18,9 30 2 0
Песок илистый глинистый 9 100 21,3 33 0 24
10 95 20.5 33 0 19
11 90 19,7 33 0 14
12 85 18,9 33 0 10
Глина низкопластичная 13 100 21.3 30 0 19
14 95 20,5 30 0 14
15 90 19,7 30 0 10
16 85 18.9 30 0 5
1 кН / м 3 = 6,37 фунт-сила / фут 3
1 кН / м 2 = 20,89 фунт / фут 2
Примечание: эта таблица была создана FHWA после Helwany et al. (73)

Рисунки с 30 по 33 все показывают, что тип обратной засыпки оказал наибольшее влияние на поведение подпорной стены GRS. Они пришли к выводу, что жесткость геосинтетической арматуры оказала значительное влияние на поведение подпорной стены из GRS, когда засыпка имела более низкую жесткость и прочность на сдвиг.Например, подпорные стены из GRS высотой 9,84 фута (3 м), сделанные из грунтов № 15 и № 16 (более низкая жесткость и прочность на сдвиг), показали значительное улучшение при использовании более жесткого геосинтетического материала. Когда подпорная стена GRS высотой 9,84 фута (3 м) была сделана из грунтов № 13 и № 14 (более высокая жесткость и прочность на сдвиг), она показала относительно небольшие улучшения при увеличении геосинтетической жесткости.


1 дюйм = 2,54 см
1 фут = 0,305 м
1 кН / м = 68,5 фунт-сила / фут
Примечание: этот рисунок был создан FHWA после Helwany et al. (73)

Рисунок 30. График. Максимальное боковое смещение в зависимости от геосинтетической жесткости для грунтов 1–4.


1 дюйм = 2,54 см
1 фут = 0,305 м
1 кН / м = 68,5 фунт-сила / фут
Примечание: этот рисунок был создан FHWA после Helwany et al. (73)

Рисунок 31. График. Максимальное боковое смещение в зависимости от геосинтетической жесткости для грунтов 5–8.


1 дюйм = 2,54 см
1 фут = 0.305 м
1 кН / м = 68,5 фунт-сила / фут
Примечание: этот рисунок был создан FHWA после Helwany et al. (73)

Рисунок 32. График. Максимальное боковое смещение в зависимости от геосинтетической жесткости для грунтов 9–12.


1 дюйм = 2,54 см
1 фут = 0,305 м
1 кН / м = 68,5 фунт-сила / фут
Примечание: этот рисунок был создан FHWA после Helwany et al. (73)

Рисунок 33. График. Максимальное боковое смещение в зависимости от геосинтетической жесткости для грунтов 13–16.

Влияние характеристик арматуры на зависимости деформации нагрузки

На рисунках 34 и 35 показаны результаты двух ПК, проведенных Nicks et al. исследовать влияние арматуры несущего основания на нагрузочно-деформационные характеристики опор моста. (42) Усиление опоры подшипника, размещенное непосредственно под опорой балки, рекомендовалось по крайней мере в пяти верхних рядах облицовочных элементов CMU для опор GRS, чтобы выдерживать повышенные нагрузки, вызванные мостом, и должно составлять как минимум половину основной интервал. (32) Две опоры были идентичны, за исключением того, что одна опора (Turner-Fairbank (TF) -8) имела два ряда арматуры несущего слоя в дополнение к первичной арматуре с интервалом 7,87 дюйма (20 см), а другая — опора (ТФ-7) не имела арматуры опорного основания, была только первичная арматура. Приложенное давление рассчитывалось как среднее значение измеренных значений за период нагрузки, а вертикальная деформация рассчитывалась как средние значения четырех LVDT и POT, расположенных на основании в конце каждого приращения нагрузки.Осевые деформации, представленные на рисунке 34, указывают на то, что опорная станина обеспечивала несколько более высокую вертикальную нагрузку; однако вертикальная деформация не улучшилась при низких уровнях деформации. На рисунке 35 показано, что при эксплуатационных нагрузках (приложенное вертикальное давление 3550 фунтов на квадратный фут (170 кПа)) боковая деформация верхней опоры подшипника толщиной 1,31 фута (0,4 м) уменьшилась более чем на 50 процентов за счет включения двух курсы армирования.


1 фунт / кв. Дюйм = 6,89 кПа
Примечание. Этот рисунок был создан FHWA после того, как Nicks et al. (42)

Рисунок 34. График. Эффект усиления станины подшипников ТФ-7 и ТФ-8.


1 фут = 0,305 м
1 дюйм = 25,4 мм
Примечание. Этот рисунок был создан FHWA после того, как Nicks et al. (42)

Рисунок 35. График. Измеренная боковая деформация при давлении 3600 фунтов на квадратный дюйм (172,5 кПа) приложенного давления для TF-7 (без армирования опорного основания) и TF-8 (два ряда армирования опорного основания).

Wu et al. Компания провела серию лабораторных испытаний типового геосинтетического композита грунта (GSGC), чтобы изучить поведение композита массы GRS с различными интервалами и T f арматуры. (74) Программа испытаний включала пять тестов GSGC. Высота образца составляла 6,56 фута (2 м) с квадратным поперечным сечением 4,59 фута (1,4 м). Условия испытаний и краткое изложение результатов представлены в таблице 13. Вертикальное движение измерялось вдоль верхней поверхности бетонной подушки, помещенной поверх образца перед нагрузкой. Тест 1 был проведен в качестве основы для остальных четырех тестов. Образец нагружали до 36,26 фунтов на квадратный дюйм (250 кПа) (почти до 1 процента вертикальной деформации), затем разгружали до нагрузки 0 фунтов на квадратный дюйм (0 кПа) и повторно нагружали до отказа.Остальные тесты были загружены до отказа напрямую. Предписанное ограничивающее давление 4,93 фунтов на квадратный дюйм (34 кПа) было приложено ко всей площади поверхности испытательных образцов для испытаний с 1 по 4. На рисунке 36 показано поведение деформации под нагрузкой в ​​пяти испытаниях GSGC. Сравнивая результаты испытаний 2 и 3, можно сделать вывод, что предельное приложенное давление увеличилось примерно на 35 процентов за счет удвоения прочности арматуры. Сравнивая испытания 2 и 4, можно сделать вывод, что, изменив шаг арматуры с 1.От 31 до 0,66 футов (от 0,4 до 0,2 м) предельное приложенное давление увеличилось более чем на 50 процентов. Следовательно, по сравнению с арматурой T f , расстояние между слоями арматуры играет более важную роль в улучшении характеристик осадки армированного грунта. На рисунке 37 показано боковое смещение испытуемых образцов при разрушении и приложенном давлении 87,02 фунта на квадратный дюйм (600 кПа). Тест 2, который представлял собой ограниченный образец с шагом арматуры 0,66 фута (0,2 м), продемонстрировал самую высокую предельную прочность и наименьшую боковую деформацию.

Таблица 13. Условия испытаний и сводка результатов испытаний GSGC.
Параметры Тест 1 Тест 2 Тест 3 Тест 4 Тест 5
Предел прочности при растяжении при широкой ширине (кН / м) Без армирования 70 140 70 70
Расстояние между арматурой (м) Без армирования 0.2 0,4 0,4 0,2
Ограничивающее давление (кПа) 34 34 34 34 0
Предельное приложенное давление (кПа) 770 2,700 1,750 1,300 1 900
Вертикальная деформация при разрыве (в процентах) 3 6.5 6,1 4 6
Максимальное боковое смещение при отказе (мм) 47 60 54 53 Не измеряется
1 кН / м = 68,5 фунт-сила / фут
1 фут = 0,305 м
1 фунт / кв. Дюйм = 6,89 кПа
1 дюйм = 25,4 мм
Примечание. Эта таблица была создана FHWA заимствована у Wu et al. (74)


1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после того, как Wu et al. (74)

Рисунок 36. График. Нагрузочно-деформационное поведение для испытаний GSGC.


1 фут = 0,305 м
1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после того, как Wu et al. (74)

Рисунок 37. График. Боковая деформация образцов для испытаний при 12531 фунт / фут (600 кПа) и предельном прилагаемом давлении.

Helwany et al. провели FEAs для изучения влияния геосинтетической жесткости на характеристики абатмента GRS. (70) Предполагалась, что жесткость базового корпуса составляет 36 305 фунт-сила / фут (530 кН / м). Результаты, представленные на рисунке 38, показывают, что вертикальное смещение посадочного места абатмента для базового варианта (для приложенного давления 4 177 фунтов на квадратный фут (200 кПа)) было уменьшено на 43 процента, когда геосинтетическая жесткость увеличилась в 10 раз до 363 050 фунтов-силы / фут ( 5300 кН / м). И наоборот, резкое увеличение смещения на 250 процентов было отмечено, когда геосинтетическая жесткость была снижена до 3603.5 фунт-сила / фут (53 кН / м). Вертикальное смещение в гнезде абатмента резко возросло, когда осевая жесткость геосинтетического материала упала ниже критического значения, и тенденция стала более выраженной с увеличением приложенного давления.


1 дюйм = 2,54 см
1 фунт / кв. Дюйм = 6,89 кПа
1 кН / м = 68,5 фунт-сила / фут
Примечание: этот рисунок был создан FHWA после Helwany et al. (70)

Рисунок 38. График. Влияние геосинтетической жесткости (шаг арматуры = 7.87 дюймов (20 см)) при вертикальном смещении на опорной поверхности.

Helwany et al. пришли к выводу, что вертикальное смещение в гнезде абатмента увеличивалось, когда вертикальное расстояние между арматурой увеличивалось при высоком давлении 58 фунтов на квадратный дюйм (400 кПа). (70) Рисунок 39 показывает, что увеличение вертикального смещения стало более значительным по мере увеличения приложенного давления. При приложенном давлении 4 177 фунтов на квадратный дюйм (200 кПа), увеличение вертикального смещения на 40 процентов наблюдалось, когда расстояние между арматурой по вертикали увеличилось с 7.От 87 до 23,62 дюйма (от 20 до 60 см).


1 дюйм = 2,54 см
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Helwany et al. (70)

Рисунок 39. График. Влияние геосинтетического зазора на вертикальное смещение опорной поверхности.

На рисунках 40 и 41 показано, что горизонтальные смещения посадочного места абатмента и максимальное боковое смещение сегментарной стенки уменьшились, когда геосинтетическая жесткость увеличилась до 363 050 фунтов-силы / фут (5300 кН / м) от базового варианта.И наоборот, резкое увеличение смещений произошло, когда геосинтетическая жесткость была снижена до 3630,5 фунт-сила / фут (53 кН / м).


1 дюйм = 2,54 см
1 фунт / кв. Дюйм = 6,89 кПа
1 кН / м = 68,5 фунт-сила / фут
Примечание: этот рисунок был создан FHWA после Helwany et al. (70)

Рисунок 40. График. Влияние геосинтетической жесткости (расстояние между арматурой = 7,87 дюйма (20 см)) на горизонтальное смещение в гнезде абатмента.


1 дюйм = 2.54 см
1 фунт / кв. Дюйм = 6,89 кПа
1 кН / м = 68,5 фунт-сила / фут
Примечание: этот рисунок был создан FHWA после Helwany et al. (70)

Рисунок 41. График. Влияние геосинтетической жесткости (расстояние между арматурой = 7,87 дюйма (20 см)) на максимальное поперечное смещение облицовки.

Основываясь на FEA двух полномасштабных нагрузочных испытаний абатментов мостовидного протеза GRS, а также параметрическом исследовании для изучения характеристик абатментов мостовидного протеза GRS, Helwany et al.пришли к выводу, что горизонтальное смещение в гнезде упора и максимальное боковое смещение сегментарной облицовки увеличиваются с увеличением расстояния между арматурой (см. рисунок 42 и рисунок 43). (70) Как показано на рисунке 42, при приложенном давлении 29 фунтов на квадратный дюйм (200 кПа) наблюдалось увеличение горизонтального смещения на 52 процента, когда расстояние между арматурой по вертикали увеличилось с 7,87 до 23,62 дюйма (20–60 см). При более низком прилагаемом давлении 14,50 фунтов на квадратный дюйм (100 кПа) вертикальное расстояние оказало минимальное влияние на горизонтальное смещение.Как показано на рисунке 43, при приложенном давлении 29 фунтов на квадратный дюйм (200 кПа) за счет увеличения расстояния между арматурой с 7,87 до 23,62 дюйма (с 20 до 60 см) максимальное смещение облицовки увеличилось примерно на 50 процентов.


1 дюйм = 2,54 см
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Helwany et al. (70)

Рисунок 42. График. Влияние геосинтетического зазора на горизонтальное смещение в гнезде абатмента.


1 дюйм = 2.54 см
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Helwany et al. (70)

Рисунок 43. График. Влияние геосинтетического зазора на максимальное боковое смещение облицовки.

Gotteland et al. провели экспериментальные и численные исследования двух армированных стен: одна была усилена нетканым геотекстилем (обозначена NW), а другая — тканым геотекстилем (обозначена W) (см. рис. 44 и рис. 45). (75) Нетканый геотекстиль — 3.В 5 раз более растяжимый, чем тканый, в полтора раза слабее T f . После строительства армированные стены нагружали так же, как настил моста, через фундаментную плиту до тех пор, пока не произошел разрушение. Фундамент шириной 3,28 фута (1 м) располагался на расстоянии 4,92 фута (1,50 м) от края облицовки. Как показано на рисунке 44, абатмент с тканым геотекстилем имел более высокую предельную несущую способность, а его оседание было меньше по сравнению с нетканым.Результаты на рисунке 45 показывают, что поперечная деформация поверхности стены с тканым геотекстилем была меньше, чем с нетканым геотекстилем.


1 дюйм = 2,54 см
1 кН / м = 68,5 фунт-сила / фут
FEM = Метод конечных элементов.
Примечание: этот рисунок был создан FHWA после Gotteland et al. (75)

Рисунок 44. График. Центральная осадка фундамента в зависимости от приложенной нагрузки.


1 фут = 0,305 м
1 дюйм = 2.54 см
Примечание: этот рисунок был создан FHWA после Gotteland et al. (75)

Рисунок 45. График. Смещение поверхности стены при приложенном давлении 3969,1 фунт / фут 2 (190 кН / м 2 ) для нетканой и тканой арматуры

Bathurst et al. провели эксперименты на четырех полномасштабных модульных блочных стенах, которые были построены с армирующими слоями с различной жесткостью на растяжение. (76) Высота стен составляла 11,81 фута (3,6 м). Две стены (стены 1 и 2) были усилены двумя различными арматурами георешетки PP, стена 3 была усилена георешеткой из полиэстера (ПЭТ), а стена 4 была усилена сварной проволочной сеткой (WWM).Стены 1 и 2 уплотнялись с помощью виброплиты, а стены 3 и 4 уплотнялись вибротрамбовкой. На Рисунке 46 показаны измеренные относительные горизонтальные смещения, зарегистрированные в контролируемых точках на стене облицовочной колонны вскоре после EOC. Каждая точка возвышения имеет локальную точку отсчета, соответствующую времени, когда был установлен каждый ряд точек смещения.


1 фут = 0,305 м
1 дюйм = 25,4 мм
Примечание: этот рисунок был создан FHWA после того, как Bathurst et al. (76)

Рисунок 46. График. Относительное горизонтальное смещение облицовки стен зафиксировано в EOC.

Хатами и Батерст исследовали влияние свойств армирования на характеристики армированных грунтовых ТРО с использованием численной модели конечных разностей. (71) Они пришли к выводу, что деформационный отклик модели стены с закрепленным (полностью закрепленным) состоянием армирования был очень близок к реакции модели с граничной жесткостью между грунтом обратной засыпки и слоями арматуры ( k b ) ≥ 145 фунтов / дюйм / дюйм (1000 кН / м / м).Как показано на рисунке 47, для значений k b ≤ 145 фунт-сила / дюйм / дюйм (1000 кН / м / м), чем ниже k b , тем больше деформация стенки. Величина деформации стенки увеличилась в два раза, когда значение kb было уменьшено на два порядка с k b = 145 фунт-сила / дюйм / дюйм (10 3 кН / м / м) до k b = 1,45 фунт-силы / дюйм / дюйм (10 кН / м / м).


1 дюйм = 2,54 см
1 кН / м / м = 0.145 фунтов / дюйм / дюйм
Примечание: этот рисунок был создан FHWA после Хатами и Батерста. (71)

Рисунок 47. График. Влияние величины жесткости границы раздела грунт-арматура на поперечное смещение стены.

Зевголис и Бурдо смоделировали характеристики абатментов MSE с металлическими полосами, чтобы исследовать влияние различных параметров, таких как модуль упругости арматуры ( E R ), H , величина приложенной нагрузки и тип грунта основания. о поведении абатментов. (4) Они определили пять тематических исследований; h2-L3-S2, h2-L3-S3, h3-L1-S3, h3-L2-S2 и h4-L1-S2, где h2, h3 и h4 обозначают абатменты размером 19,66, 22,97 и 26,24. футов (6, 7 и 8 м) в высоту соответственно; L1, L2 и L3 обозначают поддерживаемые пролеты длиной 59,06, 78,74 и 9843 фута (18, 24 и 30 м) с общей приложенной нагрузкой 18,152, 22,262 и 26,372 фунт-сила / фут (265, 325 и 385). кН / м) соответственно; а S2 и S3 представляют разные типы грунтов основания. Для S2 Φ составляла 30 градусов, c составляла 104 фунта / фут 2 (5 кПа), а вес устройства составлял 121 фунт / фут 3 (19 кН / м 3) .Для S3 Φ составлял 20 градусов, c составлял 835 фунтов / фут 2 (40 кПа), а вес устройства составлял 108 фунтов / фут 3 (17 кН / м 3) . Как показано на рисунке 48, при увеличении модуля Юнга армирования с 3,63 до 7,25 тысяч фунтов на квадратный дюйм (от 25 до 50 МПа) максимальная вертикальная деформация опоры уменьшилась как минимум на 42 процента, а при увеличении модуля Юнга армирования с 7,25 до 14,50 тысяч фунтов на квадратный дюйм (50 до 100 МПа) максимальная вертикальная деформация снизилась не менее чем на 36 процентов.Более того, результаты показывают, что более высокий абатмент MSE имел большее вертикальное смещение, чем более низкий абатмент.


1 дюйм = 2,54 см
1 фунт / кв. Дюйм = 6,89 кПа

Рисунок 48. График. Влияние E R на максимальное вертикальное смещение абатментов MSE с металлическими полосами

Тацуока и др. , и Татеяма выполнили серию испытаний модели плоской деформации подпорных стен из песка, армированных металлическими полосами, с тремя различными количествами армирующих слоев ( N, = 2, 5 и 10). (77,78) Армирующие слои выполнены из полосок фосфористой бронзы. Стена модели была 33,07 дюйма (84 см) в ширину, 15,55 дюйма (39,5 см) в длину и 20,47 дюйма (52 см) в высоту. Как показывают результаты, представленные на рисунке 49, при увеличении N вертикальное смещение фундамента, расположенного на вершине опоры, при каждой приложенной нагрузке уменьшалось. Например, при увеличении N с 2 до 5 оседание при приложенном давлении 1,02 фунта на квадратный дюйм (7 кПа) уменьшилось примерно на 70 процентов, а при увеличении N с 5 до 10 оседание уменьшилось на 53 процента под приложенным давлением 2.03 фунтов на квадратный дюйм (14 кПа). Цао и Пэн смоделировали эти эксперименты с помощью нелинейного МКЭ-анализа и получили аналогичные результаты. (79) Результаты показали, что пиковая нагрузка на опору армированных подпорных стен значительно увеличивалась с увеличением количества армированных слоев. Экспериментальные результаты были получены Татеямой, а результаты МКЭ были получены Цао и Пэн. (78,79)


1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Зевголиса и Бурдо. (4)

Рисунок 49. График. Результаты расчета нагрузки на фундамент поверх абатмента MSE.

Влияние лицевых блоков на зависимости деформации нагрузки

Nicks et al. провела пять пар испытаний в рамках исследовательского исследования FHWA, чтобы изучить влияние облицовочных элементов на поведение деформационной нагрузки опор моста (см. рисунок 50). (42) Они пришли к выводу, что предельная вместимость сваи увеличивалась при наличии облицовочного элемента; однако величина деформации при разрушении, которая была измерена с помощью LVDT и POT на основании, была аналогичной для данного GRS-композита с облицовкой или без нее.

Для рисунка 50 использовались следующие параметры:

  • TF-2 и TF-3 с S v = 7,64 дюйма (19,4 см) и T f = 2398 фунтов / фут (35 кН / м).
  • TF-6 и TF-7 с S v = 7,64 дюйма (19,4 см) и T f = 4795 фунтов / фут (70 кН / м).
  • TF-9 и TF-10 с S v = 15,24 дюйма (38,7 см) и T f = 4795 фунтов / фут (70 кН / м).
  • TF-12 и TF-11 с S v = 3,82 дюйма (9,7 см) и T f = 1404 фунт / фут (20,5 кН / м).
  • TF-14 и TF-13 с S v = 11,26 дюйма (28,6 см) и T f = 3596 фунтов / фут (52,5 кН / м).


1 фунт / кв. Дюйм = 6,89 кПа
Примечание. Этот рисунок был создан FHWA после того, как Nicks et al. (42)

Рисунок 50. График. Напряжение-деформация для разных опор.

Влияние предварительного ограничения на зависимости деформации нагрузки

Полномасштабное испытание нагрузкой на опору моста из GRS было проведено в TFHRC FHWA в 1996 году. (22,23) Опора из GRS была предварительно напряжена (предварительно нагружена) с помощью гидравлических домкратов и специально разработанной системы противодействия. Результаты, полученные с этой оснащенной измерительной аппаратурой опоры моста, показывают, что предварительное натяжение уменьшило вертикальную осадку опоры примерно на 50 процентов (см. Рисунок 51). Рисунок 52 показывает, что предварительное натяжение не уменьшило боковую деформацию, за исключением верхней части сваи, где боковое смещение значительно уменьшилось.


1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Adams and Wu et al. (22,23)

Рисунок 51. График. Кривые нагрузки-осадки для причала.


1 фут = 0,305 м
1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после Adams and Wu et al. (22,23)

Рисунок 52. График. Боковое смещение измерено с помощью LVDT.

В 1997 году в городе Блэк-Хок, штат Колорадо, были построены два опоры мостовидного протеза GRS для поддержки стального моста. (23) Поскольку толщина упора из армированного грунта под четырьмя опорами, непосредственно поддерживающими вес моста, была разной, опора GRS была предварительно нагружена, чтобы уменьшить разницу в осадке между соседними опорами. Абатмент был предварительно нагружен до 35,53 фунтов на квадратный дюйм (245 кПа) (в 1,6 раза превышающей расчетную нагрузку в 21,76 фунтов на квадратный дюйм (150 кПа)) для квадратного основания и 11,60 фунтов на кв. Дюйм (80 кПа) (в 2 раза превышающей расчетную нагрузку, равную 5.80 фунтов на квадратный дюйм (40 кПа)) для прямоугольной опоры. Было обнаружено, что предварительная нагрузка существенно уменьшила дифференциальную осадку. Дифференциальные осадки при 21,76 фунт / кв. Дюйм (150 кПа) цикла предварительной нагрузки для двух абатментов составили 0,33 и 0,85 дюйма (8,4 и 21,6 мм). При 21,76 фунт / кв.дюйм (150 кПа) в цикле повторной нагрузки дифференциальная осадка обоих абатментов была менее 0,039 дюйма (1 мм). (23) Результаты измерений Wu et al. также показывают, что предварительная нагрузка уменьшила боковое смещение абатментов GRS (см. рис. 53 и рис. 54). (23) При 21,76 фунт / кв. Дюйм (150 кПа) в цикле предварительной нагрузки максимальные боковые смещения в западном опоре (высота 8,86 фута (2,7 м)) и восточном опоре (высота 17,72 фута (5,4 м)) составили 0,06 и 0,52 дюйма (1,5 и 13,2 мм) соответственно. Эти значения смещения были уменьшены до 0,02 и 0,18 дюйма (0,6 и 4,5 мм) соответственно при 21,76 фунт / кв. Дюйм (150 кПа) в цикле перезарядки. После первого цикла повторной загрузки не произошло значительного снижения величины латеральных и вертикальных деформаций абатментов GRS в последующих циклах повторной загрузки. (23)


1 фут = 0,305 м
1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после того, как Wu et al. (23)

Рисунок 53. График. Профили боковых деформаций западного устоя.


1 фут = 0,305 м
1 дюйм = 25,4 мм
1 фунт / кв. Дюйм = 6,89 кПа
Примечание: этот рисунок был создан FHWA после того, как Wu et al. (23)

Рисунок 54. График.Профили боковой деформации восточного устоя.

3.4 Влияние переходных нагрузок на деформации опор мостов на сыпучих грунтах

Динамические нагрузки могут включать транспортную нагрузку и нагрузку, вызванную уплотнением. В нескольких исследованиях изучалось влияние временных нагрузок на опоры мостов с использованием инженерных насыпей. На основе трехмерного (3D) численного исследования интегрального абатментного моста Olson et al. пришли к выводу, что прогиб надстройки, связанный с динамической нагрузкой, оказал вторичное влияние на смещение упора, но существенно изменил их вращение. (80) В результате критические моменты в соединении между надстройкой и фундаментом были усилены временными нагрузками при тепловом расширении и улучшились в условиях теплового сжатия. Глава 10 Спецификации проектирования моста AASHTO LRFD В спецификации говорится: «Переходная нагрузка может не учитываться при анализе осадки связных грунтов, подверженных зависящим от времени оседанию консолидации». (8) Однако для несвязных грунтов (включая инженерные насыпи) переходная нагрузка может учитываться при деформациях фундаментов мелкого заложения, опор и опор мостов.Для подпорных стен и опор мостов традиционный подход заключается в добавлении временной нагрузки к статической нагрузке и рассмотрении комбинированных нагрузок как постоянной статической нагрузки. Например, с помощью аналитических исследований Ким, Баркер, Эсмаили и Фатоллахзаде исследовали эквивалентную надбавку за загрузку грузовика и поезд, соответственно, на подпорные стены и опоры моста. (81,82) В настоящее время динамическое влияние переходной нагрузки на опоры моста при использовании инженерных насыпей не исследовалось.Более того, отсутствует литература о зависимых от времени и динамических (переходных) нагрузках на поведение деформаций и напряжений опор моста в инженерных насыпях.

3.5 Определение распределения напряжений в сыпучих грунтах под фундаментом мелкого заложения

Уравнения для вычисления вертикальных напряжений в любой точке массива грунта из-за внешних вертикальных нагрузок были разработаны на основе теории упругости. Наиболее широко используются формулы Буссинеска и Вестергаарда. (83,84) Они были впервые разработаны для точечных нагрузок, действующих на поверхность. Эти формулы были интегрированы для получения напряжений ниже равномерных нагрузок на полосу и прямоугольных нагрузок. На практике часто отдают предпочтение формулам Буссинеска, поскольку они дают консервативные результаты.

Формулы Буссинеска основаны на следующих предположениях: (83)

  • Почвенная масса упругая, изотропная, однородная.
  • Почва полубесконечная.
  • Почва невесомая.

В формулах Вестергаарда материал изотропен с конечными и равными модулями нормали по горизонтали и вертикали и коэффициентами Ядовитости, но с бесконечным модулем сдвига по горизонтали. (84) Предположения для формул Вестергаарда следующие:

  • Почва упругая и полубесконечная.
  • Грунт состоит из множества близко расположенных горизонтальных слоев пренебрежимо малой толщины бесконечного жесткого материала.
  • Жесткий материал допускает только деформацию массы вниз, при которой горизонтальная деформация равна нулю.

Для инженерных насыпей без армирования формулы Буссинеска и Вестергаарда могут использоваться для определения распределения напряжений внутри массива грунта. В армированных инженерных насыпях, которые используются в качестве опор мостов, армированные грунты больше не являются изотропными или однородными. Следовательно, Буссинеск и Формулы Вестергаарда могут быть неприменимы.В таком случае можно использовать численное моделирование (например, метод конечных разностей или метод конечных разностей). Многие прошлые исследования изучали распределение деформации и напряжения арматуры в стенах, армированных геосинтетическими материалами. (См. Ссылки 85–88.) Для армированных металлом грунтов в североамериканской практике используются три распространенных метода оценки нагрузок на арматуру: метод когерентной гравитации AASHTO, метод жесткости конструкции FHWA и упрощенный метод AASHTO. (См. Ссылки 52, 89 и 36.) Ограниченные исследования были проведены по распределению напряжений в армированных грунтах в качестве опор мостов, особенно в SLS. Роу и Хо изучили сплошную полностью облицовочную стенку из панелей с шарнирным носком, усиленную расширяемой арматурой в гранулированной засыпке, опирающейся на жесткий фундамент. (90) Это численное исследование пришло к выводу, что среди изученных параметров на распределение силы больше всего повлияли жесткость арматуры, плотность, внешнее Φ между облицовкой и грунтом, внутреннее Φ грунта обратной засыпки и жесткость облицовки.

На распределение напряжений могут влиять различные грунтовые условия (например, гранулометрический состав, параметры прочности, относительная плотность и мелкодисперсный состав), характеристики арматуры (например, T f , жесткость, N, и S. v ), а также условия нагружения, некоторые из которых были исследованы Роу и Хо. (90) Однако поиск в литературе, проведенный авторами этого отчета, показывает, что отсутствует документация и понимание влияния различных параметров на распределение напряжений в армированных инженерных насыпях в качестве опор мостов в SLS.

Различные типы опор в строительстве Где и когда использовать?

Фундамент — важная часть конструкции, которая передает нагрузку конструкции на грунт фундамента. Фундамент распределяет нагрузку на большую площадь. Чтобы давление на грунт не превышало его допустимую несущую способность и ограничивало оседание конструкции в допустимых пределах. Фундамент увеличивает устойчивость конструкции.Осадка конструкции должна быть по возможности равномерной и находиться в допустимых пределах.

Проще говоря, возьмем 1 м 3 веса бетона, то есть от 2400 кг до 2600 кг в зависимости от смеси. Подумайте, сколько нужно бетона для двухэтажного дома? Сколько нужно стержней? построить здание. Фундамент должен быть достаточно прочным, чтобы выдерживать все нагрузки без какой-либо осадки, поэтому для распределения вертикальной нагрузки на большие площади сооружаются опоры.

Основные функции фундамента: —
  1. Распределение нагрузок
  2. Устойчивость к скольжению и опрокидыванию
  3. Минимизация дифференциальной осадки
  4. Защита от подрыва
  5. Обеспечение ровной поверхности почвы
  6. 9199 Минимизация движения от повреждений В зависимости от Несущая способность грунта конкретного места. Выбираются и изготавливаются различные типы опор.

    Фундаменты в основном подразделяются на два типа:

    1. Фундаменты мелкого заложения
    2. Фундаменты глубокого заложения

    Если глубина фундамента равна или превышает его ширину, его называют глубоким фундаментом , в противном случае — мелким опора.

    Разница между фундаментом и фундаментом:

    Фундамент — это часть фундамента, построенная из бетонной или кирпичной кладки и служащая основанием для колонн пола и стен пола.Основная функция опоры — передача вертикальных нагрузок непосредственно на почву. Термин «фундамент» обычно используется в сочетании с «Неглубокий фундамент».

    Где мы обеспечиваем неглубокий и глубокий фундамент?

    Фундаменты могут быть мелкими или глубокими в зависимости от нагрузки и типа грунта фундамента. Если поддерживаемая нагрузка очень высока, а грунт имеет низкую несущую способность, предусматриваются глубокие фундаменты. Если грунт имеет достаточную несущую способность на разумной глубине, то должны быть предусмотрены мелкие опоры.

    Ниже мы обсудили различные типы фундаментов домов, которые мы обычно используем для строительства. Глубокие и мелкие фундаменты далее подразделяются на следующие типы: —

    Насыпные фундаменты используются, когда грунт имеет достаточную прочность на небольшой глубине ниже уровня земли. Неглубоким фундаментам требуется достаточно площади для переноса тяжелых грузов на грунт основания. Как упоминалось выше, мы выбрали неглубокий фундамент, когда почва имеет достаточную несущую способность Почва .Фундаменты в фундаментном фундаменте могут быть из каменной кладки, простого бетона или железобетона. Глубина фундаментов мелкого заложения обычно меньше его ширины.

    Различные типы фундаментов мелкого заложения далее делятся на два типа в зависимости от несущей способности грунта: —

    Фундаменты, которые устанавливаются под каждой колонной независимо, называются изолированными фундаментами. В сечении они обычно квадратные, прямоугольные или круглые. Фундамент укладывается на РСС.Перед укладкой PCC жидкость для борьбы с термитами распыляется на верхнюю поверхность PCC, чтобы ограничить возможность повреждения термитами опоры. Изолированные опоры предусмотрены там, где несущая способность грунта обычно высока, и они представляют собой толстую плиту, которая может быть плоской, ступенчатой ​​или наклонной. Этот тип оснований наиболее экономичен по сравнению с другими типами оснований.

    Преимущества изолированной опоры: —

    1. Экономично, когда колонны размещаются на больших расстояниях.
    2. Рабочие с небольшими знаниями или без них могут легко строить.
    3. Простота строительства: — Земляные работы, опалубка, размещение арматуры и бетонирование — легкость.

    Опоры такого типа обычно имеют квадратную, прямоугольную или круглую форму, которые предоставляются независимо под каждой колонкой . Плоское или подушечное основание является одним из неглубоких оснований. Это плита круглой, квадратной или прямоугольной формы одинаковой толщины.

    Эти типы фундаментов строились в былые времена, а теперь они устарели.Судя по названию, это похоже на то, что опоры сложены одна на другую как ступеньки. Три бетонных профиля уложены друг на друга и образуют ступеньки. Этот тип опор еще называют ступенчатым фундаментом. Ступенчатая опора в основном используется в жилых домах.

    Наклонные опоры представляют собой трапециевидные опоры. Они спроектированы и сконструированы с особой тщательностью, чтобы обеспечить сохранение угла наклона 45 градусов со всех сторон. По сравнению с трапециевидной опорой и плоской опорой использование бетона меньше.Таким образом, это снижает стоимость фундамента из бетона, а также арматуру.

    Стойка обуви представляет собой половину выреза из исходной опоры и имеет форму обуви. Они построены на границе собственности, где нет зоны отступления. Он строится в углу участка, когда внешняя колонна находится близко к границе или линии собственности, и, следовательно, нет возможности проецировать фундамент далеко за грань колонны. Колонна предоставляется или загружается по краям подошвы обуви.Опоры башмаков строятся, когда несущая способность грунта составляет 24 кН / м 2

    Стойка, имеющая более одной колонны, называется комбинированной опорой. Такой тип основания применяется, когда пространство ограничено. Из-за нехватки места мы не можем отливать отдельные опоры, поэтому опоры объединены в одну опору. В зависимости от формы они подразделяются на два типа:

    Когда нагрузки на колонну велики или когда безопасная несущая способность почвы очень низкая, Требуемая площадь опоры стать очень большим.Как уже упоминалось, эта опора находится в неглубоком фундаменте. Таким образом, чтобы распределить нагрузку на большую площадь с меньшей глубиной, мы должны увеличить площадь опоры. Если мы увеличиваем площадь опоры, опоры перекрывают друг друга, вместо того, чтобы обеспечивать каждую опору на каждой колонне, все колонны помещаются в общую опору. Плотный фундамент представляет собой прочную железобетонную плиту, покрывающую всю площадь под конструкцией и поддерживающую все колонны. Такой фундамент за счет собственной жесткости сводит к минимуму дифференциальные осадки.

    Обеспечивается в таких местах, как прибрежная зона, прибрежная зона, где уровень грунтовых вод очень высок, а несущая способность почвы очень низкая.

    При количестве столбцов более чем в одном ряду, снабженных комбинированным основанием, основание называется матом или плотным фундаментом.

    1. Если несущая способность грунта очень хорошая, а сверхструктурная нагрузка очень мала .. Рекомендуется использование изолированного фундамента.
    2. Если несущая способность грунта очень низкая, например, менее 100 кПа (это не точное число, но его можно использовать в качестве границы)
    3. Если сверхструктурная нагрузка, передаваемая на фундамент, очень высока, то площадь изолированной опоры, которая будет использоваться, составляет более половины площади, занимаемой зданием (это рекомендуется Джозефом.E Bowles)
    4. Когда мы предоставляем лифт в здании, на шахте лифта может быть предусмотрен отдельный плот.
    5. Если в почве есть линзы (или слабые зоны), которые необходимо перекрыть, можно использовать плот.

    Плотное основание не имеет горловины колонны, они начинаются прямо с поверхности земли, но армирование горловой колонны начинается с основания.

    III. Ленточный фундамент:

    Ленточный фундамент также называется Стеновой фундамент. Как видно из названия, это фундамент ленточного типа, который следует за стеной надстройки.Этот тип фундамента предназначен для несущих стен. Это непрерывная полоса из бетона , которая служит для распределения веса несущей стены по площади почвы. Ширина фундамента на ленточном фундаменте определяется с учетом несущей способности грунта. Чем больше несущая способность грунта, тем меньше ширина ленточного фундамента.

    Преимущества ленточной опоры:

    1. Для строительства не требуются дорогостоящие инструменты.
    2. Простота сборки
    3. Для строительства не требуется квалифицированная рабочая сила.

    Недостатки ленточного фундамента:

    1. Менее прочный по сравнению с другими типами фундамента
    2. Этот тип фундамента не подходит для определенных типов грунтов

    Если глубина фундамента больше его ширины Заложен фундамент — глубокий фундамент. В глубоком фундаменте отношение глубины к ширине обычно больше 4: 5. Глубокие фундаменты по сравнению с неглубокими фундаментами распределяют нагрузку на верхнюю конструкцию вертикально, а не в поперечном направлении.Фундаменты глубокого заложения предусматриваются, когда ожидаемые нагрузки от верхнего строения не могут поддерживаться на фундаментах мелкого заложения.

    Свая — это длинный элемент, передающий вертикальную нагрузку , сделанный из дерева, стали или бетона. В свайных фундаментах ряд свай забивается в основание конструкции.

    Они сконструированы там, где необходимо исключить чрезмерную осадку и где нагрузка должна передаваться через мягкий слой почвы, где несущая способность почвы достаточна.Эти типы опор предоставляются, когда несущая способность почвы очень низкая, а уровень (уровень) грунтовых вод высокий. Эти типы опор обычно проектируются на прибрежных участках моря, на мостах для сооружения опор и т. Д.

    Основная цель установки свай под основанием — предотвратить оседание конструкции. Если не поставить сваю под фундамент, то у здания будет осадка. Сваи забиваются в землю до тех пор, пока не будет обнаружен твердый (в сжимаемом) слое земли.

    Свайные фундаменты делятся на два типа: —

    1. Сборные сваи.
    2. Сваи монолитные.

    1. Сборные сваи:

    Сборные сваи заливаются на заводе и транспортируются на строительную площадку. Такие сваи изготавливаются в готовом виде и используются там, где меньше места для забивки сваи. Сборные сваи неэкономичны и требуют больше денег для транспортировки свай на площадку.

    Сборные бетонные сваи обычно представляют собой армированные или предварительно напряженные бетонные сваи.Эти сваи занимают больше места для заливки и хранения и требуют больше времени для схватывания и отверждения. Сборные железобетонные сваи обычно используются для максимальной расчетной нагрузки около 800 кН, за исключением больших предварительно напряженных свай. Длина сборных железобетонных свай варьируется от 4,5 м до 30 м. Предварительно напряженные бетонные сваи по сравнению с сборными и железобетонными сваями меньше по весу, просты в обращении, обладают высокой грузоподъемностью и чрезвычайно долговечны.

    Преимущества сборных свай: —

    • Арматура, предусмотренная в сборных сваях, не подлежит изменению ее места и нарушению.
    • Стоимость изготовления сборных свай меньше, поскольку большое количество сборных свай производится одновременно.
    • Дефекты сваи можно легко определить после снятия опалубки , и эти дефекты (например, наличие полости или отверстия) можно исправить до забивки сваи на строительную площадку.

    Недостатки сборных свай: —

    • Эти сваи тяжелые, поэтому для их переноски и транспортировки на площадку требуется специальное оборудование.
    • При транспортировке необходимо соблюдать осторожность, иначе сваи могут сломаться.
    • Для установки этих свай в поле требуется тяжелое сваебойное оборудование.
    • Эти сваи являются дорогостоящими, так как требуется дополнительное армирование, чтобы выдерживать нагрузки при перемещении и забивании.
    • Опора сваи в грунт, невозможно увеличить глубину сваи. Поскольку длина ворса ограничена.

    2. Сваи монолитные.

    Сваи, закладываемые на стройплощадке.И не требующие транспортировки сваи называются монолитными. Сваи из монолитного бетона закладываются в землю и в обычных случаях не нуждаются в усилении. Эти сваи не подвергаются нагрузкам при погрузке / разгрузке или забивке. Сваи из монолитного бетона обычно используются для максимальной расчетной нагрузки 750 кН.

Добавить комментарий