Однолинейная принципиальная схема электроснабжения: Однолинейная схема электроснабжения – общие понятия, виды и проектирование

Содержание

Однолинейная схема электроснабжения – общие понятия, виды и проектирование

Монтаж электрической проводки, коммутационных и защитных устройств в квартире, частном доме или на предприятии требует основательного подхода. Для этого предварительно составляется однолинейная схема электроснабжения. Рассмотрим, как и в соответствии с какими требованиями решается указанная задача.

Содержание

  • Понятие и назначение однолинейной схемы
    • Особенности принципиальной электрической схемы
    • Разница однолинейной и принципиальной схемы
    • Разновидности однолинейных схем
  • Порядок разработки ОСЭ
    • Какую информацию должна нести ОСЭ
    • Этапы разработки
    • Требования ГОСТ и нюансы оформления
    • Условно-графическое отображение компонентов цепи
    • Проверка и утверждение проекта
  • Создание чертежа при помощи специализированных программ
    • 1 2 3 схема
    • XL Pro² от Legrand
    • XL PRO³
    • Rapsodie — компоновка распределительных щитов

Понятие и назначение однолинейной схемы

Однолинейная схема электроснабжения (ОСЭ) — это документ, упрощенно отражающий расположение силовых линий и мест их соединения, коммутационных устройств, распределительных пунктов и т. д. Это способствует нанесению значительного объема информации на одном чертеже.

Благодаря ей упрощается процесс монтажа электрической цепи. Также она необходима для последующей сдачи в соответствующие органы для подтверждения проекта электроснабжения конкретного объекта. Без ОСЭ не получится подключиться к централизованной магистрали.

Подвод электроэнергии к частному дому

Особенности принципиальной электрической схемы

Принципиальная схема дает развернутую информацию о функционировании электрической части объекта. Она в отдельности рассматривает компоненты цепи, отображая рабочие характеристики и разъясняющие чертежи по электрической и электромагнитной связи оборудования. Принципиальный проект электроснабжения является базовым для остальных видов документации.

Составление принципиального чертежа может вестись разнесенным или совмещенным методом. Первый вариант предполагает отображение большого количества коммутационных и защитных устройств. Для обеспечения наглядности работы всех элементов их рассматривают отдельно друг от друга. При последовательном расположении устройств каждому из них присваивается конкретное обозначение в порядке очередности. При наличии отдельных цепей их располагают параллельно.

Пример однолинейной схемы подключения объекта

Совмещенная методика основана на отображении всех защитных и коммутационных устройств в непосредственной близости. В оставшемся свободном месте на полях допускается расположить расшифровку условно-графических элементов. В тех случаях, когда устройство задействовано не полностью, следует отразить его целиком на чертеже, обозначив какая часть используется. При этом не применяемую часть разрешается изобразить в укороченном виде.

Разница однолинейной и принципиальной схемы

ОСЭ представляет собой чертеж, на котором изображены компоненты сети с номинальными параметрами. Они указываются на схеме условными значками, которые соединяются одной линией, независимо от количества используемых фаз, что является главным отличием от принципиальных схем. Устройства отображаются в соответствии с установленными правилами.

Принципиальная однолинейная схема

Разновидности однолинейных схем

ОСЭ подразделяются на расчетные и исполнительные. Далее рассмотрим их отличия.

Расчетные

Разрабатываются для объектов, которые впервые подключаются к питающей электросети. В процессе составления чертежа понадобится сделать ряд вычислений. Они касаются нагрузок и потерь напряжения, которые необходимы для подбора кабельных линий, коммутационной аппаратуры и т. д.

При этом расчетная схема может включать в себя следующую документацию:

  1. Структурный проект электрооборудования, который отражает силовую часть между источником и потребителем (точки подключения, ЛЭП, трансформаторные подстанции, распределительные щиты, коммутационные устройства).
  2. Функциональная схема наглядно показывает работу используемого на объекте оборудования, а также определяет категорию опасности. Как правило, разрабатывается для зданий промышленного назначения.
  3. Расположение пожарной сети.
  4. Монтажный проект, утвержденный соответствующими инстанциями.
Проект электроснабжения стройплощадки жилого дома

Обратите внимание! От правильности составления расчетной схемы зависит будущая безопасность эксплуатации, в т. ч. электрическая и пожарная.

Исполнительные

Создается для объектов с действующей схемой электроснабжения, при необходимости замены или модернизации отдельных участков цепи. В исполнительном проекте отображается:

  • реальное состояние электросети;
  • перечень задействованного оборудования;
  • рекомендации по устранению зафиксированных неисправностей и монтажу дополнительного оборудования.
Схема электроснабжения частного дома

При разработке схемы для крупных объектов следует отдельно отразить все элементы. Сначала подготавливается однолинейная схема распределительного щита всего объекта, затем для каждого отдельного помещения с указанием линий связи.

Порядок разработки ОСЭ

При создании однолинейного проекта электросети понадобится соблюдать определенные нормативные правила. При этом подбор отдельных элементов цепи должен вестись согласно ПУЭ.

Какую информацию должна нести ОСЭ

На схеме, предназначенной для формирования проекта электроснабжения, обязательно потребуется отразить:

  • точку подключения к источнику питания;
  • тип вводного аппарата (автомат или распределительный пункт) с указанием номинального тока;
  • сведения об используемых счетчиках для учета электроэнергии;
  • марку, длину, сечение и количество токопроводящих жил кабельных линий;
  • расчетные потери напряжения и нагрузку;
  • используемые защитные устройства;
  • расположение внутренней и наружной сети освещения.

Этапы разработки

Перед началом разработки однолинейного проекта электрической сети понадобится получить техническое условие. Для этого потребуется обратиться в муниципальный участок электросетей. Техническим условием определяется место подключения объекта к питающей сети, а также границы распределения будущего проекта электроснабжения.

После этого потребуется посетить отдел архитектуры и градостроительства по месту жительства. В нем сделать запрос на выдачу генерального плана земельного участка. Это необходимо для точного определения места прокладки питающей линии от точки подключения, исключая пересечения с другими инженерными сооружениями. Также можно определить длину будущей кабельной линии.

Порядок подключения к электрическим сетям

На следующем этапе выполняется расчет планируемых нагрузок, с отображением всех требуемых элементов на однолинейной схеме. На завершающей стадии останется утвердить проект и получить разрешение на подключение к питающей сети.

Требования ГОСТ и нюансы оформления

Построение ОСЭ ведется в соответствии с требованиями ГОСТов ЕСКД.

Для этого используются следующие номера ГОСТов:

  • 709-89 — токопроводящие проводники, электрооборудование и контактные соединения;
  • 710-81 — нанесение буквенно-цифровых обозначений;
  • 721-74 — элементы общего использования;
  • 732-68 — обозначение источников света;
  • 755-87 — коммутационные аппараты и контактные соединения;
  • 702-2011 — правила оформления схем.
Буквенно-цифровые обозначения в схемах по ГОСТ 2.710-81

При оформлении чертежа рекомендуется придерживаться следующих правил:

  1. Первоначально чертится рамка и штамп установленной формы.
  2. При необходимости можно разнести чертеж на несколько листов, чтобы было легче его читать. В этом случае формируется список со сквозной нумерацией.
  3. Осуществление маркировки элементов цепи производится от источника питания к конечному потребителю. Для этого используются заглавные латинские буквы и арабские цифры. Первые указывают фазу переменного тока, а вторые — последовательность цепи.
  4. Для обозначения положительной полярности используются нечетные цифры, а отрицательной — четные.
  5. Расшифровка маркировки составляющих цепи выполняется в левой части чертежа или непосредственно над каждым элементом.
  6. Основные параметры питающей сети, а также потребителей можно сносить в отдельную таблицу. При этом ее размер не регламентируется.
  7. Допускается использовать свободные участки ОСЭ для отображения технических характеристик кабельных линий в виде текста.

Условно-графическое отображение компонентов цепи

Для составления ОСЭ понадобится использовать определенные условные обозначения. Их большая часть отражена ГОСТами ЕСКД 2.721-74, 2.709-89, 2.755-87 и 2.732-68 в отдельных таблицах.

Проверка и утверждение проекта

После завершения разработки ОСЭ на ней ставится подпись непосредственного исполнителя. В дальнейшем понадобится получить согласование проекта от ответственного специалиста со стороны поставщика, который осуществляет проверку предоставленных данных.

Заключительным этапом станет получение разрешения на реализацию проекта от руководителя муниципальных электросетей. В зависимости от установленного штата указанной организации, проверяющий и утверждающий специалист может совмещать обязанности.

Создание чертежа при помощи специализированных программ

Развитие компьютерных технологий значительно упростило процесс создания ОСЭ. Для этих целей разработаны программы, которые позволяют в кратчайшие сроки выполнить проект в соответствии со всеми государственными стандартами на компьютере. Далее рассмотрим наиболее распространенные варианты.

1 2 3 схема

Относится к категории бесплатных ПО. Как правило, используется студентами и начинающими пользователями. Программа русифицирована и доступна к скачиванию на официальном сайте. С ее помощью можно подобрать серию и размер планируемого корпуса электрического щита, а также обозначить каждый отдельный автомат. Программа разработана для создания однолинейных схем квартирного типа. Для управления функциями достаточно использовать только мышку.

Бесплатная программа 1-2-3 схема

XL Pro² от Legrand

Предназначена для проектирования электрических схем с использованием элементов, которые рассчитаны на низкое напряжение. Для компоновки и размещения распределительных шкафов и щитков серии XL³ можно использовать следующие методики:

  1. В подготовленном программой перечне выбрать компоненты электросети фирмы Legrand.
  2. Посредством формирования однолинейной схемы.
Программа проектирования и расчета создания схемы электро шкафов XL PRO 2

Программное обеспечение также распространяется бесплатно, но требуется предварительная регистрация. XL Pro² способна в автоматическом режиме определить и разместить на схеме необходимый тип распределительного комплекса, а также обозначит стоимость оборудования.

XL PRO³

Предусматривает возможность использования методик составления электрической схемы аналогичной программы XL Pro². Компоновать ОСЭ можно элементами фирмы Legrand, которые рассчитаны на ток до 6,3 кА. При этом имеется функция автоматической корректировки мест расположения электрооборудования, подбора распределительных щитков с указанием их стоимости. Скачать XL PRO³ можно на официальном сайте.

Модуль визуализации Legrand XL Pro³

Rapsodie — компоновка распределительных щитов

Рассматриваемая программа осуществляет быструю компоновку низковольтных распределительных шкафов фирмы Schneider-Electric. Помимо основных элементов в схему можно добавить и различные дополнительные аксессуары, с возможностью добавления недостающих видов электрооборудования. При этом имеется функция автоматической корректировки конфигурации ранее выбранных элементов однолинейной схемы. В конечном итоге можно визуализировать разработанный проект, а также отобразить его стоимость с учетом затрат на монтажные работы.

Rapsodie поставляется в русскоязычном виде с доступным и понятным интерфейсом, с возможностью экспорта или распечатки полученного результата. Для использования продукта понадобится предварительно подать заявку на официальном сайте. После ее одобрения пользователь проходит обучающий курс.

Программа Шнайдер электрик Rapsodie

Чтобы правильно начертить ОСЭ, понадобится соблюдать установленные нормы и правила. Для этого необходимо изучить соответствующую техническую документацию. Применение актуальных программ для рисования способствует существенному ускорению процесса создания чертежа.

Однолинейные схемы на объектах / Хабр

Довольно длительное время я занимался эксплуатацией электроустановок. В их числе были электроустановки объектов жилой и коммерческой недвижимости, которые находились в различном статусе: недавно построенные и введённые в эксплуатацию, реконструированные или ожидающие реконструкции. На каждом таком объекте существовали те или иные проблемы с однолинейными электрическими схемами.

Они или вовсе отсутствовали или требовали актуализации. По причине того, что нормальная эксплуатация без подобной документации затруднительна, мне приходилось заниматься организацией сбора и документированием такой информации.

Коротко об однолинейных схемах

Как известно, эксплуатация электроустановок производится в соответствии с «Правилами технической эксплуатации электроустановок потребителей», сокращённо — ПТЭЭП. В тексте этого документа несколько раз использован термин «однолинейная схема» (пункты 1.5.18. и 1.8.9.). Что же она из себя представляет?

Очевидно, однолинейная схема является схемой электрической. А все электрические схемы, в зависимости от своего назначения, относят к разным типам: структурные, функциональные, принципиальные, монтажные, схемы подключений, общие схемы, схемы расположения и объединённые схемы. Описание каждого типа можно найти в ГОСТ 2.701-2008 (Таблица 2).

Однолинейные схемы, как правило, дают наглядное представление о структуре и взаимосвязи составных элементов электроустановки. Поэтому такие схемы относят к принципиальным электрическим схемам (код Э3 в нотации ГОСТ 2.701-2008). Тем не менее на них может иметься и дополнительная информация, например, указание границ балансовой и эксплуатационной принадлежности.

Пример однолинейной схемы электроснабжения предприятия.

Для простоты восприятия при составлении однолинейных схем используют упрощённые, однополюсные условно графические обозначения. Это означает, что если в электрощите установлено одно-, двух-, трех- или четырёхполюсное устройство, то для его обозначения на схеме всегда будет использовано однополюсное представление.

Многополюсное(слева) и однополюсное(справа) условно графическое обозначение трёхполюсного автомата

Актуальные однолинейные схемы важны для всех электроустановок без исключений. Тем не менее стоит понимать следующее. Одновременно с электроустановками, безопасная эксплуатация которых без схем просто немыслима, существует огромное количество других установок, которые годами эксплуатируются без документации.

Чаще всего это касается распределительных щитов в бизнес-центрах, торговых центрах, электрощитов на территориях складов, цехов, в различных технических помещениях. В связи с особенностями деятельности подобных предприятий, все эти комплектные устройства могут очень часто подвергаться изменениям. Таких электрощитов может быть много, очень много. В них изменяется всё что угодно, только не исполнительная документация.

Подобный технический долг может накапливаться годами и даже десятилетиями. Однажды это становится проблемой, с которой приходится бороться. Своим подходом к решению подобных задач я хочу поделиться далее.

Табличное представление

Как было сказано выше, когда разговор заходит об однолинейных схемах, представляются схемы, составленные с применением условно графических обозначений.

Если в щите есть однолинейная схема, то с большой долей вероятности она выглядит примерно так

Несмотря на то что такой формат привычен и очень популярен, для решения задачи «оперативно создать/отредактировать документацию» он имеет ряд недостатков. Во-первых, требуется, как правило, не бесплатное ПО — MS Visio, Autocad, Компас, EPLAN и аналогичное. Во-вторых, персонал должен обладать навыками работы с таким ПО. Да и работать с графикой на ноутбуке около электрощита — то ещё удовольствие.

В подобных ситуациях гораздо выгоднее использовать схемы в табличном представлении. Такой формат описан в ГОСТ 21.613-2014 (Приложение А, Рисунок А.4 «Пример выполнения принципиальной схемы групповой сети при использовании систем автоматизированного проектирования или информационного моделирования зданий, сооружений»). Технические данные, которые мы в дальнейшем сможем получить из таких таблиц, соизмеримы с данными, содержащимися в графической однолинейной схеме. Для своих практических целей я перенёс это представление в Excel.

ГОСТ 21.613-2014 Приложение А, Рисунок А.4 в Excel

Теперь моя работа по сбору данных и формированию схемы стала выглядеть так. Если требовалось, с помощью принтера этикеток (или маркера) я маркировал электрощит и установленные в нём аппараты.

Далее в поля заранее распечатанных таблиц вносилась вся доступная мне информация. Таким образом, мною описывался каждый электрощит.

После того как таблицы заполнены, рукописные тексты оцифровываются — переносятся в электронные таблицы Excel. Для описания каждого электрощита создаётся отдельный файл. Полученные Excel-документы распечатываются и размещаются на дверце электрощита в качестве однолинейной схемы. Если в ходе дальнейшей эксплуатации электрощит претерпевает изменения, то все они отражаются в файле. Актуальная таблица снова распечатывается для замены устаревшей, размещённой в электрощите.

▍Если графическая схема всё же необходима

Даже в этом случае крайне маловероятно, что схема будет составляться на ноутбуке около электрощита. Скорее всего, щит будет сфотографирован, что-то будет «законспектировано» и уже в офисе эта информация обретёт графический вид. Но в любом случае встаёт вопрос формата таких конспектов.

От Exсel к веб-сервису

Описанный выше подход был удобен и перекрывал большинство насущных задач до тех пор, пока я работал один. Но как только объём работы вырос и её пришлось делегировать, стали появляться сложности и неудобства. Ну а если работать неудобно, то, вероятнее всего, вдолгую этим никто заниматься не будет. Кроме того, хотелось иметь возможность какой-никакой автоматизации в дальнейшем, а хранение в Excel к этому не особо располагает.

В связи с этим я решил написать веб-сервис и клиент для него. Так появились phpSLDt и phpsldt-web-client.

▍phpSLDt

Это RESTful Web Service для работы с электрическими схемами групповых сетей. Сервис позволяет хранить и работать с табличным представлением однолинейных схем в формате JSON. Имеющиеся методы API описаны в спецификации OpenAPI. Сама спецификация в формате YAML доступна на странице проекта. Там же размещены инструкции по установке.

Кроме создания, удаления и редактирования однолинейных схем, сервис способен генерировать PDF для его дальнейшей печати. Сформированный файл соответствует формату определённому в ГОСТ 21.613-2014 (Приложение А, Рисунок А.4).

Печатная форма в pdf, сгенерированная phpSLDt

▍phpsldt-web-client

Это клиент к веб-сервису phpSLDt на Vue. Если phpsldt-web-client развернуть на веб-сервере в сети, то персонал сможет работать и создавать подобного рода документацию как на ПК, так и в своих мобильных устройствах, например, на планшетах.

Несмотря на очевидные преимущества деплоя на веб-сервер, при необходимости phpsld-web-client возможно запустить на ПК и без использования последнего.

Заключение

Из своей практики я могу сделать вывод, что применение схем в табличном представлении бывает крайне полезно и даёт следующие преимущества:

  • Быстрое составление достаточно подробного описания имеющихся электроустановок в электронном виде.
  • Отсутствует необходимость в специализированном ПО и персонале, который обучен в нём работать.
  • Персонал получает возможность оперативного внесения изменений в документацию.
  • Автоматическое формирование печатных форм в соответствии с ГОСТ (без основной надписи).

Использование же phpSLDt и phpsldt-web-client позволит ещё больше упростить подобную работу.

Что такое однолинейная схема и как нарисовать принципиальную схему

Нужна однолинейная схема сайта?

Хотите знать, как нарисовать принципиальную схему?

Тогда эта статья для вас!

Внутри я отвечу на эти вопросы об однолинейных схемах и многом другом!

  • Что такое принципиальная схема?
  • Зачем тебе это нужно?
  • Как нарисовать принципиальную схему?
  • Какие электрические символы вы используете?
  • Какую информацию вам нужно включить?
  • Или, может быть, вам просто интересно, как читать электрические чертежи…
  • Готов?

Поехали!

Что такое однолинейная схема?

Однолинейная схема (SLD) — это схематическая диаграмма высокого уровня, показывающая, как поступающая мощность распределяется по оборудованию.

A4.1.1 Однолинейная (Однолинейная) диаграмма: Диаграмма, которая показывает с помощью отдельных линий и графических символов ход электрической цепи или системы цепей и составных устройств или частей, используемых в них.

Наличие «одной линии» позволяет диаграмме оставаться читаемой, несмотря на передачу большого количества информации об электрической системе.

Эта диаграмма является основным справочным материалом по техническому обслуживанию и операциям по процедурам блокировки/маркировки, а также для любых инженерных исследований энергосистемы.

В этом посте я покажу зачем он нужен и как его сделать.

Зачем нужна однолинейная схема?

Он вам нужен по двум основным причинам: 

Для повседневной эксплуатации и технического обслуживания, а также изучения инженерных энергетических систем.

Оба требуют, чтобы диаграмма постоянно обновлялась и была доступна.

Эксплуатация и техническое обслуживание 

Для планирования процедур блокировки/маркировки вам потребуются актуальные первоисточники информации.

«4.2.2.2 Процедура блокировки

Процедура блокировки должна быть разработана на основе существующего электрооборудования и системы и должна использовать соответствующую документацию, включая современные чертежи и схемы». — CSA Z462

SLD помогают убедиться, что блокировки электрических цепей не приведут к повторному включению рабочей цепи.

«4.2.2.4 Блокировки электрических цепей

Необходимо сверяться с соответствующей документацией, включая актуальные чертежи и схемы, чтобы гарантировать, что никакая блокировка электрической цепи не может привести к повторному включению рабочей цепи». — CSA Z462

Используйте современные схемы для создания электробезопасных условий работы.

«4.2.5 Процесс установления и проверки электробезопасных условий работы»

а) Определите все возможные источники электроснабжения конкретного оборудования. Проверьте актуальные чертежи, схемы и идентификационные бирки». — CSA Z462

Наличие обновленного SLD может помочь избежать длительных простоев и обеспечить безопасность всех.

Исследования энергосистемы

Для завершения исследования энергосистемы требуется наличие актуального SLD.

«6.12.3 Исследования энергосистемы и однолинейная схема»

Исследования энергосистемы и однолинейные чертежи имеют решающее значение для безопасной и надежной работы электроэнергетических систем. Исследования и чертежи должны быть легко доступны и поддерживаться на постоянной основе.

Основная программа должна включать постоянное обслуживание и проверку следующих исследований и чертежей энергосистемы:

  1. Однолинейные схемы;
  2. Исследования короткого замыкания;
  3. Координационное исследование;
  4. Исследование энергии падающей вспышки дуги; и
  5. Исследование потока нагрузки».

—CSA Z463

Информацию о SLD можно использовать для различных типов исследований энергосистемы на вашем объекте.

  • Исследование короткого замыкания, чтобы убедиться, что оборудование выдерживает неисправность.
  • Исследование координации для обеспечения своевременного срабатывания нужных устройств.
  • Исследование энергии инцидента, чтобы узнать уровни опасности вспышки дуги на оборудовании.
  • Исследование потока нагрузки, чтобы узнать непрерывный ток через систему.

Обновления SLD

CSA Z463 — Техническое обслуживание электрических систем рекомендует пересматривать однолинейную схему через 5 лет или при значительных изменениях.

Существенным изменением может быть: 

  • Новая установка или модификация системы
  • Изменение утилиты или источника
  • Изменение импеданса системы, конфигурации или нагрузки
  • Изменение защитных устройств или настроек

Как рисовать электрические однолинейные схемы

В идеале вам не нужно рисовать собственную однолинейную схему.

Был бы сделан чертеж для дизайна сайта или для нового проекта.

Но, может быть, вы не можете его найти или было так много неотслеживаемых изменений, что это никуда не годится.

Если вы работаете над новым SLD, само оборудование является лучшим источником данных.

Правильное подключение оборудования — самая важная часть схемы.

Между просмотром ярлыков и шильдиков вашего снаряжения вы сможете сделать все необходимые обновления.

 

Символы на электрической схеме

Для начала вы должны знать, какие символы использовать для обозначения вашего оборудования.

Источником стандартных символов электрических схем является документ IEEE Std 315, ANSI Y32.9., CSA Z99.

Вот наиболее часто используемые символы, которые вам понадобятся, чтобы начать рисовать вашу систему.

Далее я пройдусь по каждому символу и рассмотрю варианты символов и данные для включения в вашу электрическую схему.

Оборудование Символы Данные
Утилита или AC
текущий источник
символ используется для
покажи где мощность
исходит из.

1. Входящее напряжение

2. Уровень неисправности и импеданс (дополнительно)

Эти символы могут
все представляют
генератор переменного тока.

1. Вт

2. КВА

3. Напряжение

4. Количество фаз

5. Частота

Две обмотки
трансформаторы могут быть
представлено
любой из этих символов

1. тип соединения (Δ, Y)

2. КВА

3. Напряжение

4. %Z Импеданс

Это Delta
соединение звездой
конфигурации, которые
можно добавить.
Н/Д
Эти переключатели
можно использовать символы
представлять разъединение
или переходник.

1. Рейтинг

Сила тока

Предохранители могут быть
представлено
любой графический символ.

1. Рейтинг

Сила тока

2. Модель

Цепь низкого напряжения
символы выключателя,
со вторым
с указанием выдвижного ящика
тип.

1. Номинальная сила тока

2. Модель

3. Настройки отключения (опционально)

Среднее напряжение
автоматический выключатель
символы, с
второе указание
выкатного типа.

1. Номинальная сила тока

2. Модель

Это двигатель
символ, один с M
и один с дельтой
символ соединения.
1. Мощность (л.с.)
Эти символы показывают
трансформатор тока (ТТ)
выше и потенциал
трансформатор (ПТ)
снизу.
1. Передаточное отношение
Это символ реле
прикреплен к CT

1. Номер функции

2. Присоединение КИП

Однолинейная электрическая схема

Есть несколько вещей, которые делают однолинейную схему особенной и помогают сделать ее читабельной.

  • Помните, что вы используете одну линию для представления нескольких проводников.
  • Диаграммы начинаются вверху страницы с входящего источника питания системы.
  • Электрические символы обычно подаются сверху и снизу.
  • Физическое расположение или размер электрического оборудования не представлены.

Помимо большого количества символов, в стандарте также отмечены некоторые методы составления чертежей:

Ориентация: Изменения ориентации
символа не меняют его значения.
Ширина линии: Ширина линии не меняется
значение, но может использоваться для акцента.
Увеличение или уменьшение: Нет смысла
связаны с разными размерами символов.

Символ клеммы (o): Этот символ может быть
добавлены в точки крепления соединительных линий
к графическому символу.

Вы также можете задаться вопросом, какую часть сайта включить в диаграмму.

Обычный уровень детализации, на котором следует остановиться, — это когда вы включили все распределительное оборудование.

Это означает, что когда у вас есть все панели управления и ЦУД, вы можете перейти к использованию расписаний оборудования в сочетании с однолинейной схемой.

Также можно создать сопроводительную документацию, включающую более подробную информацию об оборудовании и обеспечивающую удобочитаемость самой электрической схемы.

Соедините символы схемы

Для начала соедините электрические символы одной линией.

Вы можете использовать горизонтальную линию для обозначения части распределительного оборудования, такого как распределительное устройство, ЦУД, разветвитель или панель.

Вы заметите, что на этой схеме отсутствуют кабели, их можно добавить без символа, используя несколько стрелок и аннотацию.

Указывает на разделение оборудования

Вы также можете группировать символы, используя штрихпунктирную рамку, чтобы указать, что они являются частью одной единицы оборудования.

Здесь было добавлено обозначение кабелей с использованием петли с линией, указывающей на данные кабеля, и штрихпунктирными прямоугольниками для оборудования, заключенного вместе.

Здесь показаны три основные части: входной предохранительный разъединитель, трансформатор и главное распределительное устройство.

Эту информацию легко указать, и она может быть очень полезна при определении того, как что-то должно быть обесточено.

Добавить данные об оборудовании

После того, как вы разобрались со всеми символами и соединениями, вы можете начать добавлять информацию об оборудовании.

Здесь я добавил данные об оборудовании, которые обычно находятся на электрической схеме.

Количество добавляемой информации может варьироваться в зависимости от того, для чего она используется.

Информация об электрооборудовании

На однолинейном чертеже представлена ​​схема передачи различных типов информации об энергосистеме.

Наиболее важная информация, которую необходимо указать: 

  1. Входящее рабочее напряжение 
  2. Номинальный ток оборудования
  3. Идентификационные названия оборудования
  4. Номинальные значения напряжения, частоты, фаз и тока короткого замыкания на шине
  5. Размеры кабелей, количество кабелей и длина
  6. Тип подключения трансформатора, кВА, напряжение и импеданс
  7. Напряжение генератора и кВт
  8. Двигатель
  9. л.с.
  10. Коэффициенты тока и напряжения измерительных трансформаторов
  11. Номера устройств реле

Снова взглянув на нашу диаграмму, мы можем разделить информацию на напряжение, силу тока и импеданс, чтобы понять, что включено для каждой единицы оборудования.

Большую часть этого можно найти на паспортных табличках оборудования.

Напряжение

Входное напряжение составляет 12,47 кВ и подается на первичную обмотку трансформатора.

Трансформатор понижает напряжение до 600 В.

От вторичной обмотки трансформатора до распределительного щита 600 В. .

Сила тока

Номинальный ток:

Номинальный ток — это максимальное количество непрерывного тока, которое оборудование может пропускать без ухудшения.

Сначала найдем номинальные токи оборудования:

  • Отключение, 150 А
  • Предохранитель, 140 А
  • Автоматический выключатель, 2000 А 

Номинальный ток трансформатора напрямую не указан, но эта информация включена в номинальную мощность 1500 кВА.

  • 1500 кВА / 12,47 кВ / √ 3 = 69.5 А 
  • 1500 кВА / 0,6 кВ / √ 3 = 1443,5 А 

В кабелях не указаны их номинальные токи, но общую информацию можно найти в таблицах допустимой нагрузки кабелей для данного размера.

Номинальный ток короткого замыкания: 

Номинальный ток короткого замыкания — это максимальный ток, который часть оборудования может временно выдержать без повреждения.

На входе могут быть добавлены доступные данные о коротком замыкании для трехфазного замыкания и замыкания на землю, если они получены от коммунального предприятия.

Этот ток затем используется для расчета максимального короткого замыкания в любом месте системы и сравнения с характеристиками выдерживаемости оборудования.

На этой диаграмме показан только номинальный ток короткого замыкания распределительного щита 86 кА, но у каждой единицы оборудования есть ограничение.

Номинал прерывания: 

Максимальный ток, который устройство может безопасно прерывать, называется номиналом прерывания.

На этой диаграмме не показаны номиналы прерывания, но разъединитель с предохранителем и автоматический выключатель должны иметь рейтинг прерывания.

Полное сопротивление

Полное сопротивление влияет на величину рассеиваемого тока и используется для определения потоков нагрузки и уровней короткого замыкания.

Единственным оборудованием, для которого здесь указано полное сопротивление, является трансформатор на уровне 5,83 %.

Размер и длина кабеля также могут быть использованы для приблизительного импеданса.

Другие части оборудования будут иметь пренебрежимо малый импеданс.

Реле

В более крупных системах реле можно использовать в сочетании с автоматическими выключателями.

Существует множество различных функций и номеров реле, связанных с каждым типом.

Ниже приведены некоторые из наиболее часто используемых.

  • 50 — Реле максимального тока мгновенного действия
  • 51 — Реле максимального тока переменного тока с выдержкой времени
  • 86 — Реле блокировки, главное реле отключения
  • 87 — Дифференциальное реле защиты

Для получения полной информации см. IEEE Std. C37.2 Функциональные номера устройств стандартной системы электроснабжения.

Включение реле и трансформаторов тока важно для понимания того, какие средства защиты используются.

Некоторые сайты могут создать отдельный документ для указания сигналов управления реле, но также возможно поместить эти сигналы непосредственно на SLD.

На схеме показано применение выкатного высоковольтного выключателя на 13,8кВ, отмеченного двойными стрелками.

На выкатной выключатель поступает сигнал управления, показанный красной пунктирной линией, который поступает от реле.

Реле показывают трансформаторы тока (ТТ), к которым они подключены, а ТТ показывают коэффициент трансформации ТТ.

Номера устройств могут быть объединены, если устройство имеет несколько функций (50/51).

Существуют также буквенные суффиксы, которые можно использовать с номером устройства для обозначения защиты нейтрали или заземления (50N/50G).

Вы также можете видеть, что дифференциальное реле 87 подключено к реле над и под ним. Это показывает, что он использует те же данные КТ.

Основная надпись

Основная надпись помогает управлять документацией, отслеживая изменения и даты на чертеже.

Обычно он находится в правом нижнем углу, но также включает рамку вокруг всей диаграммы.

Одна из первых вещей, которую нужно проверить, прежде чем вы начнете смотреть на однолинейный чертеж, — это исправления.

Это список изменений, внесенных в документ, с указанием даты.

Также стоит отметить, что только то, что дата ревизии недавняя, не всегда означает, что весь чертеж актуален.

В этом примере вы можете видеть, что чертеж используется для тендера, строительства, исполнительного производства, дополнений и удалений.

При внесении изменений способ сообщить, что именно изменилось на чертеже, состоит в том, чтобы обвести изменение «облаком изменений».

Здесь размер основного входного предохранителя изменился на 100А с 80А.

Это изменение будет связано с буквой версии, которую также можно разместить непосредственно рядом с облаком на диаграмме.

В следующем разделе перечислены справочные чертежи, что позволит вам найти информацию в других документах.

Также должен быть раздел, в котором перечислены люди, которые нарисовали рисунок, руководили проектом, даты и их компания.

Компания-заказчик, название чертежа, номер чертежа и редакция также указаны в нижнем углу.

Теперь ваша очередь

  • Была ли эта статья полезной?
  • Вам нужно больше информации о том, как читать электрические схемы?
  • Теперь вы чувствуете, что умеете рисовать принципиальную схему?
  • Вы уже запустили свою одиночную линию?

Дайте нам знать в комментариях ниже!

Проектирование простых цепей питания

В посте подробно рассказывается, как спроектировать и построить простую схему питания, начиная с базовой схемы и заканчивая достаточно сложным блоком питания с расширенными функциями.

Содержимое

Блок питания незаменим

Будь то новичок в электронике или опытный инженер, всем требуется эта незаменимая часть оборудования, называемая блоком питания.

Это связано с тем, что никакая электроника не может работать без питания, а точнее, без питания постоянного тока низкого напряжения, а блок питания — это устройство, которое специально предназначено для выполнения этой цели.

Если это оборудование так важно, то всем, кто работает в этой области, необходимо изучить все тонкости этого важного члена электронной семьи.

Давайте начнем и узнаем, как спроектировать схему источника питания, сначала самую простую, вероятно, для новичков, которым эта информация будет чрезвычайно полезна.
Базовая схема блока питания потребует трех основных компонентов для обеспечения ожидаемых результатов.
Трансформатор, диод и конденсатор. Трансформатор представляет собой устройство, имеющее два набора обмоток, одна первичная, а другая вторичная.

Сеть 220В или 120В подается на первичную обмотку, которая передается на вторичную обмотку для создания в ней более низкого наведенного напряжения.

Низкое пониженное напряжение, доступное на вторичной обмотке трансформатора, используется для предполагаемого применения в электронных схемах, однако, прежде чем можно будет использовать это вторичное напряжение, его необходимо сначала выпрямить, то есть напряжение необходимо преобразовать в постоянный ток. первый.

Например, если вторичная обмотка трансформатора рассчитана на 12 вольт, тогда полученные 12 вольт от вторичной обмотки трансформатора будут 12 вольтами переменного тока по соответствующим проводам.

Электронная схема никогда не может работать с переменным током, поэтому это напряжение должно быть преобразовано в постоянное.

Диод — это устройство, которое эффективно преобразует переменный ток в постоянный. Существуют три конфигурации, с помощью которых можно настроить основные конструкции источников питания.


Вы также можете узнать, как спроектировать настольный источник питания


Использование одного диода:

Самая простая и грубая форма конструкции источника питания — это та, в которой используется один диод и конденсатор. Поскольку один диод будет выпрямлять только один полупериод сигнала переменного тока, для этого типа конфигурации требуется большой конденсатор выходного фильтра для компенсации вышеуказанного ограничения.

Конденсатор с фильтром гарантирует, что после выпрямления на падающих или убывающих участках результирующей диаграммы постоянного тока, где напряжение имеет тенденцию к падению, эти участки заполняются и дополняются накопленной внутри конденсатора энергией.

Вышеупомянутая компенсация за счет накопленной энергии конденсаторов помогает поддерживать чистый и свободный от пульсаций выход постоянного тока, что было бы невозможно при использовании одних только диодов.

Для конструкции источника питания с одним диодом вторичная обмотка трансформатора должна иметь одну обмотку с двумя концами.

Однако приведенная выше конфигурация не может считаться эффективной конструкцией источника питания из-за грубого однополупериодного выпрямления и ограниченных возможностей формирования выходного сигнала.

Использование двух диодов:

Использование пары диодов для создания источника питания требует трансформатора со вторичной обмоткой с отводом от середины. На схеме показано, как диоды подключены к трансформатору.

Несмотря на то, что два диода работают в тандеме и охватывают обе половины сигнала переменного тока и производят двухполупериодное выпрямление, используемый метод неэффективен, поскольку в любой момент используется только половина обмотки трансформатора. Это приводит к плохому насыщению сердечника и ненужному нагреву трансформатора, что делает этот тип конфигурации источника питания менее эффективным и обычной конструкцией.

Использование четырех диодов:

Это наилучшая и общепризнанная форма конфигурации источника питания с точки зрения процесса выпрямления.

Продуманное использование четырех диодов делает все очень просто, требуется только одна вторичная обмотка, насыщение сердечника идеально оптимизировано, что обеспечивает эффективное преобразование переменного тока в постоянный.

На рисунке показано, как создается источник питания с двухполупериодным выпрямлением с использованием четырех диодов и фильтрующего конденсатора относительно низкой емкости.

Этот тип диодной конфигурации широко известен как мостовая сеть, вы можете узнать, как построить мостовой выпрямитель.

Все вышеперечисленные конструкции источников питания обеспечивают выходы с обычным регулированием и поэтому не могут считаться идеальными, они не обеспечивают идеальных выходов постоянного тока и поэтому нежелательны для многих сложных электронных схем. Кроме того, эти конфигурации не включают функции управления переменным напряжением и током.

Однако вышеуказанные функции могут быть просто интегрированы в вышеупомянутые конструкции, а не в последнюю конфигурацию полноволнового источника питания за счет введения одной ИС и нескольких других пассивных компонентов.

Нестабилизированный блок питания полного моста с формулами

На приведенной ниже схеме показан блок питания с одной шиной. Предохранитель устанавливается на пути токоведущего провода к трансформатору в целях безопасности. Провод под напряжением также подключен к клемме 240 В трансформатора; этот участок первичной обмотки находится довольно далеко от вторичной, что повышает безопасность устройства.

Заземление должно быть соединено с любым открытым металлом и, если применимо, с экраном трансформатора. Упомянутые напряжения указаны в вольтах (среднеквадратичное значение) и являются напряжениями переменного тока. Под нагрузкой выход трансформатора составляет 6 В (среднеквадратичное значение). Когда трансформатор не используется, напряжение может возрасти до 25%.

Выходная волна может быть рассчитана с использованием следующей формулы:

V RIP ≅ I LOAD / C [7 x 10 -3 ]

Использование IC LM317 OR LM338:

2 LM 317 — это очень универсальное устройство, которое обычно интегрируется с источниками питания для получения хорошо стабилизированных и регулируемых выходных сигналов напряжения/тока. Несколько примеров схем источника питания, использующих эту микросхему

. Поскольку приведенная выше микросхема может поддерживать максимум 1,5 А, для большей выходной мощности можно использовать другое аналогичное устройство, но с более высокими характеристиками. IC LM 338 работает точно так же, как LM 317, но способен выдерживать ток до 5 ампер. Ниже показана простая конструкция.

Для получения фиксированных уровней напряжения можно использовать микросхемы серии 78XX с описанными выше схемами питания. ИС 78XX подробно описаны для справки

В настоящее время бестрансформаторные источники питания SMPS становятся фаворитами среди пользователей благодаря их высокой эффективности и высокой мощности при удивительно компактных размерах.
Хотя создание схемы источника питания SMPS в домашних условиях, безусловно, не для новичков в этой области, инженеры и энтузиасты, обладающие всесторонними знаниями в этой области, могут заняться созданием таких схем дома.

Вы также можете узнать об аккуратной конструкции импульсного блока питания.

Есть несколько других форм источников питания, которые могут быть созданы даже любителями новой электроники и не требуют трансформаторов. Хотя эти типы цепей питания очень дешевы и просты в сборке, они не могут поддерживать большой ток и обычно ограничены 200 мА или около того.

Конструкция бестрансформаторного источника питания

В следующих нескольких постах обсуждаются две концепции приведенного выше бестрансформаторного типа цепей питания:

С использованием высоковольтных конденсаторов,

С использованием Hi-End микросхем и полевых транзисторов

Отзыв одного из преданных читателей этого блога

Уважаемый Swagatam Majumdar,

его зависимые компоненты…

Я хочу получить стабильные +5В на выходе и +3,3В на выходе от блока питания, я не уверен в силе тока, но я думаю, что всего 5А должно хватить, также будут Мышь 5 В и клавиатура 5 В, а также 3 микросхемы SN74HC595 и 2 x 512 КБ SRAM … Так что я действительно не знаю, к какой силе стремиться ….

Думаю, 5 ампер достаточно?…. Мой ГЛАВНЫЙ вопрос: какой ТРАНСФОРМАТОР использовать и какие ДИОДЫ использовать? Я выбрал трансформатор после того, как прочитал где-то в Интернете, что мостовой выпрямитель вызывает ПАДЕНИЕ НАПРЯЖЕНИЯ на 1,4 В в целом, и в вашем блоге выше вы утверждаете, что мостовой выпрямитель вызовет повышение напряжения? . ..

ТАК Я не уверен ( Я в любом случае не уверен, будучи новичком в электронике) ….. ПЕРВЫЙ трансформатор, который я выбрал, был именно этот. Пожалуйста, посоветуйте мне, какой из них ЛУЧШЕ подходит для моих нужд и какие ДИОДЫ также использовать …. Я хотел бы использовать блок питания для платы, очень похожей на эту ….

Пожалуйста, помогите и подскажите, как сделать подходящий блок питания MAINS 220/240V, который дает мне СТАБИЛЬНЫЕ 5V и 3.3V для использования с моей конструкцией. Заранее спасибо.

Как получить постоянные 5 В и 3 В от цепи питания

Здравствуйте, вы можете добиться этого, просто используя микросхему 7805 для получения 5 В и добавив пару диодов 1N4007 к этим 5 В для получения примерно 3,3 В.

5 ампер выглядит слишком большим, и я не думаю, что вам потребуется такой большой ток, если только вы не используете этот источник питания с внешним каскадом драйвера, несущим более высокие нагрузки, такие как светодиод высокой мощности или двигатель и т. д.

Так что я уверен, что ваше требование может быть легко выполнено с помощью вышеупомянутых процедур.

для питания MCU с помощью описанной выше процедуры вы можете использовать трансформатор 0-9В или 0-12В с током 1А, диоды могут быть 1N4007 x 4nos

переменного тока как от трафотока, тогда мощность будет увеличена в 1,21 раза.

обязательно используйте конденсатор 2200 мкФ / 25В после моста для фильтрации

Я надеюсь, что информация проинформирует вас и ответит на ваши вопросы.

На изображении выше показано, как получить постоянное напряжение 5 В и 3,3 В от заданной цепи питания.

Как получить переменное напряжение 9 В от IC 7805

Обычно IC 7805 рассматривается как стабилизатор напряжения с фиксированным напряжением 5 В. Однако с помощью базового обходного пути ИС можно превратить в схему переменного регулятора от 5 В до 9 В, как показано выше.

Здесь мы видим, что предустановка 500 Ом добавлена ​​к центральному контакту заземления ИС, что позволяет ИС создавать выходное значение с повышенным значением до 9В, при токе 850 мА. Предустановку можно настроить для получения выходного напряжения в диапазоне от 5 В до 9 В.

Чтобы получить повышенное выходное напряжение от микросхемы 7812, вы можете обратиться к этому сообщению!

Создание схемы стабилизатора с фиксированным напряжением 12 В

На приведенной выше диаграмме показано, как можно использовать обычную микросхему стабилизатора 7805 для создания регулируемого выходного сигнала с фиксированным напряжением 5 В.

Если вы хотите получить фиксированный регулируемый источник питания 12 В, для получения требуемых результатов можно применить ту же конфигурацию, как показано ниже:

Регулируемый источник питания 12 В, 5 В

Теперь предположим, что у вас есть схемные приложения, которым требуется двойное питание в диапазоне фиксированных 12 В, а также фиксированных регулируемых источников 5 В.

Для таких применений описанную выше конструкцию можно просто изменить, используя ИС 7812, а затем ИС 7805 для получения необходимого выходного напряжения регулируемого источника питания 12 В и 5 В, как показано ниже:

Разработка простого двойного источника питания

Во многих схемных приложениях, особенно в тех, где используются операционные усилители, двойной источник питания становится обязательным для включения +/- и заземления схемы.

Проектирование простого двойного источника питания включает в себя только источник питания с центральным отводом и мостовой выпрямитель, а также пару фильтрующих конденсаторов высокой емкости, как показано ниже:

Однако для получения регулируемого двойного источника питания с двойное напряжение на выходе — это то, что обычно требует сложной конструкции с использованием дорогостоящих ИС.

Следующая схема показывает, как просто и дискретно можно настроить двойной источник питания, используя несколько биполярных транзисторов и несколько резисторов.

Здесь Q1 и Q3 настроены как проходные транзисторы эмиттерного повторителя, которые определяют величину тока, проходящего через соответствующие +/- выходы. Здесь оно составляет около 2 ампер.

Выходное напряжение на соответствующих сдвоенных шинах питания определяется транзисторами Q2 и Q4 вместе с резистивной делительной сетью их базы.

Уровни выходного напряжения можно соответствующим образом отрегулировать и настроить, регулируя значения делителей потенциала, образованных резисторами R2, R3 и R5, R6.

Двойное питание с одним операционным усилителем

Если в вашей схеме остался дополнительный операционный усилитель, который требует двойного питания от одного источника, то, возможно, можно попробовать следующую простую конфигурацию с двойным питанием от одного операционного усилителя.

Резисторы R1 и R2 работают как высокоомный и, следовательно, экономичный сетевой делитель напряжения. Операционный усилитель гарантирует, что потенциал искусственной земли всегда идентичен потенциалу между соединением резисторов R1 и R2. Соединение между R1 и R2 устанавливает соотношение между парой выходных напряжений; если R1 и R2 имеют одинаковое значение, для обоих выходных напряжений будет обеспечено точно такое же значение, которое будет совершенно симметричным.

Это позволяет нам получить наиболее желательную особенность схемы, а именно то, что соединение R1/R2 не зависит от напряжения батареи! Дополнительным преимуществом этого активного делителя потенциала является то, что (в отличие от базовой цепочки резисторных делителей) он хорошо адаптируется к изменяющимся токам нагрузки, движущимся к линии заземления и от нее, особенно в отношении несимметричных ситуаций тока нагрузки. Вероятно, вы можете подумать об использовании различных вариантов операционных усилителей для этой схемы. 3140 и 324, как правило, являются фантастическим выбором, несмотря на то, что напряжение батареи у них составляет всего 4,5 В. Имейте в виду, что максимальное напряжение, которое могут выдержать эти ИС, не превышает 30 В, а максимальный ток нагрузки, который может быть допустимое операционным усилителем, также будет зависеть от типа операционного усилителя.

Проектирование источника питания LM317 с постоянными резисторами

Ниже показан чрезвычайно простой источник напряжения/тока на основе LM317T, который можно использовать для зарядки никель-кадмиевых элементов или в любое время, когда необходим практический источник питания.

Новичку несложно сконструировать его, и он предназначен для использования с подключаемым сетевым адаптером, обеспечивающим нерегулируемое питание постоянного тока. выход. IC1 на самом деле представляет собой регулируемый регулятор типа LM317T.

Добавить комментарий