Плотность утеплителя для вентилируемого фасада: Какой плотности утеплитель лучше для вентилируемого фасада

Содержание

Какой плотности утеплитель лучше для вентилируемого фасада

Вентилируемые фасады пользуются огромной популярностью в современном строительстве. Они обеспечивают эффективное удаление влаги из конструкции, позволяют реализовать самые разные архитектурные решения, а их монтаж можно проводить в любое время года. Но очень важно, чтобы конструкция отличалась высокой энергоэффективностью. Утепление вентилируемых фасадов — важнейший этап, позволяющий сэкономить кругленькую сумму на счетах за отопление и обеспечить максимально комфортные условия для проживания. 

Материалы для утепления вентилируемых фасадов


Вентилируемыми называются фасады состоящие из облицовки, которая крепится к жесткой обрешетке. Тип последней во многом зависит от облицовочного материала. Если необходима надежная конструкция используют металлические каркасы, но чаще всего обрешетка состоит из сухих деревянных брусьев. Таким образом, между стеной дома и внешней обшивкой есть зазор.

Конструктивно такая навесная вентилируемая система состоит из нескольких слоев и очень важно, чтобы они шли в правильном порядке, а также соблюдалась технология во время проведения монтажных работ.

Вентилируемые фасадные системы состоят из следующих слоев:

  • облицовочный материал;
  • каркас;
  • изоляция;
  • вентиляционный зазор. 

Главные достоинства таких систем:

  • возможность использовать разные облицовочные материалы позволяет подобрать идеальный вариант, подходящий по цене и качеству;
  • высокий уровень шумо- и теплоизоляции;
  • быстрый монтаж;
  • простота в уходе.

Чтобы вентилируемый фасад выполнял свои функции необходимо правильно подобрать утеплитель. Конструкция вентфасадов предполагает наличие воздушной подушки, где постоянно вентилирует воздух. Это является одновременно достоинством и недостатком системы. Таким образом создается эффект вытяжки и снижается пожароустойчивость здания.

Поэтому очень важно чтобы изоляционный слой был пожаробезопасным, что сразу исключает возможность использования горючих материалов. Также утеплитель должен обладать высокой степенью паропроницаемости и низкой теплопроводностью. Минеральная вата соответствует всем вышеперечисленным требованиям. Она делается из базальтового волокна, благодаря чему не слеживается со временем и долго сохраняет свои характеристики.

Жесткие волокнистые плиты устойчивы к различным химикатам, не боятся грибка, и выполняют функцию ветрозащиты. Этот материал обеспечивает хороший воздухообмен, экологически безопасен, а его срок службы составляет от 25 до 50 лет. В случае если проектом предусмотрена дополнительная ветрозащита — стеклоткани, пленка, мембрана, то отдавать предпочтение необходимо материалам, содержащим огнезащитные добавки.

Сегодня производители выпускают данный утеплитель разной плотности. Какой именно вид выбрать в большей степени зависит от климатических особенностей региона. При однослойном типе утепления плотность минваты должна быть не менее 50 кг/м3, но чем эта характеристика будет выше, тем лучше.

Таким образом она может достигать и 200 кг/м3. Просто стоимость такого вида на порядок дороже и если климатические условия региона позволяют использовать менее дорогостоящие варианты, то незачем переплачивать. При двухслойном способе утепления вентилируемых фасадов для внутреннего слоя используют минвату плотностью 30 кг/м3, для внешнего — не менее 80 кг/м3.

Особенности монтажа 


Эффективность утепления зависит от ряда факторов. Но в первую очередь это правильно подобранный материал и строгое соблюдение технологии. Плиты утеплителя начинают устанавливать с нижнего ряда, при этом элементы должны плотно прилегать друг к другу. Все неплотности следует заложить кусочками материала, при этом использование пены недопустимо.Технология утепления вентфасадов включает в себя следующие этапы:

  • монтаж кронштейнов;
  • установка к цоколю опорного уголка;
  • укладка минваты;
  • монтаж ветрозащиты;
  • фиксация утеплителя.

Начинать работы следует с подготовки поверхности. Удалите со стен вся загрязнения, следы старого покрытия и обработайте антисептической грунтовкой. После того, как поверхность полностью высохнет можно приступать непосредственно к монтажу.

Кронштейны крепятся на расстоянии 0,7-0,8 м друг от друга. Плиты минеральной ваты необходимо дополнительно прижимать специальными тарельчатыми дюбелями с широкими шляпками. На каждый лист утеплителя используется не менее 5 крепежей. Крепления засверливаются сквозь вату в стену на глубину не менее 5 см. При использовании материала небольшой плотности будьте аккуратны, так как он легко сжимается, а нарушать его естественную толщину не желательно.

Особое внимание необходимо уделять углам. Рекомендуется даже увеличить слой утеплителя вокруг этих участков на 25-30%. Также недопустимы зазоры в местах примыканий с цоколем, чердачными перекрытиями и проемами. Несмотря на кажущуюся простоту, монтаж и утепление вентилируемых фасадов требует определенных навыков. Поэтому лучше всего доверить проведение таких работ специалистам. Это позволит добиться максимальной эффективности и свести тепловые потери здания к минимуму! 

Какой толщины должен быть утеплитель для вентилируемого фасада

Свыше 90% вентилируемых фасадов в России устраиваются с утеплением. Для того, чтобы определить толщину и плотность необходимого к применению утеплителя, самым лучшим вариантом является проведение тепловизорного обследования наружных стен здания с последующим осуществлением теплотехнического расчёта. Однако, такой метод, как правило, является оправданным в ходе крупных проектов реконструкции объектов капитального строительства. Для большинства объектов промышленного и гражданского назначения существует методика определения толщины утепления без вышеуказанных затратных процедур. На что в первую очередь следует обратить внимание при определении вида, толщины и плотности утепления вентилируемого фасада?

1. Виды фасадного утеплителя

Для устройства вентилируемых фасадов следует выбирать утеплители, имеющие группу горючести НГ, то есть негорючие. К числу таких относятся минераловатные утеплители на основе базальтового или иного каменного волокна, а также в некоторых случаях — стекловолокна.

Для утепления цокольной части зданий с последующим устройством штукатурных фасадов по сеткие и облицовкой керамогранитом, а также подземных частей здания, следует использовать утеплитель на основе пенополистирола. Данный вид материала хоть и является горючим, но его применение возможно на участках фасада, исключающих его воспламенение. Утеплитель фундаментной (подземной) части наружных стен следует обрабатывать битумной гидроизоляцией.

2. Плотность утеплителя для вентилируемых фасадов

Минераловатный утеплитель, применяемый в фасадных системах, может иметь плотность от 25 кг/м3 до 140 кг/м3. Как правило, наиболее экономичным и эффективным является утепление стены плитами разной плотности: непосредственно к стене в таком случае должен примыкать утеплитель меньшей плотности  — например, 30 кг/м3, а в качестве второго, наружного слоя утепления, должен быть применен более плотный материал — не менее 75 кг/м3.

Современные материалы фасадного утепления предусматривают в том числе изготовление плит утеплителей с различной плотностью в пределах одной плиты. Например, утеплитель Rockwool Венти Баттс D имеет нижний слой плотностью 30-35 кг/м3, а верхний — 85-90 кг/м3. Такой материал даже при однослойном варианте исполнения обеспечивает достижение экономического и технологического эффектов, аналогичных двухслойному утеплению.

По общему правилу, при однослойном утеплении плотность утеплителя должна быть не менее 80 кг/м3. Такая плотность обеспечивает достаточный (до 20 лет) срок работы утеплителя с учётом его массовых потерь в результате выветривания с течением времени.

3. Толщина утеплителя с наружной стороны фасада здания

Необходимая толщина слоя утепления зависит от нескольких факторов: материала и толщины наружных стен фасада, климатической зоны места расположения объекта, высоты здания, количества проёмов, а также от плотности применяемого утепления.

 

К примеру, для объектов, выполненных из красного кирпича в два слоя, и расположенных в средней полосе РФ, достаточным является применение утеплителя общей толщиной 100 мм, из которых нижний слой 40 мм выполнен минеральной ватой с плотностью 35 кг/м3, а верхний слой 60 мм — с плотностью 80 кг/м3. Для объектов, выполненных по монолитно-каркасной технологии, где наружные стены состоят из монолитных плит 200-250 мм с перекрытиями из пенобетонных блоков D600, в той же средней полосе РФ желательно применять утепление с толщиной не менее 150 мм, причём наружный слой должен иметь толщину не менее 50 мм и плотность 90 кг/м3.

Соответственно, чем севернее расположен объект строительства — тем толще и плотнее должен быть слой утепления для обеспечивания его нормальной работы. Например, за Полярным кругом для утепления объектов ПГС толщина слоёв утеплителя может доходить до 350 мм.

При этом, при определении толщины и плотности плит утеплителя для фасада следует учитывать, что основная его функция — это не только сохранение тепла внутри здания, но и вынос точки росы за пределы несущей стены. Точка росы — это место внутри наружной стены, где плюсовая температура, идущая от обогрева изнутри помещения, переходит в минусовую в результате воздействия отрицательных температур на улице. Как известно, вода при нулевой температуре переходит в твёрдое состояние, при этом расширяясь. Такое расширение, происходящее внутри материалов наружных стен зданий, и является наиболее существенной причиной разрушения наружных стен. Да, такое разрушение происходит с годами — но именно поэтому безремонтным сроком эксплуатации жилых домов, построенных в советское время, является срок от 30 до 50 лет. Современные климатические испытания и лабораторные исследования показали, что применение наружного фасадного утеплителя нужной толщины и плотности  способно продлить срок службы всего здания в несколько раз! 

Кроме того, следует учитывать, что достаточная толщина и плотность утеплителя также обеспечивают отличную звукоизоляцию. В условиях современных городов проблема постоянного шума может быть решена в том числе качественным утеплением наружной стены. Кроме того, здание, обшитое миреналоватным утепплителем, требует значительно меньших затрат на его кондиционирование летом.

Проведенные экономические расчёты анализа эффективности капитальных вложений на нескольких объектах (многоэтажные офисные центры, г. Москва) показали, что окупаемость материалов и строительно-монтажных работ по утеплению наружной стены за счёт экономии в затратах на отопление и кондиционирование составляет от 5 до 7 лет, при том, что современные фасадные системы способны обеспечить срок безремонтной эксплуатации до 50 лет. 

Утеплитель для вентилируемого фасада

Коротко о материале Rockwool

Техновент СТАНДАРТ

Техновент СТАНДАРТ – высоконадежный, долговечный, специальный минераловатный утеплитель для вентилируемых фасадов. Его применение гарантирует продолжительный срок тепло- и звукоизоляции без замены и новых денежных вложений. Техновент СТАНДАРТ – для лучших фасадов выбирают лучший утеплитель!

Техновент ОПТИМА

Минераловатные плиты Техновент ОПТИМА – прекрасный выбор для вентилируемых фасадов. Данные материалы рассчитаны на долгий срок эксплуатации, максимальное сохранение тепла в помещениях, обладают прекрасными гидрофобными и пожаробезопасными характеристиками плюс, не представляют интереса для грызунов. Техновент ОПТИМА – надежный утеплитель для вентилируемых фасадов!

Техновент ПРОФ

Утеплитель Техновент ПРОФ это самое лучшее решение при выборе минераловатных плит для вентилируемых фасадов. Техновент ПРОФ производится по самым современным технологиям и в соответствии с самыми высоким стандартами качества, поэтому Вы можете быть абсолютно уверены применяя его в системах «вентилируемый фасад», что получите максимум эффективности, надежности и долговечности. Техновент ПРОФ – выбор профессионалов!

Изовент Л 1000х600х50 мм минераловатный утеплитель (пл. 80 кг/м3)

Изовент Л толщиной 50 мм — минераловатный утеплитель на основе горных пород. Используется для вент фасада, прикрепляется к стене специальными крепежами, дальше фасад облицовывается оцинкованными панелями различного цвета, где между теплоизоляционным плитами и облицовкой делают специальный промежуток. Такой пробел обеспечивает движение воздуха, так отводится лишнюю влагу с поверхности теплоизоляционного материала. Для экономии денежных средств применяйте для нижнего слоя Изорок П 75 плотность 65 кг/м3.

Изорок П 125 (пл. 90)

Основное применение Изорок П 125 это вентилируемые фасады, и кроме того, вы легко можете применить его: в мансардных и межэтажных перекрытиях, перегородки, в колодцевой кладке в общем там, где нужен более плотный и жесткий материал

Термостек Вент Фасад

Термостек Вент Фасад это недорогой, но в тоже время качественный теплоизоляционный материал, востребованный для применения в системе «вентилируемый фасад» с обязательной воздушной прослойкой между фасадными панелями и утеплителем. Данный материал используется при однослойном утеплении. Термостек Вент Фасад это реальная экономия без потери эксплуатационных свойств и долговечности!

Rockwool Венти Баттс

С помощью данных минераловатных плит можно сделать долговечную, качественную и надежную теплоизоляцию вентилируемого фасада, как в один слой, так и в два, используя Rockwool Венти Баттс, в качестве наружного утеплительного слоя. Применение Rockwool Венти Баттс это экономия, ведь данный материал не требует обязательного применения ветрозащитных материалов. Rockwool Венти Баттс – эффективный и экономный утеплитель для вентилируемых фасадов!

Rockwool Венти Баттс Д

Минераловатные плиты Rockwool Венти Баттс Д это специальное теплоизоляционное решения для вентилируемых фасадов. Материал, с одной стороны, это жесткая, с другой стороны, более мягкая и более легкая плита. Таким образом, нет необходимости тратить средства и время на монтаж двухслойных систем теплоизоляции. Поверх Rockwool Венти Баттс Д также не надо использовать ветрозащитные материалы. Rockwool Венти Баттс Д – высокие технологии позволяют экономить без потери качества!

Утеплитель для вентилируемых фасадов: плотность, как производится монтаж

Содержание:

  1. Типы материалов для утепления
  2. Крепление утеплителя


Навесные вентилируемые фасады являются прекрасным средством отделки современных зданий. Эта технология прекрасно подходит как для современных городских офисных строений, так и для загородных домов.

В современных реалиях утепление зданий превращается в необходимость, но внешний вид утеплителя часто способен испортить визуальное восприятие здания. Вентилируемые фасады полностью скрывают этот недостаток, позволяя совместить эстетику и энергоэффективность.

Утепление вентилируемого фасада — одна из важнейших задач современного строительства.

Грамотно выбранные материалы и качественно выполненная работа дают возможность сохранять значительное количество ресурсов в отопительный период без привлечения ежегодного дополнительного внимания к обслуживанию утеплителя.

Типы материалов для утепления

Одним из важнейших параметров, обеспечивающих эффективное выполнение задачи сохранения тепла, является плотность и толщина утеплителя. Рынок современных материалов предлагает широкий выбор различных утеплителей:

  • пенопласт;
  • пенополистирол;
  • минеральная вата.

Каждый из материалов имеет свои преимущества и недостатки, различную плотность и методы крепления, и, выбирая тот или иной, следует учитывать особенности для получения максимальной эффективности.

Пенопласт является прекрасным материалом, он в несколько раз превосходит остальные материалы по эффективности. Еще одним плюсом этого вида утеплителя является его влагоустойчивость.

Однако имеются и минусы. Так, пенопласт абсолютно не пропускает пар, что чревато рядом проблем. Также пенопласт имеет низкую механическую прочность.

Пенополистирол обладает сравнимыми с пенопластом характеристиками по удержанию тепла. При этом он имеет более высокую механическую прочность, что делает его использование при утеплении более удобным.

К отрицательным сторонам такого материала относятся высокая стоимость и, как и у пенопласта, низкая паропроницаемость.

Утепление минватой

Минеральная вата, несмотря на более скромные характеристики эффективности, наиболее популярный утеплитель под вентилируемые фасады.

К плюсам этого материала относится прекрасная паропроницаемость. Плотность и толщина минеральной ваты представлена в широких пределах, что позволяет подобрать утеплитель под любой тип вентилируемого фасада.

Минеральная вата делается из базальтового волокна, что позволяет ей не слеживаться со временем. Прекрасная жесткость материала, обеспечиваемая высокой плотностью, позволяет материалу сохранять свою форму в течение всего срока эксплуатации.

Также минеральная вата обладает наиболее низкой стоимостью из всех вышеназванных. Минусы этого утеплителя — высокая летучесть волокон, а также более низкие характеристики эффективности. Но стоит отметить, что оба этих недостатка легко нивелировать.

Независимо от типа утеплителя работает простое правило: чем выше плотность, тем выше теплозащита и ниже паропроницаемость. Руководствуясь этим простым правилом, легко подобрать максимально эффективный утеплитель для вентилируемого фасада.

Крепление утеплителя

Самостоятельное крепление утеплителя не вызовет трудностей, если соблюдать несколько простых правил. При использовании пенопласта плиты крепят к стене с помощью специального клеевого состава.

Стены предварительно зачищаются от различных неровностей и дефектов. Плиты крепятся не вплотную друг к другу, потому что пенопласт имеет высокий коэффициент расширения, его необходимо компенсировать.

В стыки между плитами вбиваются специальные дюбели с широкими шляпками, выполняющие функцию дополнительного закрепления плит.

При использовании пенополистирола используется предварительная обрешетка стен, между направляющими которой вкладываются и закрепляются плиты утеплителя.

Стоит учитывать, что у пенополистирола очень высокий коэффициент расширения, поэтому плиты не закрепляют внатяг, оставляя некоторые допуски на деформацию материала.

Теплоизоляция из минеральной ваты устанавливается в предварительно набитую на стены обрешетку. Расстояние между направляющими обрешетки делается на несколько сантиметров уже, чем сам утеплитель, чтобы плиты становились в нее несколько враспор.

Крепятся такие плиты с помощью сквозного пробивания дюбелями с широкими пластмассовыми шайбами на шляпках.

После обшивки стен утеплителем поверх плит закрепляется ветрозащита. Она представляет собой тонкий слой специальной ткани из стекловолокна, натягиваемой поверх плит утеплителя для обеспечения вентилирующего эффекта.

Соседние полосы ветрозащиты крепятся внахлест около 5-10 см. Ветрозащита защищает утеплитель от проникших под декоративный слой струй дождя, а в случае использования минеральной ваты — от выветривания отдельных волокон материала.

Последним этапом создания вентилируемых фасадов становится облицовка декоративными плитами. Виды облицовки не влияют на теплозащиту. Утепленный вентилируемый фасад часто облицовывают виниловым сайдингом, так как он дешев и имеет большое количество разнообразных фактур и материалов на любой вкус.

для мокрого и вентилируемого фасада, минеральная вата 50-100 кг/м3 и 120-150 кг/м3. Какой еще плотности она бывает для стен?

Минвата является качественным материалом для утепления, который еще и обеспечивает приятный микроклимат внутри помещений. Особенность данного утеплителя заключается в том, что он пропускает воздух. Один из самых важных параметров, который стоит учитывать при выборе минеральной ваты, – плотность. Она непосредственно влияет на показатель теплоты. Однако, помимо плотности, следует учитывать особенности здания и нагрузки.

Виды минеральной ваты по плотности

Чаще всего, приобретая материал для утепления строений, потребители смотрят на его характеристики, влияющие на эксплуатацию. При этом забывают физические свойства, например плотность. Однако учитывать данный параметр важно, так как он позволяет правильно подобрать минвату. В любом утеплителе в составе присутствует воздух (обычный или разреженный). Коэффициент теплопроводности напрямую зависит от объема пара внутри теплоизоляционного материала и изоляции от взаимодействия с наружным воздухом.

Минвата в своей основе содержит переплетенные волокна. Поэтому чем выше их плотность, тем меньше воздуха будет внутри и более высокой окажется теплопроводность. Таким образом, при выборе минерального утеплителя следует заранее представлять, для каких целей он будет использован: утепление дома, пола, межэтажных перегородок, кровли, внутренних стен. В настоящее время минвата бывает четырех типов.

Маты

Обладают плотностью до 220 кг/м3. При этом их толщина может варьироваться в диапазоне 20–100 миллиметров. Такая разновидность является наиболее прочной и применяется чаще всего в промышленности. Нередко при помощи матов производят утепление труб, а также теплоизоляцию оборудования. В строительстве маты используют очень редко.

Собой минеральная вата в матах представляет плиту, стандартная длина которой составляет 500 мм, а ширина – 1500 мм. С обеих сторон такой лист будет обернут тканью, в основе которой лежит стекловолокно.

Также для отделки используется армирующая сетка или битуминизированная бумага.

Войлок

У данного вида минерального материала плотность колеблется от 70 до 150 килограммов на метр кубический. Такая вата производится в листах или рулонах с синтетической пропиткой. Последняя позволяет повысить теплоизоляционные параметры. Нередко войлок используется для утепления горизонтальной плоскости или инженерных коммуникационных структур.

Полужесткие плиты

Такой вариант утеплителя получается в результате использования специальной технологии, когда к вате добавляется битум или смола, в основе которой лежат синтетические элементы. После этого материал проходит процесс прессования. Именно от силы, прикладываемой в ходе данной процедуры, зависит плотность этого вида минваты – 75–300 килограммов на метр кубический. При этом толщина плиты может достигать 200 миллиметров. Что касается габаритов, то они стандартные – 600 на 1000 миллиметров.

Сфера использования полужестких плит довольно широка: горизонтальные и наклонные поверхности. Однако у теплоизоляции этого вида имеются температурные ограничения. К примеру, листы, в которых связующим элементом является битум, способны выдерживать температуры только до 60 градусов.

Некоторые типы наполнителя в минвате могут повысить ее температурный предел до 300 градусов.

Жесткие плиты

У данного вида материала плотность может составлять 400 килограммов на метр кубический при толщине в 10 см. Что касается размера такой плиты, то он стандартный – 600 на 1000 миллиметров. Жесткая минвата в своем составе содержит синтетические смолы (большая часть). В процессе изготовления утеплитель подвергается прессованию и полимеризации. В итоге и достигается большая жесткость, которая позволяет использовать листы для стен и существенно облегчает их монтаж.

Какая минвата нужна в разных случаях?

Выбирая утеплитель, важно также учитывать климат своего региона. Например, для стен в областях с умеренным климатом хорошо подойдут листы с толщиной от 80 до 100 миллиметров. Когда климат сдвигается в сторону континентального, муссонного, субарктического, морского или арктического пояса, то толщина минваты должна быть как минимум на 10 процентов больше. К примеру, для Мурманской области лучше всего подойдет утеплитель от 150 миллиметров, для Тобольска – 110 миллиметров. Для поверхностей без нагрузки в горизонтальной плоскости уместным окажется теплоизоляционный материал с плотностью менее 40 кг/м3. Такую минвату в рулонах можно использовать для потолка или для утепления пола по лагам. Для наружных стен промзданий подойдет вариант с коэффициентом 50-75 кг/м3. Плиты для вентилируемого фасада следует выбирать более плотные – до 110 килограммов на метр кубический, также они подходят под сайдинг. Под штукатурку желательна фасадная минвата, у которой показатель плотности от 130 до 140 кг/м3, а для мокрого фасада – от 120 до 170 кг/м3.

Кровельная теплоизоляция проводится на высоте, поэтому важны маленькая масса утеплителя и простота монтажа. Под данные требования подходит минеральная вата с плотностью 30 кг/м3. Укладка материала производится с использованием степлера или непосредственно в обрешетку с применением парозаграждения. В обоих случаях слой утеплителя сверху нуждается в отделке. Выбор утеплителя для пола зависит от характеристики подобранной отделки. К примеру, для листовых материалов в виде ламината или доски подойдет теплоизоляция с плотностью до 45 килограммов на метр кубический. Небольшой показатель здесь вполне уместен, так как на минвату не будет осуществляться давление за счет ее укладки между лагами. Под стяжку из цемента можно смело укладывать теплоизоляционный минеральный материал с плотностью от 200 кг/м3. Конечно, стоимость такого утеплителя довольно высокая, но она полностью соответствует качеству и удобству монтажа.

При выборе минваты важно помнить, что высокая плотность делает ее чрезмерно тяжелой. Это надо учитывать, к примеру, для каркасного дома, ведь сильно большой вес теплоизоляции может повлечь за собой дополнительные затраты на качественное укрепление.

Как определить плотность?

Подходящий тип минеральной ваты надо обязательно выбирать, предварительно ознакомившись с информацией от производителя. Обычно все необходимые характеристики можно узнать на упаковке. Конечно, если хочется делать все очень качественно, то можно прибегнуть к профессиональному подходу и рассчитать плотность утеплителя. Как показывает практика, потребители подбирают плотность и другие параметры или на собственное усмотрение, или по совету знакомых или консультантов. Самым лучшим вариантом станет обращение с вопросом выбора плотности к профессионалу.

Плотность минваты – это масса ее кубического метра. Как правило, легкие утеплители с пористой структурой подходят для теплоизоляции стен, перекрытий или перегородок, а жесткие – для наружных работ. Когда поверхность будет без нагрузок, то можно смело брать плиты с плотностью до 35 килограммов на метр кубический. Для перегородок между этажами и комнатами, внутренних полов, потолков, стен в нежилых строениях достаточно показателя в пределах от 35 до 75 килограммов на метр кубический. Наружные вентилируемые стены требуют плотности до 100 кг/м3, а фасады – 135 кг/м3.

Следует понимать, что предельные значения плотности следует использовать только там, где будет проводиться дополнительная отделка стен, например, при помощи сайдинга или штукатурки. Между этажами в бетонных или железобетонных зданиях подойдут листы с плотностью от 125 до 150 килограммов на метр кубический, а для несущих железобетонных конструкций – от 150 до 175 килограммов на кубический метр. Полы под стяжку, когда утеплитель станет верхним слоем, могут выдержать только материал с показателем от 175 до 200 кг/м3.

Утепление вентилируемого фасада

Достаточно популярное решение, т. к. работы по отделке фасада можно производить в любое время года. Дело в том, что при его устройстве отсутствуют мокрые процессы.

Требования к вентилируемым фасадам таковы, что использование в них горючих материалов запрещено. Исключение составляют лишь различные защитные пленки. Остальные требования тоже достаточно жесткие. 

В частности, теплоизоляционный слой должен быть гидрофобизирован, не давать усадки при условии закрепления дюбелями. 

Еще очень важно, что бы в толще утеплителя не возникало конвективных потоков параллельных плоскости фасада, которые бы снижали его теплоизоляционные показатели. 

Для этого материал должен обладать низкой продуваемостью, которая связана внутренней структурой.

В качестве утеплителя в вентфасадах применяются исключительно негорючие минераловатные плиты или плиты из штапельного стекловолокна. С наружной стороны утеплителя в случаях предусмотренных проектом применяется ветрозащитная паропроницаемая мембрана.

Монтаж вентилируемого фасада

Обязательным требованием государственных надзорных органов, для разрешения применения вентилируемого фасада является прохождение сертификации системы и наличие Технического свидетельства (ТС) и Технической оценки Росстроя с описанием всех используемых в системе компонентов.

Кроме того, в связи с частыми случаями возгорания конструкций вентфасадов при их монтаже, либо быстрого распространения пожаров из-за горючих элементов систем, обязательным является требование о прохождении натурных огневых испытаний систем НВФ с присвоением конструкции определенной степени огнестойкости.

По этой же причине (частые случаи возгорания полимерных пленок) не утихают дискуссии по вопросу целесообразности применения ветрозащитной мембраны в конструкции вентилируемого фасада.

С одной стороны ветрозащитная пленка предотвращает эмиссию волокна из утеплителя и позволяет предотвратить фильтрацию воздуха, способствуя сохранению теплозащитных свойств конструкции. С другой стороны, как уже говорилось ранее ветрозащитные пленки являются изделиями на полимерной основе и относятся к материалам группы горючести Г2, при воздействии на них открытым огнем происходит их возгорание (с вытекающими последствиями — при возникновении пожара они могут способствовать его развитию).

Одним из конструктивных решений устройства теплоизоляции в системах вентилируемых фасадов является использование плотных минераловатных утеплителей без ветрозащитной мембраны. В этом случае основным критерием выбора теплоизоляции является плотность материала. Плотность наружного слоя минераловатного утеплителя устанавливается не менее 80-90 кг/м3, плотность внутреннего слоя устанавливается не менее 30 кг/м3 (в случае использования двухслойной системы изоляции). 

Достаточно жесткие волокнистые плиты, сами по себе являются хорошей ветрозащитой. Практика показала, что это действительно оптимальная плотность. Плиты остаются гибкими, и тем не менее довольно прочными. Они удобны при монтаже и надежны в эксплуатации. Требования к плотности утеплителя для навесных фасадных систем закреплены в ряде региональных строительных норм РФ.

В качестве наружного слоя подойдут такие плиты, как Роквул Венти Баттс, Лайнрок Венти, Лайнрок Венти Оптимал, ТехноВент, ISOVER RKL. В качестве внутреннего слоя подойдут плиты Роквул Лайт Баттс, Лайнрок Лайт, ТехноЛайт, ISOVER KL 34.

В случае если проектом предусмотрены ветрозащитные материалы (мембраны, пленки, стеклоткани), то их установка проводится в один слой, с перехлестом смежных полотен в зоне стыков не более 100-150 мм. В настоящее время появились мембраны, которые содержат в своем составе огнезащитные добавки позволяющие защищать от случайных возгораний: при проведении сварочных работ, при гидроизоляции цоколя, стен с паяльной лампой, при неаккуратном обращении с огнем.

Наиболее широкое распространение получили следующие марки ветрозащитных материалов: Изоспан A, Tyvek Housewrap (Тайвек), Ютавек 85, Ютавек 95, Изолтекс Фас, Изолтекс А.

Теплозащитные характеристики утеплителя могут ухудшиться также из-за наличия на его поверхности воздухопроницаемых щелей, через которые движется воздушный поток (сопротивление теплопередаче стены в этом случае уменьшается на 20-35%). Неплотности в щелях на местах стыковки минераловатных плит приводят к резкому снижению теплотехнической однородности стены – в месте разрыва плоскости теплоизоляции возникает «мостик холода». Одна из основных причин появления щелей и неплотностей – несоблюдение технологии при производстве работ.

Эту проблему в ряде случаев помогает решить использование двухслойной изоляции: плиты второго (наружного) слоя утеплителя укладываются таким образом, чтобы перекрыть стыки плит первого слоя. В этом случае удается устранить «мостики холода» и максимально уменьшить потери тепла в здании.

Для крепления теплоизоляционных плит в вентилируемых фасадах применяются крепежные тарельчатые дюбели. Количество тарельчатых дюбелей на 1 м2 поверхности фиксируется проектом и определяется расчетом, исходя из конкретных условий строительства, высоты здания, конструктивных решений, других факторов и фиксируется проектом. Марки дюбелей для крепления плит определяют прочностными расчетами с учетом рекомендаций производителя дюбелей и результатов испытаний.

При монтаже плит теплоизоляции в два слоя плиты первого слоя закрепляют тарельчатыми дюбелями со шляпками диаметром 110 мм или тарельчатыми дюбелями с дополнительными шайбами диаметром 140 мм независимо от крепления второго слоя. При монтаже плит утеплителя необходимо обеспечить “перевязку” стыков (по типу кирпичной кладки) и зубчатое сопряжение на углах.


При устройстве теплоизоляции в два слоя: плиты укладываются плотно друг к другу, а швы плит нижнего (внутреннего) слоя не должны совпадать со швами верхнего (наружного) слоя. Зазоры между плитами утеплителя не должны превышать 2 мм. Зазоры более 2 мм заполняются теплоизоляционным материалом того же типа и объемного веса, что и материал наружного слоя.

Вентилируемый воздушный зазор располагается между наружным облицовочным покрытием и теплоизоляционным слоем. Ширина воздушной прослойки должна быть не менее 40 мм и не более 150 мм. По результатам натурных огневых испытаний определено, что оптимальная ширина воздушной прослойки составляет 60 мм.

Используемые материалы

← Назад к списку готовых решений

плотность для вентфасада, какой лучше для мокрого

Утеплитель для фасада – это важный материал, основная задача которого состоит в повышении теплоизоляционных свойств дома. Сегодня действуют достаточно строгие требования по отношению к многоэтажным домам, которые заставляют застройщиков выполнять стены зданий с малой теплопроводностью. Достичь этого можно различными способами. Очень часто при выполнении внутренней облицовки применяют грунтовку и штукатурку.

Виды

Сегодня утеплитель для фасадов представлен в широком ассортименте. Но вся продукция подразделяется на вида: неорганические и органические теплоизоляционные материалы. К первым можно отнести минвату и ее подвиды, а ко вторым – пенопласт и его производные.

Пенополистирол

К этим теплоизоляционным материалам можно отнести пенопласт. Если утеплять им стены, то это не самый удачный вариант. Связано это с тем, что структура этого материала выполнена так, что влага будет легко сквозь него проходить, в результате чего он начнет крошиться и будет очень хрупким.

Пеноплекс – это экструзионный пенопласт. По сравнению со своим собратом он имеет единую монолитную массу. Это говори о том, что материал не крошится при его резании, обладает способностью изгибаться, при этом не ломается. Пеноплекс – это уникальный материал, так как не поддается влиянию механических факторов и не впитывает влагу. Плиты из пеноплекса могут выпускаться различной толщины и рекомендуется обрабатывать специальной штукатуркой по пеноплексу. А для тех кто хочет понимать, как приклеить пеноплекс к бетону, стоит перейти по ссылке и прочесть содержание статьи.

Пеноизол – это теплоизоляционный материал, который целесообразно использовать для деревянных домов. Его главное достоинство в низкой цене. Процесс установки не занимает много времени, хотя лучше доверить эту работу профессионалам. Пеноизол не способен противостоять погодным условиям, так что придется изолировать его от климатических воздействий. А вот какие сравнительные характеристики пенопласта и пеноизола существуют, поможет понять информация из статьи.

На фото – пеноизол:

Представленные утеплители на основе пенопласты достаточно удобны в работе. Они легкие и относительно дешевые. Но только эксплуатационные характеристики у них слабые, а это говорит о том, что сочень скоро после их установки нужно будет снова проводить теплоизоляционные работы.

Минеральные утеплители

По характеристике минвата представляет собой жесткий теплоизоляционный материал, в основе которого базальт. Он совершенно не боится влаги. Минеральная вата очень давно используется для утепления вентилируемого фасада. Раньше ее использовали в качестве утепления для мокрого фасада, но нельзя однозначно сказать, какая каменная вата лучше. После ее установки использовали черновой слой штукатурки, а затем выполнялась затирка. На чистовой слой наносился финишный слой покраски или декоративная штукатурка.

Сегодня же минеральная вата для утепления вентилируемого фасада применяется по-новому. Между ней и окончательной облицовкой должно присутствовать пространство. Благодаря ему будет происходить удаление конденсата. При этом сам теплоизоляционный материал подвергаться влиянию влаги не станет.

Вентилируемые фасады

Особенность вентилируемых фасадов в том, что там должен обязательно присутствовать зазор между теплоизоляцией и окончательной отделкой. Таким образом, ветер будет свободно гулять. Отсюда и названием фасада. Но эта особенность требует от материала определенных характеристик.

Теплоизоляционный материал для вентилируемых фасадов должен быть очень плотным и тяжелым. Благодаря этому можно предотвратить растрепывание и выветривание теплоизоляции по причине возникновения потока воздух. Если задействовать двойное утепление, то нижний слой должен быть представлен в виде стекловолокна, а поверх монтируется минвата.

Для тех кто хочет понимать о том, как утеплить межэтажное перекрытие в частном доме, стоит прочесть содержание данной статьи.

А вот какой утеплитель лучше для мансардной крыши и как его подобрать. рассказывается в данной статье.

Какой утеплитель на потолок в частном доме используется чаще всего, рассказывается здесь: https://resforbuild.ru/paneli/utepliteli/na-potolok-v-chastnom-dome.html

Возможно вам так же будет интересно узнать о том, какой утеплитель под линолеум на деревянный пол выбрать лучше всего.

Штукатурка

При помощи этого теплоизоляционного материала можно сразу решить несколько проблем – сделать дом теплыми при этом улучшить его привлекательный вид. Штукатурки для фасадов существуют в большом количестве. Можно отыскать обычные, полученные из песка и цемента, а еще есть структурные, в основе которых положены акриловые смолы. Чем будет толще слой чернового материал, тем эффективнее теплоизоляция. Что собой представляет и как используется декоративная штукатурка для внутренней отделки стен, поможет понять информация из статьи.

«Шубы», которые позволяет создать этот мокрый утеплитель, пользуются большим спросом при теплоизоляции загородных домов или частных зданий. А если задействовать такие материалы, как короед или барашек из минеральных составом, то полученную поверхность можно покрасить. Применяют такого рода штукатурку при обустройства мокрого фасада.

Как выбрать и какой лучше

Установка теплоизоляционных материалов осуществляется в один или два слоя.

При его выборе необходимо принимать ряд факторов, среди которых:

  1. Материал, из которого выполнена несущая стена, а также его теплоизоляционные характеристики;
  2. Назначение здания. Они могут быть жилыми, нежилыми, административными, складскими.
  3. Климатически условия в регионе.

Как вы успели заметить, технологий по утеплению и теплоизоляционных материалов существует множество. Перед тем как определиться с подходящим вариантом, необходимо понять, какой материал самый лучший для утепления фасада.

Если нужно утеплить вентилируемые системы и деревянное основание, то стоит задействовать минеральную вату с гидрофобной пропиткой. Для утепления кирпичного и бетонного дома отлично подходит слоистый теплоизолятор с отделкой верхнего слоя кирпичом или мокрого фасада. Если вы решили выбрать последний вариант, то необходимо серьезно отнестись к выбору штукатурки.

На видео – утеплитель для вентилируемых фасадов:

Вспененный полиуретан – это универсальный материал, который можно применять для любых поверхностей. При выборе подходящего материала необходимо обращать внимание на такие факторы, как трудоемкость, цена выбранных утеплителей.

Какие свойства керамзита как утеплителя существуют, поможет понять информация из статьи.

А вот какой утеплитель для стен каркасного дома выбрать лучше всего. подробно рассказывается в данной статье.

Какой утеплитель для стен дома снаружи под штукатурку самый лучший и как его правильно подобрать, рассказывается в данной статье.

Производители и цены

Сегодня на строительном рынке имеется достаточное количество производителей, каждый из которых предлагает свой ассортимент продукции.

Если для вас качество на первом месте, то предстоит обратить внимание на следующих производителей:

Утеплитель для фасада играет очень важную роль, ведь таким образом, можно сделать дом теплее, а еще улучшить его внешний вид. С выбором теплоизоляционного материала проблем возникнуть не должно, ведь сегодня рынок буквально переполнен самыми различными утеплителями. Выбор подходящего варианта нужно осуществлять, исходя из особенностей конструкции и климата в вашем регионе.

Изоляция фасада

Фасад — это внешняя лицевая сторона здания. Утеплитель фасада служит барьером, защищающим от тепла, холода, шума и огня.

Он также защищает здания от суровых погодных условий и сохраняет здание сухим и безопасным. Рекомендуется использовать негорючие утеплители для фасадов, так как это уменьшит или замедлит распространение огня.
В типичном здании около 30% энергии, используемой для обогрева или охлаждения, тратится впустую из-за плохой изоляции стен.Внешние изолированные стены значительно сокращают потери энергии за счет обертывания здания термостойкой оболочкой, помогая повысить комфорт, снизить счета за электроэнергию и выбросы углерода.

Фасад нового или существующего здания может быть выполнен с помощью подходящей системы. KIMMCO-ISOVER предлагает прочные, легкие изделия из стекловаты для всех типов зданий и для различных систем, таких как вентилируемый фасад, изоляция стен и навесные стены.

Изоляционные материалы KIMMCO-ISOVER негорючие и гидрофобные по своей природе, не притягивают влагу.Структура с открытыми ячейками сохраняет изоляцию сухой. Фасадные изделия — отличный выбор для вентилируемого и невентилируемого фасада. Продукт доступен как без облицовки, так и с алюминиевой облицовкой.

Преимущества:

  • Негорючие — классифицировано как A1 в соответствии со стандартами EN
  • Улучшенные термические свойства
  • Оптимальные акустические характеристики
  • прочный
  • Механическая стойка
  • Влагостойкость

Система вентилируемых фасадов: Изоляция фасадов KIMMCO-ISOVER негорючая и гидрофобная по своей природе.Изделия прочные и не имеют эффекта старения. Безопасные фасадные плиты (KSFI) изготовлены на основе стекловаты и доступны либо без облицовки, либо с алюминиевой фольгой или черной стеклотканью (BGT). Подходит для всех типов систем вентилируемых фасадов (стекло, гранит, мрамор и алюминий).

Рекомендуемые товары:

Безопасные фасадные плиты (КСФИ)

Система стенок для полостей: Стенка полости состоит из двух стенок с промежутком между ними, известным как полость; внешнее полотно обычно делается из кирпича, а внутренний слой — из кирпича или бетонного блока, при этом полость обычно заполняется изоляцией для получения отличного теплового и акустического комфорта.
Заполнение полости изоляционным материалом KIMMCO-ISOVER снижает приток тепла летом и теплопотери через стены здания зимой.
KIMMCO-ISOVER Стекловата гидрофобна по своей природе с низкой теплопроводностью. При заполнении полости она обеспечивает отличные тепловые характеристики, изоляция Safe Cavity (KSCI) доступна без покрытия и с алюминиевым покрытием.

Рекомендуемые товары:

Изоляция безопасных полостей (KSCI)

Система навесных стен:

Системы навесных стен — это ненесущая конструкция внешней стены. Навесная стена отделяет внешнюю часть от внутренней, поддерживает собственный вес и передает другую нагрузку на конструкцию здания. Низкая теплопроводность и высокая огнестойкость системы навесных стен важны из-за потерь тепла через стену, которые влияют на стоимость отопления и охлаждения здания. Огонь обычно распространяется через область перемычки, рекомендуется использовать негорючие изоляционные материалы для таких применений, и это также обеспечит более высокое значение R в этих местах.

Рекомендуемые товары:

Строительные плиты (КБС)

Вентилируемые фасады: лучшее экологичное решение

Натуральный камень и фарфор Techlam считаются идеальными материалами для вентилируемых фасадов.

Между наиболее устойчивыми архитектурными и конструктивными решениями вентилируемый фасад считается одним из самых ценных. Причина кроется в отличных тепловых характеристиках, которые она обеспечивает, а также в предотвращении проблем с влажностью: эта система облицовки для зданий оставляет воздушную камеру между облицовочным материалом и изоляцией, что позволяет избежать тепловых мостов.

Проще говоря, вентилируемые фасады обеспечивают физическое разделение внутренней и внешней среды здания, что означает, что, если на улице жарко или холодно, эта температура не будет отражаться внутри, и, таким образом, получается энергоэффективное здание. Такая энергоэффективность приводит не только к низким счетам за электроэнергию в среднесрочной и долгосрочной перспективе, но, помимо других преимуществ, вентилируемые фасады рассчитывают на:

  • Заметное улучшение шумоизоляции: , а также теплоизоляция, вентилируемые фасады позволяют снизить уровень шума, что приводит к большему звуковому комфорту для тех, кто живет или работает в здании.
  • охрана окружающей среды: особенности вентилируемого фасада делают его более экологичным и наносят меньший ущерб окружающей среде.
  • Повышенная техническая долговечность: благодаря предотвращению прямого излучения, неблагоприятных погодных условий и сырости материалы дольше сохраняются в хорошем состоянии и, следовательно, требуют меньшего ухода. здание со здоровым балансом: кузницы — это то, что выдерживает вес фасада, в то время как стена играет только роль.Это подразумевает баланс в распределении ролей различных элементов, который достигается для поддержания здоровья здания.
  • переоценка стоимости недвижимости: стоимость вентилируемого фасада выше, чем у других типов решений, но правда в том, что, выбрав его, он повысит стоимость недвижимости и, следовательно, также может рассматриваться как будущие инвестиции .

Виды вентилируемых фасадов

Классификация вентилируемых фасадов столь же разнообразна, как и материалы, отделка или техническое крепление плитки:

Что касается материалов , фасады из экструдированной керамической плитки обычно очень распространены из-за их высокой безопасности и эффективности для наружной облицовки.

Керамогранит — очень ценный материал, поскольку он обладает отличной прочностью и долговечностью для наружных работ.

Каменные фасады также представляют неоспоримую привлекательность: мрамор, гранит или сланец — это материалы, которые очень часто используются для вентилируемых фасадов, и обеспечивают красоту и долговечность решения.

Другие используемые решения — металлические фасады, такие как полированный алюминий или цинк, а также композитные материалы (полимеры, пластмассы или технологическая древесина, например композит) или даже стекло.Вентилируемые фасады из дерева — более естественное и экологичное решение: чаще всего встречаются кедр, ироко, лиственница или каштан.

Если мы обслуживаем отделку керамических материалов, мы можем найти большое разнообразие: от естественных цветов, когда вся деталь имеет тот же вид, с эмалированными, блестящими или с цветами со специальными эффектами, и не забывая о струйной отделке, где с помощью технологии цифровой печати наносятся рисунки, идеально имитирующие камень, дерево или другие материалы.

Отделка также может быть простой или фактурной: последняя обеспечивает очень интересные рельефы и проекции на архитектурном уровне, а также позволяет архитектору поиграть с этими деталями, чтобы подчеркнуть красоту проекта.

Наконец, установка плитки на здание может осуществляться разными способами: с помощью химического крепления, механического крепления, крепления на рельсах или на алюминиевой конструкции. Выбор того или другого будет зависеть, среди прочего, от материала, выбранного для этого проекта.

Вентилируемые фасады, как мы уже видели, улучшают это обстоятельство, позволяя собственности быть более экологичной и, следовательно, сокращать счета за электроэнергию. Поэтому его стоит использовать, потому что перерасход окупается в среднесрочной и долгосрочной перспективе, даже несмотря на то, что это конструктивное решение для зданий является более дорогостоящим в применении.

Энергетические аспекты вентилируемых фасадов с тыльной стороны

С появлением глобального потепления энергоэффективность и энергосбережение стали первостепенными факторами при проектировании здания.Сегодня на типичное здание приходится 40 процентов от общего энергопотребления. Фасад играет важную роль в определении энергоэффективности здания, являясь связующим звеном между внутренним и внешним миром. Используя задний вентилируемый фасад, для каждого здания можно разработать энергетическую концепцию, которая учитывает потребности здания в отоплении и охлаждении, а также идеальное качество освещения внутри него.

Что такое задний вентилируемый фасад?

Задний вентилируемый фасад — это многослойная фасадная система здания, состоящая из водонепроницаемого покрытия на внешнем слое в сочетании с рамой, атмосферостойкой мембраной, изоляцией, подрамником и вентилируемой полостью.(Изображение 1)

Разница между температурой лицевой системы облицовочной панели и температурой воздушной полости приводит к изменению плотности воздуха, что приводит к «эффекту дымохода», который создает восходящий воздушный поток внутри полости.

Материалы, которые могут использоваться для задних вентилируемых фасадов, включают композитные панели из HPL и армированной смолой, фиброцемент, минеральную вату, керамику, мелкий керамогранит, медь, титан-цинк, алюминиевые композитные панели, алюминиевые плиты, кирпичи, качественные фасадные ткани и Система опорных панелей для применения с гипсом, стеклом, тесаным камнем или керамикой.(Изображение 2)

Как задний вентилируемый фасад может помочь снизить энергопотребление здания?

Задние вентилируемые фасады с присущим им потоком воздуха обеспечивают ряд явных преимуществ по сравнению с другими фасадными системами, такими как:

Теплоизоляция и экономия энергии — Система вентилируемого заднего фасада может быть спроектирована с учетом различных требований к энергии с индивидуально подобранными изоляционными материалами любой желаемой толщины. Тепловые мосты уменьшаются, потому что нет прерываний, вызванных плитами перекрытия. Существуют варианты, которые помогают уменьшить количество вводимых тепловых мостов или даже полностью устранить тепловые мосты за счет постоянной постоянной изоляции всех элементов конструкции без разрывов или перемычек в изоляции, за исключением конечных креплений, используемых для прикрепления облицовки к зданию.

Благодаря конструкции вентилируемого фасада, сопротивление диффузии пара снижается от внутренних стен к внешним.Любая влага от конденсации или накопления во время строительства проходит через вентилируемое пространство и способствует созданию здорового и комфортного климата в помещении. Изоляция также обеспечивает максимально возможное удержание тепла для конструкции, в то время как она компенсирует высокие температуры летом изнутри, что приводит к снижению требований к отоплению / охлаждению внутри здания.

• Звукоизоляция — Задние вентилируемые фасады положительно влияют на звукоизоляционные свойства внешней стены. В зависимости от толщины изоляции, размеров облицовки и процента открытых швов индекс звукоизоляции может быть увеличен до 14 дБ.

• Защита окружающей среды — Вентилируемые фасады устойчивы к проливному дождю. Влага быстро удаляется через вентилируемое пространство между изоляционным материалом и облицовкой. Защита от дождя на заднем вентилируемом фасаде работает на двух уровнях: вентиляционный зазор функционирует как комната компенсации давления, которая гарантирует, что в худшем случае проливной дождь стекает через заднюю часть облицовки, тем самым защищая теплоизоляцию. от сырости.Следовательно, можно построить задние вентилируемые фасады с открытыми горизонтальными швами без снижения защиты от дождя.

Какие энергетические параметры необходимо учитывать при проектировании вентилируемого фасада с тыльной стороны?

При проектировании фасада в целом следует учитывать следующие общие параметры:

  • Архитектурные требования / ограничения
  • Тепловые характеристики, которые должны быть достигнуты (коэффициент теплопроводности, коэффициент g, температура слоя)
  • Гибкость (регулируемая производительность)
  • Стратегия взаимодействия с системами HVAC (вытяжка, естественная вентиляция)

Помимо этих параметров более общего характера, следующие более конкретные параметры могут оказать существенное влияние на возможный дизайн и, следовательно, тепловые характеристики фасада:

  • Грузы
  • Техническое обслуживание (внутреннее или внешнее)
  • Размер модуля элемента
  • Инвестиции vs. текущие расходы (интегрированное представление)

Однако ниже мы сосредоточимся на одном из основных параметров тепловых характеристик: коэффициент теплопроводности с точки зрения подрядчика по фасаду.

Что такое U-значение и как рассчитывается U-значение?

Значение U или коэффициент теплопередачи — это плотность теплового потока, проходящего через один квадратный метр конкретного элемента стены, когда обе стороны стены подвержены разнице температур в один градус К. Значение U дает меру теплопотерь в любой строительный элемент, такой как стена, пол или крыша.Его также можно назвать «общим коэффициентом теплопередачи», и он измеряет, насколько хорошо части здания передают тепло. Значение U измеряет потери тепла всеми тремя режимами теплопередачи: теплопроводностью, конвекцией и излучением.

U-значения важны, потому что они составляют основу любого стандарта по сокращению выбросов энергии или углерода. На практике почти каждый внешний элемент здания должен соответствовать тепловым стандартам, которые выражаются в виде максимального коэффициента теплопроводности. Чем ниже коэффициент теплопроводности, тем лучше элемент здания в качестве теплоизолятора.

Знание того, как рассчитать U-значения на ранней стадии процесса проектирования, помогает избежать дорогостоящих повторных работ на более поздних этапах проекта. Это позволяет проектировщику проверить осуществимость своего проекта на ранней стадии, чтобы убедиться, что он подходит для цели и соответствует ли он нормативным требованиям.

Чтобы вычислить U-значение, нам сначала нужно узнать тепловые сопротивления каждого элемента (R-значения). R-значение — это толщина продукта в метрах / лямбда (теплопроводность).R-значения всех материалов, используемых в приложении, складываются, и величина, обратная полученной сумме, даст нам U-значение для этого конкретного приложения в здании.

Существуют различные методы определения коэффициента теплопроводности стен с облицовкой от дождя. Они объяснены ниже:

a) Подробные расчеты для всей стены: Значение U всей стены, включая все крепления, оценивается численным расчетом в соответствии с BS EN ISO 10211. Результат относится только к этой конкретной стене в соответствии с расчетами, любые отклонения необходимо повторно оценить.

b) Использование линейного коэффициента теплопередачи для крепежной рейки, проникающей через слой изоляции: фасад Двумерный численный расчет выполняется на участке стены, содержащем крепежную рейку. Границы модели должны находиться в адиабатических положениях, например, посередине между двумя рельсами. Результат сравнивается с расчетом, в котором рельс опущен, чтобы получить линейный коэффициент теплопередачи, как описано в BS EN ISO 10211.Этот расчет необходимо выполнить только один раз для данной конструкции рельса и толщины проникающей изоляции. Значение U стены тогда U = U0 + (L Ψ / A), где U0 — значение U стены без крепежных направляющих, L — общая длина направляющих, а A — общая площадь стены. .

c) Использование точечного коэффициента теплопередачи для дискретного крепежного кронштейна, проникающего через слой изоляции: Трехмерный численный расчет выполняется на участке стены, содержащем типичный крепежный кронштейн. Границы модели должны находиться в квазиадиабатических положениях, например, посередине между двумя скобками. Результат сравнивается с расчетом, в котором скобки опущены, чтобы получить точечный коэффициент теплопередачи χ, как описано в BS EN ISO 10211. Этот расчет необходимо выполнить только один раз для данной конструкции кронштейна и проникающего 20 WFM. СПЕЦИАЛЬНОЕ ПРЕДЛОЖЕНИЕ НА КОНЕЦ ГОДА 2015 Толщина изоляции. Значение U стены тогда U = U0 + n χ, где U0 — значение U стены без крепежных направляющих, а n — количество кронштейнов на квадратный метр стены.

Высокие тепловые характеристики связаны с необходимостью учета перегрева, качества воздуха и вентиляции. Такие стены будут направлять все здание на путь к очень низкой эксплуатационной энергии и устойчивости, пока дизайнеры, конструкторы и владельцы устанавливают оставшиеся части и обеспечивают целостное мышление для выполнения работы.

При расчетах коэффициента теплопередачи не следует делать поправку на влияние самого дождевого экрана, потому что пространство позади полностью вентилируется. Необходимо учитывать влияние кронштейнов или направляющих, прикрепляющих облицовку к стене позади, если кронштейны или направляющие проникают через изоляционный слой или часть изоляционного слоя. Поскольку влияние крепежных кронштейнов или направляющих на коэффициент теплопередачи стены может быть большим, даже если в комплект входит терморазрывная прокладка, их вклад в общее значение коэффициента теплопередачи необходимо оценить с помощью подробных расчетов.

В расчетной модели не должно быть облицовки, но должны быть включены крепежные планки или кронштейны на всю их длину.Сопротивление внешней поверхности следует принять равным 0,13 м²K / Вт, чтобы учесть эффект затенения облицовки.

Воздух в хорошо вентилируемых помещениях считается таким же, как и наружный воздух. Соответственно сопротивление воздушного пространства и всех слоев между ним и внешней средой не учитывается. Однако, поскольку облицовка обеспечивает защиту от ветра, сопротивление внешней поверхности превышает его нормальное значение
0,04 м²K / Вт.

Какие параметры могут изменить значение U стены?

Показатель U рассчитывается в стандартных условиях, обычно при температуре воздуха 20 градусов Цельсия внутри и 10 градусов Цельсия на улице, коэффициент излучения поверхности равен 0.9, влажность 50% и скорость внешнего ветра 4 м / с. Однако значение U не всегда является постоянным и может измениться при следующих условиях:

• Изменение внешней температуры: Очень небольшое влияние на значение U. Не влияет на непрозрачные, хорошо утепленные стены. Для застекленных стен отклонение также очень мало: навесная стена со средним значением U 1,75 Вт / м2 градуса К при +10 градусах Цельсия будет иметь такое же значение при -10 градусах Цельсия снаружи и повысится до 1.76 Вт / м2 градусов К при температуре наружного воздуха +30 градусов Цельсия

• Изменение коэффициента излучения материалов может иметь влияние, и оно варьируется в зависимости от материала. Когда материал имеет низкий коэффициент излучения, трудно повлиять на значение U, если мы уменьшим его еще больше.

• Скорость ветра имеет важное значение, если стена представляет собой застекленный фасад, и не влияет на средний коэффициент теплопроводности, если это непрозрачная стена с хорошей изоляцией.

Заключение:

Сегодня задние вентилируемые фасады — одна из самых популярных фасадных систем.Помимо функциональной безопасности, архитекторы в первую очередь ценят дизайнерские возможности, которые дает использование задних вентилируемых фасадов. Таким образом, эти системы менее подвержены повреждениям, чем другие фасадные системы. Кроме того, требования к защите от огня, шума и молнии можно реализовать легко и творчески.

Разделение материалов теплоизоляции и защиты от атмосферных воздействий делает дизайн фасада с задней вентиляцией не только конструктивно выгодным, но также позволяет использовать различную облицовку для создания различных эффектов. Доступен широкий выбор материалов, форматов, форм, швов, цветов и типов крепления, позволяющих воплотить индивидуальные дизайнерские идеи в реальность.

Бесчисленные примеры нового строительства и модернизации демонстрируют, как конструкции с задними вентилируемыми фасадами чувствительно подходят к окружающей среде и отражают характер зданий в городском пространстве.

Вентилируемый фасад, применение — Пробковая изоляция Amorim

Внимание! Заполните обязательные поля.

Я хочу получать информационные бюллетени Amorim Cork Insulation.

Имя*

Электронное письмо*

Страна Выберите себе countryAFGHANISTANLAND ISLANDSALBANIAALGERIAAMERICAN SAMOAANDORRAANGOLAANGUILLAANTARCTICAANTIGUA И BARBUDAARGENTINAARMENIAARUBAAUSTRALIAAUSTRIAAZERBAIJANBAHAMASBAHRAINBANGLADESHBARBADOSBELARUSBELGIUMBELIZEBENINBERMUDABHUTANBOLIVIABOSNIA И HERZEGOVINABOTSWANABOUVET ISLANDBRAZILBRITISH ИНДИЙСКИЙ ОКЕАН TERRITORYBRUNEI DARUSSALAMBULGARIABURKINA FASOBURUNDICAMBODIACAMEROONCANADACAPE VERDECAYMAN ISLANDSCENTRAL АФРИКАНСКИЕ REPUBLICCHADCHILECHINACHRISTMAS ISLANDCOCOS (Keeling) ISLANDSCOLOMBIACOMOROSCONGOCONGO, ДЕМОКРАТИЧЕСКАЯ РЕСПУБЛИКА THECOOK ISLANDSCOSTA RICACOTE D’IVOIRECROATIACUBACYPRUSCZECH REPUBLICDENMARKDJIBOUTIDOMINICADOMINICAN REPUBLICECUADOREGYPTEL SALVADOREQUATORIAL GUINEAERITREAESTONIAETHIOPIAFALKLAND (Мальвинские) острова ФАРЕРСКИЕ ISLANDSFIJIFINLANDFRANCEFRENCH GUIANAFRENCH POLYNESIAFRENCH ЮЖНОЕ TERRITORIESGABONGAMBIAGEORGIAGERMANYGHANAGIBRALTARGREECEGREENLANDGRENADAGUADELOUPEGUAMGUATEMALAGUERNSEYGUINEAGUINEA- БИССАУГУЯНА ОСТРОВ ХАЙТИХАРД И МАКДОНАЛД ОСТРОВ ШОЛИ (ВАТИКАН C ITY STATE) HONDURASHONG KONGHUNGARYICELANDINDIAINDONESIAIRAN, Исламская Республика OFIRAQIRELANDISLE О MANISRAELITALYJAMAICAJAPANJERSEYJORDANKAZAKHSTANKENYAKIRIBATIKOREA ДЕМОКРАТИЧЕСКАЯ НАРОДНАЯ РЕСПУБЛИКА OFKOREA, РЕСПУБЛИКА OFKUWAITKYRGYZSTANLAO НАРОДНАЯ ДЕМОКРАТИЧЕСКАЯ REPUBLICLATVIALEBANONLESOTHOLIBERIALIBYAN АРАБСКИЕ JAMAHIRIYALIECHTENSTEINLITHUANIALUXEMBOURGMACAOMACEDONIA, бывшая югославская Республика OFMADAGASCARMALAWIMALAYSIAMALDIVESMALIMALTAMARSHALL ISLANDSMARTINIQUEMAURITANIAMAURITIUSMAYOTTEMEXICOMICRONESIA, Федеративные Штаты OFMOLDOVA, РЕСПУБЛИКА OFMONACOMONGOLIAMONTENEGROMONTSERRATMOROCCOMOZAMBIQUEMYANMARNAMIBIANAURUNEPALNETHERLANDSNETHERLANDS ANTILLESNEW CALEDONIANEW ZEALANDNICARAGUANIGERNIGERIANIUENORFOLK ISLANDNORTHERN MARIANA ISLANDSNORWAYOMANPAKISTANPALAUPALESTINIAN ТЕРРИТОРИЯ, OCCUPIEDPANAMAPAPUA NEW GUINEAPARAGUAYPERUPHILIPPINESPITCAIRNPOLANDPORTUGALPUERTO RICOQATARREUNIONROMANIARUSSIAN ФЕДЕРАЦИЯ RWANDASAINT HELENASAINT KITTS И NEVISSAINT LUCIASAINT PIERRE, MIQUELONSAINT VINCENT И GRENADINESSAMOASAN MARINOSAO ТОМ И PRINCIPESAUDI ARABIASENEGALSERBIASEYCHELLESSIERRA LEONESINGAPORESLOVAKIASLOVENIASOLOMON ISLANDSSOMALIASOUTH AFRICASOUTH ГРУЗИЯ И Южные Сандвичевы ISLANDSSPAINSRI LANKASUDANSURINAMESVALBARD И ЯН MAYENSWAZILANDSWEDENSWITZERLANDSYRIAN АРАБ REPUBLICTAIWAN, провинция CHINATAJIKISTANTANZANIA, Объединенная Республика OFTHAILANDTIMOR-LESTETOGOTOKELAUTONGATRINIDAD И TOBAGOTUNISIATURKEYTURKMENISTANTURKS И КАЙКОС ISLANDSTUVALUUGANDAUKRAINEUNITED АРАБ EMIRATESUNITED KINGDOMUNITED STATESUNITED Внешних малые ISLANDSURUGUAYUZBEKISTANVANUATUVENEZUELAVIET NAMVIRGIN ОСТРОВА, BRITISHVIRGIN ОСТРОВА, U. С.УАЛЛИС И ФУТУНАВЕСТЕРН САХАРАЙМЕНЗАМБИАЗИМБАБВЕ

Amorim Cork Insulation стремится защищать и уважать вашу конфиденциальность. В соответствии с новыми правовыми положениями мы должны получить ваше явное согласие на хранение и обработку ваших личных данных, прежде чем мы сможем отправить вам запрошенный контент. Если вы согласны, поставьте отметку в следующем поле, чтобы подтвердить, что вы хотите получать от нас информацию. Вы можете прекратить получать наши сообщения в любое время.Обратитесь к нашей Политике конфиденциальности для получения дополнительной информации о наших мерах по обеспечению конфиденциальности и о том, как реализовать свои права на личные данные.

ULTRA Система термоизоляции, вентилируемые фасады Ariostea

В последние несколько лет теплоизоляция получила все большее распространение в Европе в связи с растущими законодательными и техническими требованиями, обеспечивающими тепловой комфорт как в новых постройках, так и в реконструируемых. Изоляция ограждающих конструкций любого здания — это первый шаг к сокращению потоков и потребления энергии в любом здании, а также повышение комфорта для пользователей и экономия финансовых средств за счет снижения энергопотребления для обогрева и охлаждения внутренних помещений.

Система термооблицовки с использованием плит Ultra изменяет внешний слой обычных систем облицовки с минеральной отделкой, но добавляет большую ценность отделочному слою в тонких плитах из керамогранита.
Система термооблицовки предполагает укладку плиты из керамогранита толщиной 6 мм поверх теплоизоляционного слоя (толщина которого определяется согласно проектным расчетам).

Предлагаемая система требует механически стойкой опоры, спроектированной с использованием системы покрытия и укладки на изоляционных панелях из пенополистирола или экструдированного полистирола (соответственно, пенополистирола или экструдированного полистирола) с высоким механическим сопротивлением (растяжению и сжатию) и низким модулем упругости, способным выдерживать вес и напряжение, создаваемое покрытиями и тепловым расширением.

Изоляционный слой должен иметь шероховатую поверхность для обеспечения сцепления покрытия с квадратными профилями и без выступов с толщиной, установленной в проектных расчетах. Для облицовки плит следует выбирать бледные цвета с показателем отражения более 20%.
При этом следует подчеркнуть, что достижение ожидаемых результатов с точки зрения теплоизоляции и долговечности внешних покрытий тесно связано с тщательным и правильным проектированием конструктивных деталей системы во всех точках, которые могут создать тепловой мост, а также правильный монтаж системы.

ПОСЛЕДОВАТЕЛЬНОСТЬ УКЛАДКИ СИСТЕМЫ ОБЛИЦОВКИ

СЛЕДУЮЩИЕ РЕКОМЕНДАЦИИ ПОМОГУТ ОБЕСПЕЧИТЬ ПРАВИЛЬНУЮ УСТАНОВКУ СИСТЕМЫ НАКЛАДКИ:

1. Систему следует укладывать методом двойного нанесения клея, нанося клей как на нижележащую поверхность, так и на обратную сторону плиты, чтобы предотвратить образование пустот между покрытием и опорой, куда может просочиться дождевая вода и (в случае инея) создают напряжение, которое может привести к отслаиванию плиты. Кроме того, этот метод обеспечивает более равномерное распределение напряжения, вызванного различными движениями плит и опорной поверхности, например, из-за колебаний температуры, что предотвращает образование высолов на фасаде.

2. Плиты должны укладываться с широкими зазорами, соответствующими размеру плиты и местным климатическим условиям.

3. Структурные швы должны соответствовать как размеру, так и положению плиты. Деформационные швы также должны быть вставлены вдоль рядов струн, углов и выступов (и в любом случае через каждые 9-12 м2)

4.Покрытие должно быть защищено от проникновения воды и возможного повреждения от замерзания-плавления путем установки подходящих уплотнений или металлических накладок
сверху и снизу всего покрытия, а также вокруг дверей и окон.


ИСПОЛЬЗОВАНИЕ СИСТЕМЫ ТЕРМИЧЕСКОЙ НАКЛАДКИ

Система облицовки используется во всех новых постройках и реконструкциях, где оболочка здания должна быть изолирована, а также для соответствия законодательным требованиям
, касающимся пропускания вертикальных компонентов и потребностей в энергии, связанных со зданием.
Следует подчеркнуть, что в случае нового строительства или крупномасштабного ремонта вышеупомянутые требования к производительности являются обязательными и что льготы в виде налоговых вычетов могут быть доступны для мер по повышению энергоэффективности (включая системы теплоизоляции).

На схеме ниже показаны диапазоны размеров и некоторые основные показания для наклеивания плит Ultra на внешние стены с термооблицовкой.
Размерный ряд носит ориентировочный характер, так как наружные покрытия могут изготавливаться из плит Ультра любых размеров (до 150х150 см).

ПРИМЕЧАНИЯ : Диапазон размеров является ориентировочным, так как внешние покрытия могут быть изготовлены из плит любых размеров (до 150×150 см).

Ключ относится к высоте здания над землей.

XPS: экструдированный полистирол
EPS: спеченный пенополистирол

Плиты для утепления вентилируемых фасадов Stab Group

Плиты для утепления вентилируемых фасадов

ИЗОВАТ 40

Приложение
Все конструкции, в которых изоляционный материал не подвергается значительным механическим нагрузкам, т. е.е. скатные крыши, перекрытия на балках, подвесные потолки, перегородки, составные стены, каркасные стены, внутренний слой в двухслойном утеплении вентилируемых фасадов.


Основные характеристики

Плотность, кг / м3 40
Теплопроводность λ 10 ° C , Вт / м ° С 0,034
Теплопроводность λ 25 ° C , Вт / м ° С 0,037
Класс огнестойкости негорючий
Размер плиты, мм 1000х600
Толщина, мм 50-200
ИЗОВАТ 65

Применение
В качестве тепло- и звукоизоляции в системах навесных вентилируемых фасадов малоэтажных зданий, высоких перегородок.


Основные характеристики

Плотность, кг / м3 65
Теплопроводность λ 10 ° C , Вт / м ° С 0,035
Теплопроводность λ 25 ° C , Вт / м ° С 0,037
Класс огнестойкости негорючий
Размер плиты, мм 1000х600
Толщина, мм 50-200
ИЗОВАТ 80

Применение
В качестве тепло- и звукоизоляции в навесных вентилируемых фасадных системах.


Основные характеристики

Плотность, кг / м3 80
Теплопроводность λ 10 ° C , Вт / м ° С 0,035
Теплопроводность λ 25 ° C , Вт / м ° С 0,037
Класс огнестойкости негорючий
Размер плиты, мм 1000х600
Толщина, мм 50-200
ИЗОВАТ 100

Применение
В качестве тепло- и звукоизоляции в системах навесных вентилируемых фасадов высотных зданий.


Основные характеристики

Плотность, кг / м3 100
Теплопроводность λ 10 ° C , Вт / м ° С 0,035
Теплопроводность λ 25 ° C , Вт / м ° С 0,038
Класс огнестойкости негорючий
Размер плиты, мм 1000х600
Толщина, мм 50-200

Плиты универсальные (для теплоизоляции конструкций, изоляционный материал которых не подвергается механическим нагрузкам — скатные крыши, звукопоглощающие перегородки, перекрытия на балках, каркасные стены)

Плиты утеплители фасадные с штукатуркой

Плиты для утепления плоских крыш

Плиты перекрытия с подкладкой

Добро пожаловать на фабрику Саудовской каменной шерсти

Вентилируемый фасад

Вентилируемые фасады и настенные покрытия были разработаны для защиты зданий от комбинированного воздействия дождя и ветра, уравновешивая эффекты ударов воды по стенам и сохраняя здание сухим, с высокими эстетическими характеристиками и преимуществами теплоизоляции и звукоизоляции.

Вентилируемые фасады могут снизить количество тепла, которое здания поглощают в жарких климатических условиях из-за частичного отражения солнечного излучения внешней облицовкой, вентилируемым воздушным зазором и применением теплоизоляции, что позволяет значительно снизить затраты на кондиционирование воздуха. И наоборот, зимой вентилируемые стены сохраняют тепло, что дает экономию на отоплении.

Благодаря «эффекту камина» вентилируемых фасадов, обеспечивающих эффективную естественную вентиляцию, отсюда и название «вентилируемый фасад», способствующий удалению тепла и влаги и гарантирующий высокий уровень жизненного комфорта.

Помимо преимуществ энергосбережения вентилируемых фасадов, он помогает отражать и поглощать внешний шум и обеспечивать определенный уровень акустического комфорта.

Огнестойкость фасада

Внешний фасад здания, особенно многоэтажного, всегда подвержен риску пожара, который может привести к гибели людей и материальному ущербу. Помня, что специалист по фасадам предпочитает использовать негорючие материалы при строительстве фасада. Изоляция является неотъемлемой частью внешнего фасада, и изоляция Rockwool с ее превосходными огнестойкими свойствами возглавляет список изоляционных материалов, используемых на фасаде здания.Saudi Rockwool предлагает широкий ассортимент изоляционных материалов Rockwool для использования за навесными стенами, которые обеспечивают термическую, акустическую и пожарную безопасность здания.

Снижение риска возгорания на фасаде всегда является главным приоритетом дизайнеров / консультантов фасадов, поэтому они предпочитают негорючие материалы в конструкции фасада. В большинстве стран регулирующие органы ограничили использование горючих материалов для строительства зданий, особенно для фасадов, где риск распространения огня очень высок, чем в высотных зданиях.С увеличением высоты здания резко возрастает опасность возгорания.

В недавних разработках большинство стран внедрили код NFPA-285, т. е. Стандартный метод испытаний на огнестойкость для оценки характеристик распространения огня наружных ненесущих стеновых конструкций, содержащих горючие компоненты , и наличие фасадной сборки является обязательным. компоненты, содержащие горючие продукты, должны быть испытаны в соответствии с вышеуказанными правилами.

SRWF Фасад -250 Утеплитель Rockwool прошел испытания в соответствии с NFPA-285 в сотрудничестве с различными производителями облицовки в ОАЭ с прошедшим сертификатом.

SRW Rockwool — негорючий изоляционный материал, который используется при утеплении фасадов и обеспечивает отличную пассивную противопожарную защиту строительных конструкций.

SRW Rockwool

SRWF разработала обширный ассортимент продукции Rockwool Insulation для вентилируемых фасадов.Изоляция SRWF Rockwool является водоотталкивающей и подходит для использования на внешней стороне здания с широким спектром облицовки, имеющей различный уровень проницаемости для пароизоляции.

Изоляционные плиты

SRWF Rockwool производятся в соответствии с ASTM C 612, BS EN 13162 и другими международными стандартами. Продукты доступны в жестких и полужестких формах, подходящих для применения.

Негорючие в соответствии с BS EN 1182 и сертифицированный Еврокласс пожарной классификации «A1» пригоден для использования

SRW Rockwool Преимущества

  • Водоотталкивающее средство
  • Негорючие
  • Еврокласс пожарной безопасности — «А1»
  • Температура плавления выше 1000 ° C
  • «нулевой» индекс распространения пламени
  • «нулевой» дым Индекс развития
  • Акустически поглощающие (NRC до 1.0)
  • Устойчивость к грибкам / плесени
  • Нет капиллярного действия
  • Без токсичного дыма или газов
  • Химически инертный

Технические параметры

Параметры

Блок

Значение

Стандарт соответствия

Теплопроводность

Вт / м. K

0,033 -0,034

ASTM C 177 / ASTM C 518

Плотность *

кг / м3

70–128

ASTM C 303

Толщина

(мм)

50–150

Прочность на сжатие

кПа

4.5–20

ASTM C 165

Характеристики горения на поверхности

• Индекс распространения пламени

• Индекс развития дыма

Ноль

Ноль

ASTM E 84 / UL 723

Поглощение влаги

%

<0.2

ASTM C 1104

Водопоглощение

%

<1

BS EN 1609

.

Добавить комментарий