Вес полистиролбетона: как сделать своими руками, пропорции в производстве, состав смеси, ГОСТ, отзывы, цена блоков, теплопроводность, плотность и другие характеристики

Содержание

ХАРАКТЕРИСТИКИ ПОЛИСТИРОЛБЕТОННОЙ СТЯЖКИ, ПРЕИМУЩЕСТВА

 Основные характеристики полистиролбетонной стяжки

Характеристики

Единица измерения

Плотность, кг/м3

200

250

300

350

Теплопроводность (λ)

W/mk

0,052

0,067

0,079

0,086

Звукопоглощение

dB

27

25

23

21

Прочность на сжатие

Кг/см²

6,9

8,3

14,8

16,9

Прочность на изгиб

Кг/см²

3,7

4,6

6

5,9

Звукопоглощение, ДБ

27

25

23

21

19

Сила сцепления

kPa

82,62

82,62

127,17

127,17

Модуль упругости

N/мм²

235,3

235,3

489,5

489,5

Усадка при схватывании(NBN)

мм/м

0,427

0,427

0,352

0,352

Группа горючести

НГ

НГ

НГ

НГ

Возгораемость

Не возгорается

Паропроницаемость(µ)

10,11

11,5

12

21,04

Расчетное массовое соотношение влаги при условиях эксплуатации, %

А

4

B

8

Водопоглощение за 24 часа, по объему, не более

%

8

Обладает высокой морозостойкостью

Не является питательной средой для микроорганизмов и грибков, не подвержен гниению

 

 Преимущества полистиролбетонной стяжки

Экологичность — в состав входит цемент марки 500 D0, вода и высококачественный экологически безопасный полистирол (гранулы) используемый в пищевой промышленности СанПиП 2.1.7.1322-03.


Теплоизоляция – снижение энергозатрат в 2,5 — 5 раза для конечного пользователя. Экономия при строительстве.


Гидроизоляция — процент водопоглощения по массе до 4 % — это в 3,5 раза меньше в сравнении с кирпичом и деревом, не заводится грибок и плесень.


Прочность – применяется при строительстве самонесущих и ненесущих конструкций в промышленном и гражданском строительстве.


Сейсмоустойчивость — 9 — 12 баллов.


Лёгкость – один куб.м. полистиролбетона вести около 400 кг (при плотности D400).


Шумоизоляция – обеспечивая отличную звукоизоляцию.


Долговечность – более 50 лет, как и любой бетон со временем только набирает прочность


Технологичность – легко пилятся, штробятся, легкое устройство каналов скрытой проводки.


Экономичность – стоимость квадратного метра стяжки при аналогичных характеристиках (тепло- и шумоизоляции) дешевле любого материала используемого для стяжки.


Пожаробезопасность – класс горючести Г 1 (трудногорюч). Полистиролбетон не горит, при пожаре поверхностные гранулы пенополистирола испаряются, а тление и пламя отсутствуют.


Теплоинертность – помещения быстро нагреваются и медленно охлаждаются.


Морозостойкость – испытания на морозостойкость и амплитуде колебания температуры с + 75°С до — 30°С испытаны на 50 циклах замораживания-оттаивания, без потери целостности и теплоизолирующей способности.


Антисептичность – применяемая при изготовлении полистиролбетона воздухововлекающая и пластифицирующая добавка не позволяет заводиться в стенах насекомым, грызунам, препятствует образованию плесени и грибка.


Антикоррозийность – при использований полистиролбетона марки D300 и выше, заложенная арматура, при монолитной заливке или армировании не подвергается коррозии.


Температура применения колеблется в диапазоне от -60°С до +70°С, материал по морозостойкости относится к классу от F35 до F120, в зависимости от марки полистиролбетона.

 

Сравнения полистиролбетонной стяжки с другими материалами

Позиция

Керамзит (70 мм) +
ЦП (40 мм)

 D700 (60мм)

Пенопласт (40 мм) +
ЦП (40 мм)

  Минвата  (50 мм)+
ЦП (40 мм)

D400 (50 мм)

Не требуется  +

+

+

+

  Гидробарьер

Не обязателен Не обязателен

+

+

Не обязателен

  Утеплитель

+

 Не требуется

+

+

Не требуется

  Работы по утеплению

+

+

+

+

Не требуется

  Армирующая сетка

Не требуется   Не требуется

+

+

Не требуется

  Общий вес 1 кв м

115 кг

35 кг

64 кг

72 кг

20 кг

  Толщина «пирога»

110 мм

60 мм

80 мм

90 мм

50 мм

 

 

расчет пропорций и состав раствора на 1 м3 пенополистиролбетона и полистиролбетона на песке, рецепт в домашних условиях

Бетон – одно из лучших изобретений человечества в сфере строительства за всю историю цивилизации, но у его классической разновидности есть один принципиальный недостаток: бетонные блоки весят слишком много. Неудивительно, что инженеры много работали над тем, чтобы сделать материал менее плотным, но при этом очень прочным. В результате было создано несколько модифицированных вариантов бетона, а одним из наиболее популярных среди них является полистиролбетон. Вопреки распространенному мнению, его, как и обыкновенный бетон, можно замешать своими руками прямо в домашних условиях.

Источник фото: https://beton57.ru/proizvodstvo-polistirolbetona/

Необходимые материалы

Как и положено любой другой бетонной смеси, полистиролбетон предполагает использование в первую очередь цемента, просеянного песка и пластификаторов. Вода также необходима, причем ее количество важно просчитать идеально точно. В принципе, если влаги будет много, вы это сразу заметите: слишком жидкая масса спровоцирует всплытие всей взвеси. Если же состав получился слишком густым, последствия обнаружатся позже – неуместно сгущенный полистиролбетон имеет повышенную склонность к растрескиванию. Кроме того, необходимо добавить и

полистирол.

Этой комбинации ингредиентов уже достаточно, чтобы масса получилась универсальной и могла быть использована в различных условиях. Добавление каких-либо дополнительных компонентов не требуется – стандартного набора составляющих хватит для того, чтобы полистиролбетон мог быть использован для всех основных сфер, а именно: строительства зданий, установки перемычек и заливки пола.

При этом материал не содержит токсичных или любых других опасных для человека компонентов, является экологически чистым и безвредным для окружающей среды.

Инструменты и оборудование

Особенностью полистиролбетона является то, что его компоненты имеют различную плотность, а потому нуждаются в очень тщательном смешивании, иначе об однородности массы не может быть и речи. Тяжелая техника для замешивания полистиролбетона не требуется, хотя может использоваться при производстве стройматериала в промышленных масштабах. При этом вручную состав не вымешивают даже строители-любители – желательно обзавестись хотя бы самой простой бетономешалкой.

В условиях большого частного строительства, если полистиролбетона надо хотя бы 20 кубов, актуально использование отдельного электрогенератора. Он позволит подавать производимую массу на место укладки без перебоев, а ведь в сельской местности, где обычно занимаются любительским строительством, перебои с напряжением вполне вероятны.

Более того, согласно ГОСТу 33929-2016 качественная заливка материала возможна только с полноценным применением генератора.

Заливка возможна и с определенной дистанции, но для удобства выполнения масштабных работ гораздо удобнее обзавестись мобильной установкой для замешивания полистиролбетона. Другое дело, что ее покупка очень сильно бьет по карману владельца, а в процессе возведения одного объекта, пусть даже довольно крупного, окупиться она не успеет. Таким образом, подобное оборудование актуально для профессиональных строительных бригад, но вряд ли должно рассматриваться в качестве решения для индивидуального строительства.

Можно также уточнить, что на больших предприятиях, конечно, автоматизация процесса организована на порядок выше. Самые лучшие образцы современной техники – полностью автоматизированные конвейерные линии – позволяют выдавать свыше 100 м3 готового материала ежедневно, причем уже сформированного в блоки нужного размера и формы. Такое оборудование не могут позволить себе даже предприятия среднего размера, которые вместо этого обходятся сравнительно компактными и недорогими стационарными линиями.

Рецептура

В интернете можно встретить различные рекомендации относительно пропорций всех входящих в рецепт компонентов, но в каждом отдельном случае правильный состав будет разным. Удивляться этому не стоит: как и обычный бетон, полистирольная версия бывает разных марок, каждая из которых подходит для определенных задач. Именно с этим стоит разобраться в первую очередь.

Марки полистиролбетона по плотности обозначаются буквой D и трехзначным числом, которое указывает, сколько примерно килограммов веса приходится на 1 м3 застывшей массы. Менее плотные растворы, марка которых ниже D300, не годятся ни для стяжки пола, ни для возведения стен: они очень пористые и из-за этого хрупкие, неспособные выдерживать значительную нагрузку. Такие блоки, как правило, используют в качестве теплоизоляции.

Полистиролбетон в пределах D300–D400 называют теплоизоляционно-конструкционным: он и теплоизоляцию обеспечивает, и может быть использован для малоэтажного строительства, но только при условии, что не станет несущей опорой для тяжелых конструкций. Наконец, составы плотностью от 400 до 550 кг на 1 м3 называются конструкционно-теплоизоляционными. Они уже не годятся для полноценной теплоизоляции, но выдерживают более высокую нагрузку.

Тем не менее даже их нельзя использовать для многоэтажного строительства.

Теперь можно переходить непосредственно к пропорциям. В каждом случае за неизменную основу будем брать 1 кубометр гранулированного полистирола. Если брать для замешивания цемент марки М-400, то на куб полистирола для производства бетона D200 надо взять 160 кг цемента, для D300 – 240 кг, D400 – 330 кг, D500 – 410 кг.

Количество воды по мере роста потенциальной плотности тоже возрастает: брать надо, соответственно, 100, 120, 150 и 170 л. А также нередко добавляют смолу древесную омыленную (СДО), но ее надо совсем немного и тем меньше, чем выше плотность: соответственно, 0.8, 0.65, 0.6 и 0.45 л.

Использование цемента более низкой марки, чем М-400 крайне нежелательно. Если марка более высокая, можно немного сэкономить цемент, сделав массу частично на песке.

Профессионалы указывают, что использование высококачественных марок цемента позволяет треть его массы заменять песком.

Отдельного внимания заслуживает использование СДО, которая считается необязательной. Это вещество добавляют по той причине, что оно создает в толще бетона маленькие воздушные пузырьки, способствующие повышению теплоизоляционных свойств. При этом небольшая доля СДО в общей массе на плотность радикально не влияет, но если теплоизоляция вам совершенно ни к чему, можно сэкономить на производстве полистиролбетона, не добавляя в него этот компонент.

Необходимыми компонентами являются пластификаторы, но в пропорциях выше они рассмотрены не были. Так произошло потому, что каждый производитель предлагает продукцию с совершенно разными свойствами, поэтому разумно вчитываться в инструкции на таре, а не руководствоваться некой общей логикой. При этом в домашних условиях очень часто не применяют специальные пластификаторы, используя вместо них жидкое мыло либо средство для мытья посуды.

Хотя они тоже бывают разными, некая общая рекомендация существует: такой «пластификатор» добавляется в воду в количестве примерно 20 мл на ведро.

Как сделать?

Изготовление полистиролбетона своими руками не является особо сложной задачей, но важно выдержать процедуру приготовления, иначе материал окажется ненадежным, не сможет соответствовать лучшим ожиданиям или попросту будет приготовлен в недостаточном или чрезмерном количестве. Разберемся, как получить хороший пенополистиролбетон без очевидных ошибок.

Расчет объема

Хотя пропорции выше даны правильно, в домашних условиях ими пользуются мало: в них учтены слишком большие объемы, которые не только не используются в частном строительстве, но и сложно измерять. Для большего удобства мастера-любители используют перерасчет на ведра – это своеобразный общий знаменатель для килограммов цемента, литров воды и кубометров полистирола. Даже если нам нужен раствор на базе кубометра гранул, все равно такой объем в бытовую бетономешалку не поместится, а значит, лучше измерять ведрами.

Сначала нужно понять, сколько ведер цемента надо для замешивания массы. Как правило, стандартное 10-литровое ведро цемента весит примерно 12 кг. Согласно приведенным выше пропорциям, для приготовления полистиролбетона марки D300 надо 240 кг цемента или 20 ведер. Раз общую массу можно поделить на 20 «порций», определяем, сколько других материалов понадобится для одной такой «порции», деля рекомендованное в пропорциях количество на 20.

Кубометр полистирола – это объем, равняющийся 1000 л. Поделим его на 20 – получится, что на каждое ведро цемента надо 50 л гранул или 5 10-литровых ведер. По такой же логике вычисляем количество воды: суммарно ее надо было 120 л, при делении на 20 частей получается по 6 литров на порцию, отмерять их можно даже обыкновенными бутылками из-под различных напитков.

Сложнее всего с СДО: ее суммарно надо было всего 650 мл, а значит, для каждой порции – всего 32,5 мл. Конечно, небольшие отклонения допустимы, но помните, что снижение дозировки отрицательно сказывается на теплоизоляционных свойствах, а превышение делает материал менее прочным.

Эта же формула используется и для расчетов пропорций составляющих для изготовления полистиролбетона любых других марок: определяйте, сколько ведер цемента надо на 1 м3 гранул, а потом делите соответствующий объем других компонентов на число ведер.

Замешивание

Замешивать полистиролбетон надо, соблюдая определенный порядок действий, иначе получившаяся масса не будет однородной, а значит, блоки из нее не будут прочными и долговечными. Последовательность шагов предполагается следующая:

  • в бетономешалку высыпают все полистирольные хлопья и сразу же включают вращение барабана;
  • пластификатор или моющее средство, которое его заменяет, растворяют в воде, однако выливают в барабан не всю жидкость, а только ее треть;
  • в сравнительно небольшом количестве влаги и пластификатора гранулы полистирола должны отмокать на протяжении некоторого времени – к следующему шагу переходим только после того, как каждая гранула наверняка промокла;
  • после этого можно засыпать в бетономешалку весь объем цемента, а сразу за ним влить всю оставшуюся воду;
  • если СДО входит в состав вашего рецепта, она вливается самой последней, но ее надо предварительно растворить в небольшом объеме воды;
  • после добавления СДО остается вымешивать всю массу на протяжении 2 или 3 минут.

На самом деле процесс домашнего разведения полистиролбетона может оказаться и более простым, если вы купите его в сухом виде и просто добавите воды. На упаковке будет написано, какая марка стройматериала должна получиться на выходе, а также должно быть указано, сколько именно жидкости надо для получения ожидаемого результата.

В составе такой сухой массы уже есть все необходимое, включая СДО и пластификаторы, поэтому ничего, кроме воды, добавлять не нужно.

Инструкцию по изготовлению полистиролбетона своими руками смотрите в видео ниже.

ГОСТ 33929-2016 Полистиролбетон. Технические условия, ГОСТ от 20 октября 2016 года №33929-2016


ГОСТ 33929-2016

ПОЛИСТИРОЛБЕТОН

Concrete with polystyrene aggregates. Specifications



МКС 91.100.30

Дата введения 2017-04-01


Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН Акционерным обществом «Научно-исследовательский, проектно-конструкторский и технологический институт ВНИИжелезобетон» (АО «ВНИИжелезобетон»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 31 августа 2016 г. N 90-П)

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 20 октября 2016 г. N 1444-ст межгосударственный стандарт ГОСТ 33929-2016 введен в действие в качестве национального стандарта Российской Федерации с 1 апреля 2017 г.

5 ВВЕДЕН ВПЕРВЫЕ

6 Информация о патентных правах приведена во введении к настоящему стандарту


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение


Настоящий стандарт разработан на основании последних результатов НИОКР научно-исследовательского, проектно-конструкторского и технологического института ВНИИжелезобетон и обобщения накопленного более чем за 15-летний период опыта изготовления из полистиролбетона сборных изделий и монолитных конструкций и их применения при строительстве энергоэффективных зданий типа системы «ЮНИКОН» в России и странах СНГ.

В настоящем стандарте использованы российские патенты на изобретение «Теплоизоляционно-конструкционный полистиролбетон» (N RU 2515664) и «Способ определения средней плотности гранул полистирольного заполнителя для полистиролбетона» (N RU 2525150) и «Негорючий полистиролбетон» (заявка N 2016135975 от 07.09.2016 г.).

1 Область применения


Настоящий стандарт распространяется на особо легкий бетон поризованной структуры на цементном вяжущем и пористом заполнителе из вспененных гранул полистирола (далее — полистиролбетон), предназначенный для изготовления сборных изделий или монолитных конструкций, применяемых в наружных стенах, покрытиях и перекрытиях энергоэффективных жилых и общественных зданий.

При технико-экономическом обосновании допускается применение полистиролбетона для конструкций промышленного, дорожного и других видов строительства.

Рекомендуемые области применения полистиролбетона в ограждающих конструкциях зданий приведены в приложении А.

Стандарт устанавливает технические требования к полистиролбетону и полистиролбетонным смесям, материалам для их приготовления, а также к приемке и методам контроля их технических характеристик.

Требования настоящего стандарта следует учитывать в разрабатываемых новых и пересматриваемых стандартах и технических условиях на сборные изделия и монолитные конструкции из полистиролбетона.

2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 4.212-80 Система показателей качества продукции. Строительство. Бетоны. Номенклатура показателей

ГОСТ 12.1.044-89 (ИСО 4589-84) Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения

ГОСТ 3476-74 Шлаки доменные и электротермофосфорные гранулированные для производства цементов

ГОСТ 5802-86 Растворы строительные. Методы испытаний

ГОСТ 6139-2003 Песок для испытаний цемента. Технические условия

ГОСТ 7076-99 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 8735-88 Песок для строительных работ. Методы испытаний

ГОСТ 9758-2012 Заполнители пористые неорганические для строительных работ. Методы испытаний

ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости

ГОСТ 10178-85 Портландцемент и шлакопортландцемент. Технические условия

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10181-2014 Смеси бетонные. Методы испытаний

ГОСТ 12730.1-78 Бетоны. Методы определения плотности

ГОСТ 12730.2-78 Бетоны. Метод определения влажности

ГОСТ 12730.4-78 Бетоны. Методы определения показателей пористости

ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Правила приемки, маркировки, транспортирования и хранения

ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности

ГОСТ 23732-2011 Вода для бетонов и строительных растворов. Технические условия

ГОСТ 24211-2008 Добавки для бетонов и строительных растворов. Общие технические требования

ГОСТ 24452-80 Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона

ГОСТ 24544-81 Бетоны. Методы определения деформаций усадки и ползучести

ГОСТ 25192-2012 Бетоны. Классификация и общие технические требования

ГОСТ 25818-91 Золы-уноса тепловых электростанций для бетонов. Технические условия

ГОСТ 25898-2012 Материалы и изделия строительные. Методы определения паропроницаемости и сопротивления паропроницанию

ГОСТ 27005-2014 Бетоны легкие и ячеистые. Правила контроля средней плотности

ГОСТ 27006-86 Бетоны. Правила подбора состава

ГОСТ 28013-98 Растворы строительные. Общие технические условия

ГОСТ 30108-94 Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов

ГОСТ 30244-94 Материалы строительные. Методы испытаний на горючесть

ГОСТ 30402-96 Материалы строительные. Метод испытания на воспламеняемость

ГОСТ 31108-2016 Цементы общестроительные. Технические условия

ГОСТ 31359-2007 Бетоны ячеистые автоклавного твердения. Технические условия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения


В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 полистиролбетон; ПСБ: Особо легкий бетон поризованной структуры на цементном вяжущем и заполнителе из вспененных гранул полистирола с использованием воздухововлекающих добавок, поризующих цементный камень, и других добавок-модификаторов свойств бетона.

3.2 полистирол вспененный гранулированный; ПВГ: Заполнитель в полистиролбетоне, получаемый способом однократного или многократного вспенивания суспензионного полистирольного бисера.

3.3 полистиролбетон теплоизоляционный: Бетон марок по средней плотности D150-D225 и по прочности на сжатие не ниже марки М2, применяемый для утепления несущих конструкций зданий.

3.4 полистиролбетон теплоизоляционно-конструкционный: Бетон марок по средней плотности D250-D350, класса по прочности не ниже В0,5, применяемый в энергоэффективных наружных ненесущих стенах зданий, в том числе в надпроемных перемычках.

3.5 полистиролбетон конструкционно-теплоизоляционный: Бетон марок по средней плотности D400-D600, класса по прочности не ниже В1,5, принимаемый в длинномерных (более 1,8 м) надпроемных перемычках, а также как несущий слой наружных стен малоэтажных зданий.

3.6 сборные полистиролбетонные изделия: Стеновые блоки, плиты, армированные надпроемные перемычки и другие теплоизолирующие полистиролбетонные элементы ограждающих конструкций зданий, изготовляемые из полистиролбетона в заводских условиях.

3.7 монолитные конструкции: Конструкции, возводимые из товарной или приготовленной в ус-ловиях строительного производства полистиролбетонной смеси.

4 Классификация


Полистиролбетон подразделяют:

— по назначению и применению:

для сборных изделий заводского изготовления, применяемых в условиях строительного производства,

монолитных конструкций, изготовляемых и применяемых в условиях строительного производства;

— по степени теплозащитных и конструкционных качеств:

на теплоизоляционный,

теплоизоляционно-конструкционный,

конструкционно-теплоизоляционный.

5 Технические требования

5.1 Полистиролбетон должен соответствовать требованиям настоящего стандарта и изготовляться по технологической документации, утвержденной в установленном порядке.

В стандартах и технических условиях на сборные изделия и монолитные конструкции из полистиролбетона следует учитывать требования ГОСТ 25192.

5.2 Для полистиролбетона определяют следующие физико-механические характеристики:

— средняя плотность;

— прочность на сжатие;

— прочность на растяжение при изгибе;

— прочность на осевое растяжение;

— морозостойкость;

— теплопроводность;

— паропроницаемость;

— усадка при высыхании.

В стандартах и технических условиях на сборные изделия и монолитные конструкции из полистиролбетона в зависимости от условий эксплуатации могут быть установлены дополнительные показатели, предусмотренные ГОСТ 4.212.

5.3 Полистиролбетон должен иметь слитную (без видимых каверн и трещин) поризованную структуру цементного камня.

5.4 По значению средней плотности устанавливают следующие марки полистиролбетона в сухом состоянии: D150; D175; D200; D225; D250; D300; D350; D400; D450; D500; D550 и D600.

5.5 Фактическая средняя плотность полистиролбетона не должна превышать значения, установленного в соответствии с ГОСТ 27005.

5.6 Прочность теплоизоляционно-конструкционного и конструкционно-теплоизоляционного полистиролбетона в 28-суточном проектном возрасте характеризуют классами по прочности на сжатие: В0,35; В0,5; В0,75; В1; В1,5; В2 и В2,5.

Коэффициент вариации прочности на сжатие теплоизоляционно-конструкционного и конструкционно-теплоизоляционного полистиролбетона для сборных изделий заводского изготовления должен быть не более 12%, для полистиролбетона из товарных смесей и изготовляемых в условиях строительного производства и применяемых для монолитных конструкций не должен превышать 18%.

Прочность теплоизоляционного полистиролбетона характеризуют марками по прочности на сжатие: М2; М2,5; М3,5; М5. Коэффициент вариации прочности на сжатие теплоизоляционного полистиролбетона должен быть не более 18%.

Значения требуемой средней прочности полистиролбетона при коэффициентах вариации прочности 12% и 18% приведены в таблице Б.1 приложения Б.

При фактически установленных производителем полистиролбетона меньших значениях коэффициента вариации прочности требуемую прочность уточняют согласно пункту И.2 приложения И.

5.7 Для полистиролбетона, применяемого в сборных изделиях и монолитных конструкциях, подвергающихся в процессе эксплуатации попеременному замораживанию и оттаиванию, назначают следующие марки по морозостойкости: F35; F50; F75; F100; F150; F200 и F300.

Марку полистиролбетона по морозостойкости принимают как для ячеистых бетонов автоклавного твердения согласно ГОСТ 31359 по числу циклов замораживания и оттаивания образцов в воздушно-влажной среде над водой.

5.8 В зависимости от марки по средней плотности полистиролбетона его классы (марки) по прочности на сжатие и марки по морозостойкости назначают в стандартах или технических условиях на сборные изделия заводского изготовления по нормам строительного проектирования с учетом требований таблицы 1.

Предел прочности полистиролбетона на растяжение при изгибе при заводском изготовлении сборных изделий должен быть не ниже значений, приведенных в таблице 1.


Таблица 1

Марка по средней плотности

Класс (марка) по прочности на сжатие

Предел прочности на растяжение при изгибе, МПа

Марка по морозостойкости

D150

М2

F35

D175

М2,5

F50

D200

М3,5

F75

D225

В0,35 (М5)

0,27

F75

D250

В0,5

0,38

F100

D300

В0,75

0,53

F150

D350

В1

0,63

F150

D400

В1,5

0,65

F150

D450

В1,5

0,68

F200

D500

В2

0,70

F200

D550

В2

0,74

F200

D600

В2,5

0,76

F300


Нормируемые значения прочности на осевое растяжение полистиролбетона должны быть не ниже значений прочности на растяжение при изгибе по таблице 1, умноженных на коэффициент K=0,32.

5.9 Для полистиролбетона из товарных смесей и изготовляемых в условиях строительного производства для заданной марки по средней плотности класс (марку) по прочности на сжатие, прочность на растяжение при изгибе и марку по морозостойкости, приведенные в таблице 1, уменьшают на одну ступень.

5.10 Теплотехнические характеристики полистиролбетона, необходимые для расчетов сборных изделий, принимают по таблице 2.


Таблица 2 — Теплотехнические характеристики полистиролбетона

Марка по средней плотности

Коэффициент теплопроводности в сухом состоянии , Вт/(м·°С)

Расчетные характеристики сборных изделий при условиях эксплуатации А и Б

Влажность w, %

Коэффициент теплопроводности , Вт/(м·°С)

Паропроницаемость , мг/(м·ч·Па)

А

Б

А

Б

А, Б

D150

0,051

3,0

4,0

0,054

0,056

0,135

D175

0,055

3,0

4,0

0,058

0,060

0,128

D200

0,062

3,0

4,0

0,066

0,069

0,120

D225

0,066

3,0

4,5

0,071

0,075

0,115

D250

0,070

3,0

4,5

0,076

0,080

0,110

D300

0,078

3,0

5,0

0,085

0,091

0,100

D350

0,085

3,5

6,0

0,095

0,101

0,090

D400

0,095

3,5

6,0

0,106

0,117

0,085

D450

0,105

4,0

7,0

0,118

0,130

0,080

D500

0,115

4,0

7,0

0,130

0,145

0,075

D550

0,125

4,0

8,0

0,143

0,160

0,070

D600

0,135

4,0

8,0

0,158

0,176

0,068


Для расчетов монолитных конструкций теплотехнические характеристики полистиролбетона заданной марки по средней плотности принимают интерполяцией как среднее арифметическое между значениями по таблице 2 и значениями для средней марки по плотности, повышенной на одну ступень.

5.11 Допускается для теплоизоляционного и теплоизоляционно-конструкционного полистиролбетона заданной прочности, применяемого в сборных изделиях, использование пониженных на 15% расчетных значений коэффициента теплопроводности по сравнению с приведенными в таблице 2 при изготовлении полистиролбетона по специальной технологии (далее — спецтехнология), согласованной с разработчиком настоящего стандарта, основанной на применении заполнителя ПВГ с комплексным показателем качества n в интервале 1,5-1,75 и объемным содержанием не менее 0,38. Показатели полистиролбетона, изготовленного по спецтехнологии, приведены в таблице Б.2 приложения Б.

5.12 При применении в ограждающих конструкциях зданий сборных полистиролбетонных стеновых блоков, перемычек и плит для повышения теплотехнических характеристик рекомендуется использовать кладочные клеи, а в горизонтальных швах кладок (при необходимости устройства связевых элементов) устанавливать штукатурные (базальтовые или стальные) сетки.

Приведенное сопротивление теплопередаче наружных стен зданий из сборных полистиролбетонных изделий рекомендуется рассчитывать согласно нормативным документам, действующим на территории государства — участника Соглашения, принявшего настоящий стандарт.

5.13 Деформации усадки полистиролбетона в монолитных конструкциях не должны превышать 1,0 мм/м.

5.14 Нормативные и расчетные сопротивления, а также начальный модуль упругости полистиролбетона, необходимые при расчете и проектировании изделий из полистиролбетона заводского изготовления, принимают по данным таблиц 3-5.


Таблица 3 — Нормативные и расчетные сопротивления полистиролбетона для предельных состояний второй группы

Вид сопротивления

Нормативное и расчетное сопротивление полистиролбетона для предельных состояний второй группы, МПа, для класса прочности на сжатие

В0,35

В0,5

В0,75

В1

В1,5

В2

В2,5

Осевое сжатие (призменная прочность) и

0,40

0,57

0,84

1,10

1,61

2,07

2,50

Осевое растяжение и

0,14

0,19

0,24

0,28

0,34

0,37

0,41

Растяжение при изгибе и

0,25

0,34

0,44

0,51

0,61

0,68

0,74



Таблица 4 — Расчетные сопротивления полистиролбетона для предельных состояний первой группы

Вид сопротивления

Расчетное сопротивление полистиролбетона для предельных состояний первой группы, МПа, для класса прочности на сжатие

В0,35

В0,5

В0,75

В1

В1,5

В2

В2,5

Осевое сжатие (призменная прочность)

0,29

0,41

0,60

0,79

1,15

1,48

1,79

Осевое растяжение

0,08

0,11

0,14

0,16

0,20

0,22

0,24

Растяжение при изгибе

0,16

0,21

0,28

0,32

0,38

0,43

0,46



Таблица 5 — Начальный модуль упругости при сжатии и растяжении полистиролбетона

Марка по средней плотности

Начальный модуль упругости полистиролбетона при сжатии и растяжении 10, МПа, для класса прочности на сжатие

В0,35

В0,5

В0,75

В1

В1,5

В2

В2,5

D225

0,42


D250

0,50


D300

0,65

D350


0,85

D400


1,1

D450


1,3

D500


1,55

D550


1,75

D600


2,1


Для полистиролбетона из товарных смесей, изготовляемых в условиях строительного производства, расчетные и нормативные сопротивления, а также начальный модуль упругости для заданного класса по прочности принимают интерполяцией как среднее арифметическое между значениями, указанными в таблицах 3-5, и значениями для класса по прочности, пониженными на одну ступень.

5.15 Нормативные и расчетные прочностные сопротивления кладки из полистиролбетонных изделий, учитывающие влияние кладочных клеев, следует принимать по данным нормативных документов, утвержденных в установленном порядке.

5.16 Сопротивление воздухопроницанию полистиролбетона для расчетов ограждающих конструкций зданий принимают =120 м·ч·Па/кг на толщину 100 мм. Указанное значение допускается принимать для стеновой кладки из полистиролбетонных блоков при условии использования безусадочных кладочных клеев.

5.17 Полистиролбетон марок по средней плотности D250 и выше с расходом цемента не менее 200 кг/м обеспечивает при обычных условиях эксплуатации сохранность стальной арматуры от коррозии.

5.18 Полистиролбетон обладает необходимой биостойкостью, устойчив к образованию грибковой плесени и не повреждается грызунами.

5.19 Динамический модуль упругости для расчетов звукоизоляции конструкций из полистиролбетона марок по средней плотности D250-D300 принимают равным 8,5·10 Па.

Примечание — При снижении плотности полистиролбетона повышаются его звукоизоляционные и звукопоглощающие свойства.

5.20 Пожарно-технические характеристики полистиролбетона приведены в таблице 6.


Таблица 6 — Пожарно-технические характеристики полистролбетона

Марка полисти-
ролбе-
тона по средней плотности

Группа горючести по ГОСТ 30244

Группа воспламеняемости по ГОСТ 30402

Группа дымообразующей способности по ГОСТ 12.1.044*

Класс опасности по токсичности по ГОСТ 12.1.044*

Обычная техно-
логия

Спецтехно-
логия

Обычная техно-
логия

Спецтехно-
логия

Обычная техно-
логия

Спецтехно-
логия

Обычная технология

Спецтех-
нология

D150

Г1

Г1

В1

В1

Умеренная

Умеренная

Умеренно-
опасный

Умеренно-
опасный

D175

D200

D225

Малая

Малоопасный

D250

D300

НГ

Малая

D350

D400

D450

D500

D550

D600

* В Российской Федерации согласно СНиП 21-01-97* строительные материалы с умеренной дымообразующей способностью отнесены к группе Д2, с малой дымообразующей способностью — к группе Д1; по токсичности продуктов горения умеренноопасные материалы отнесены к группе Т2, малоопасные — к группе Т1.


Изделия из полистиролбетона должны иметь сертификаты пожарной безопасности.

Для обеспечения пожарной безопасности зданий не допускается использование полистиролбетона группы горючести Г1 без защиты его негорючими материалами (кирпич, цементно-песчаная штукатурка, гипсоволокнистые листы и др.). При этом полистиролбетон должен изготовляться с использованием ПВГ, получаемого из гранул самозатухающего полистирола, например марки ПСВ тип SE по нормативным документам*, действующим на территории государства — участника Соглашения, принявшего настоящий стандарт.

_______________

* В Российской Федерации действует ТУ 2214-019-53505711-2010** «Полистирол вспенивающийся (ПСВ)» (с изменениями 1-5).

* ТУ, упомянутые здесь, не приводятся. За дополнительной информацией обратитесь по ссылке. — Примечание изготовителя базы данных.


Пожарная безопасность ограждающих конструкций зданий, содержащих полистиролбетон, должна быть обеспечена техническими решениями, отраженными в нормативной и проектной документации, утвержденной в установленном порядке и согласованной с органами пожарного надзора.

5.21 Отпускная влажность полистиролбетона в сборных изделиях не должна превышать 24% по массе, а ее фактическое значение следует указывать в документе о качестве на изделия по ГОСТ 13015.

5.22 Требования к полистиролбетонным смесям и материалам

5.22.1 Качество полистиролбетонных смесей и технология их приготовления должны обеспечивать получение полистиролбетона в изделиях и конструкциях, удовлетворяющего требованиям настоящего стандарта по всем нормируемым показателям качества.

5.22.2 Состав полистиролбетонной смеси подбирают согласно требованиям ГОСТ 27006 и утвержденных в установленном порядке инструкций (правил) по подбору состава материала, входящих в технологическую документацию.

Состав полистиролбетонной смеси следует подбирать исходя из требований к прочности и теплопроводности полистиролбетона.

Состав полистиролбетонной смеси для полистиролбетона с пониженной средней плотностью и теплопроводностью (при заданной прочности) следует подбирать с учетом требований 5.11.

5.22.3 Полистиролбетонные смеси должны соответствовать требованиям ГОСТ 7473 и настоящего стандарта.

5.22.4 Марку по удобоукладываемости (жесткость или подвижность) полистиролбетонных смесей назначают в пределах Ж1, Ж2 и П1-П5 по ГОСТ 7473 в зависимости от вида изделий или конструкций и технологии их формования.

Допускается назначать марку по подвижности полистиролбетонной смеси, используемой для строительных растворов по ГОСТ 28013, в пределах П3-П4.

5.22.5 Увеличение средней плотности полистиролбетонной смеси за счет частичной потери вовлеченного воздуха при выгрузке, транспортировании и укладке в формы (опалубку) должно быть не более 7%.

5.22.6 Показатель расслаиваемости приготовленной полистиролбетонной смеси после ее выгрузки и транспортирования не должен превышать 25%.

5.22.7 После транспортирования полистиролбетонных товарных смесей должна быть обеспечена сохраняемость их свойств перед употреблением (удобоукладываемость, плотность, расслаиваемость) в течение времени, согласованного с потребителем, но не менее 1,0 ч.

5.22.8 В качестве заполнителя для изготовления полистиролбетона следует применять вспененный гранулированный полистирол (ПВГ) — продукт однократного или многократного вспенивания суспензионных полистирольных гранул.

Исходное сырье (полистирольный бисер) для получения ПВГ должно соответствовать требованиям действующих стандартов и технических условий, а его основные характеристики (размер гранул, фракционный состав, содержание вспенивающего агента и остаточного мономера, горючесть) должны быть указаны в паспорте завода-изготовителя.

Для получения ПВГ следует использовать бисер из вспенивающегося самозатухающего полистирола сферической формы со средним размером (диаметром) зерен в пределах 0,45-0,85 мм с антипиреновыми добавками, обеспечивающего получение ПВГ с характеристиками, указанными в 5.22.9-5.22.12.

5.22.9 Насыпная плотность ПВГ не должна превышать 15 кг/м. При технико-экономическом обосновании допускается использование ПВГ насыпной плотностью не более 20 кг/м.

5.22.10 По фракционному составу ПВГ для полистиролбетона классов по прочности В0,35 и выше должен соответствовать требованиям, указанным в таблице 7. Наличие в ПВГ зерен крупностью более 10 мм не допускается.


Таблица 7 — Фракционный состав ПВГ

Размер фракции, мм

Содержание, % по массе

5-10

2-10

2,5-5,0

80-90

1,25-2,5

5-10

0-1,25

1-2


Для теплоизоляционного полистиролбетона марок по прочности менее М5 допускается применение ПВГ с крупностью зерен более 10 мм.

5.22.11 Для теплоизоляционно-конструкционного и конструкционно-теплоизоляционного полистиролбетона средневзвешенный размер (диаметр) гранул ПВГ не должен превышать 5,5 мм, средняя плотность гранул ПВГ не должна быть ниже 12 кг/м.

5.22.12 Комплексный показатель качества ПВГ «n» находится в пределах 1,5-2,5.

5.22.13 Теплопроводность гранул ПВГ в сухом состоянии не должна превышать 0,035 Вт/(м·°С).

5.22.14 Влажность ПВГ перед приготовлением полистиролбетонной смеси не должна превышать 15% по массе.

5.22.15 Не допускается использование в качестве заполнителя для полистиролбетона строительного песка, порошкообразных добавок и промышленных отходов, снижающих качество и повышающих среднюю плотность полистиролбетона заданной прочности.

Для изготовления полистиролбетонов марок по средней плотности ниже D450 не допускается замена ПВГ на заполнитель, получаемый дроблением отходов пенополистирольной тары (упаковок) или лома пенополистирольных плит.

5.22.16 В качестве вяжущего следует применять портландцементы или шлакопортландцементы марок не ниже 400 по ГОСТ 10178, или классов по прочности не ниже 42,5 по ГОСТ 31108, а также других марок и классов, обеспечивающих получение полистиролбетона с физико-механическими и теплотехническими характеристиками, указанными в таблицах 1 и 5.

Допускается применение минеральных порошкообразных химически активных добавок к вяжущему: микрокремнезема, золы-уноса по ГОСТ 25818 и гранулированного шлака по ГОСТ 3476, домолотого до удельной поверхности 250 м/кг.

5.22.17 Применяемые для модификации свойств полистиролбетонной смеси и полистиролбетона химические добавки (воздухововлекающие, пластифицирующие, регулирующие твердение) должны соответствовать требованиям ГОСТ 24211.

5.22.18 Вода для затворения полистиролбетонной смеси и приготовления растворов химических добавок должна соответствовать требованиям ГОСТ 23732.

5.23 Выполнение требований 5.11, 5.22.2 и 5.22.13 следует отражать в технологической документации на изготовление полистиролбетонных сборных изделий или монолитных конструкций и контролировать при экспертизе проектов и надзоре за строительством объектов с привлечением специализированной организации при согласовании с разработчиком настоящего стандарта.

5.24 Рекомендуемая комплектная номенклатура сборных изделий из полистиролбетона приведена в приложении В.

6 Требования санитарно-гигиенической безопасности и охраны окружающей среды

6.1 При изготовлении полистиролбетона, изделий и конструкций на его основе, а также при строительстве и эксплуатации зданий с ограждающими конструкциями из полистиролбетона необходимо обеспечивать соблюдение требований по недопущению превышения ПДК загрязняющих и вредных веществ, указанных в гигиенических нормах*, действующих на территории государства — участника Соглашения, принявшего настоящий стандарт, что должно быть подтверждено санитарно-гигиеническими заключениями соответствующих национальных органов санитарного надзора.

_______________

* В Российской Федерации действуют ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» и СанПиН 2.1.2.729-99 «Полимерные и полимерсодержащие строительные материалы, изделия и конструкции. Гигиенические требования безопасности».

6.2 Гигиенические требования безопасности при изготовлении изделий и конструкций из полистиролбетона, установленные в санитарных нормах*, действующих на территории государства — участника Соглашения, принявшего настоящий стандарт, должны быть отражены в стандартах и технических условиях на эти изделия и конструкции.

_______________

* В Российской Федерации действуют СанПиН 2.2.2.1385-03** «Гигиенические требования к предприятиям производства строительных материалов и конструкций», СанПиН 2.1.7.1322-03 «Гигиенические требования к размещению и обезвреживанию отходов производства и потребления» и СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)».

** Вероятно, ошибка оригинала. Следует читать: СанПиН 2.2.3.1385-03. — Примечание изготовителя базы данных.

6.3 Удельная эффективная активность естественных радионуклидов сырьевых материалов, применяемых для изготовления полистиролбетона, не должна превышать предельных значений в зависимости от области применения полистиролбетона, установленных ГОСТ 30108. Соблюдение требований ГОСТ 30108 и требований, приведенных в санитарных нормах*, действующих на территории государства — участника Соглашения, принявшего настоящий стандарт, должно быть подтверждено санитарно-гигиеническими заключениями соответствующих национальных органов санитарного надзора.

_______________

* В Российской Федерации действуют СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009).

7 Правила приемки

7.1 Приемку и контроль качества полистиролбетона, применяемого для изготовления сборных изделий, проводят в соответствии с требованиями ГОСТ 13015.

7.2 Приемку полистиролбетона при его применении для монолитных конструкций проводят в соответствии с нормативными документами по организации, производству и приемке строительных работ.

7.3 Приемку полистиролбетона по средней плотности и прочности на сжатие проводят для каждой партии изделий или товарной полистиролбетонной смеси.

7.4 Среднюю плотность, прочность и коэффициент вариации прочности полистиролбетона контролируют и оценивают по ГОСТ 27005 и ГОСТ 18105 соответственно. При этом значения коэффициента требуемой прочности принимают как для ячеистого бетона.

7.5 Контроль качества полистиролбетона по показателям теплопроводности, морозостойкости, прочности на растяжение при изгибе, деформации усадки проводят при подборе номинального состава полистиролбетона перед началом массового производства, далее не реже одного раза в 6 мес, а также при изменении состава полистиролбетона, технологии его приготовления и качества используемых материалов.

7.6 Проверку экологической безопасности полистиролбетона [по выделению остаточного мономера (стирола) и удельной эффективной активности естественных радионуклидов] проводят перед началом массового производства, а также при изменении качественных характеристик применяемых материалов, но не реже одного раза в три года.

7.7 Проверку пожарной опасности полистиролбетона по показателям горючести, воспламеняемости, дымообразующей способности и токсичности продуктов горения проводят при организации производства конкретных видов изделий, но не реже одного раза в три года.

7.8 Полистиролбетонную смесь принимают по ГОСТ 7473 с учетом требований, приведенных в 5.22.5-5.22.7.

Составы и технологические режимы перемешивания смесей, формования и твердения полистиролбетонных изделий и конструкций проверяют перед началом их массового производства или возведения сооружений, а также при изменении материалов или технологических режимов.

7.9 На поставляемую продукцию производитель полистиролбетонных изделий (блоки, плиты, перемычки и т.д.) и товарной полистиролбетонной смеси должен иметь сертификат соответствия, выданный аккредитованной организацией в установленном порядке.

7.10 В сопроводительных документах, отражающих качество полистиролбетона для сборных изделий (паспортах — по ГОСТ 13015) или монолитных конструкций, и сертификатах соответствия для сертифицированной продукции, следует указывать его среднюю плотность, прочность, коэффициент вариации прочности, морозостойкость и теплопроводность в сухом состоянии и для условий эксплуатации А или Б (в зависимости от района строительства). В паспорте на товарную полистиролбетонную смесь следует дополнительно указывать марку по удобоукладываемости.

8 Методы испытаний

8.1 Гранулометрический состав полистирольного бисера для получения ПВГ определяют с использованием сит и методики рассева по ГОСТ 8735 или ГОСТ 9758. При этом объем проб должен быть не менее 2 л, а взвешивание фракций заполнителя следует проводить на аналитических весах с точностью взвешивания 0,01 г.

8.2 Среднюю плотность гранул ПВГ определяют по методике, изложенной в приложении Г.

8.3 Насыпную плотность ПВГ определяют по ГОСТ 9758 с использованием металлического сосуда объемом не менее 2 л и аналитических весов с точностью взвешивания 0,01 г.

8.4 Комплексный показатель качества n и объемное содержание ПВГ в полистиролбетоне определяют по методике, приведенной в приложении Д.

8.5 Жесткость полистиролбетонной смеси определяют по методике, приведенной в приложении Е.

Подвижность полистиролбетонной смеси определяют по ГОСТ 10181 с использованием стандартного конуса. При этом для распределения и выравнивания слоев смеси, загруженной в конус, постукивают мастерком по его корпусу (вместо штыкования).

При назначении для полистиролбетонной смеси марок по подвижности как для строительных растворов их значения контролируют по ГОСТ 5802.

8.6 Показатель расслаиваемости полистиролбетонной смеси определяют по методике, приведенной в приложении Ж.

8.7 Образцы (пробы) полистиролбетона, предназначенные для определения прочности, средней плотности, теплопроводности в сухом состоянии и влажности, высушивают до постоянной массы при температуре не выше 70°С.

8.8 Качество структуры цементного камня полистиролбетона определяют визуально по поверхности образцов и после испытаний кубов на прочность по поверхности разломов.

8.9 Прочность полистиролбетона на сжатие в сухом и естественном (влажном) состоянии определяют по ГОСТ 10180 (кроме раздела 8) на образцах-кубах размерами 100x100x100 мм или отторцованных образцах-цилиндрах высотой 100 мм или 200 мм и диаметром 100 мм, растяжение при изгибе — на образцах-призмах размерами 100x100x400 мм.

Для определения прочности полистиролбетона на осевое растяжение следует использовать значения его прочности на растяжение при изгибе, умноженные на коэффициент K=0,32.

Метод определения прочности полистиролбетона по контрольным образцам с учетом их формы, размеров, влажности и коэффициента вариации прочности приведен в приложении И.

8.10 Среднюю плотность полистиролбетона определяют по ГОСТ 12730.1 на пробах из образцов, испытанных на прочность по 8.8.

8.11 Коэффициент теплопроводности полистиролбетона в сухом состоянии определяют по ГОСТ 7076 на образцах размерами 50x250x250 мм. Поверхности образцов не должны иметь корок из затвердевшего цементного молока.

Теплопроводность ПВГ в сухом состоянии рекомендуется определять по методике, приведенной в приложении К.

8.12 Морозостойкость полистиролбетона определяют по приложению Б ГОСТ 31359.

8.13 Деформации усадки полистиролбетона определяют по ГОСТ 24544.

8.14 Влажность полистиролбетона определяют по ГОСТ 12730.2, паропроницаемость — по ГОСТ 25898, начальный модуль упругости — по ГОСТ 24452.

8.15 Показатели пожарной опасности полистиролбетона определяют:

— горючесть — по ГОСТ 30244;

— воспламеняемость — по ГОСТ 30402;

— дымообразующую способность и токсичность продуктов горения — по ГОСТ 12.1.044.

8.16 Удельную эффективную активность естественных радионуклидов в материалах для приготовления полистиролбетона определяют по ГОСТ 30108.

8.17 Содержание остаточного мономера стирола в исходном сырье для получения ПВГ определяют по нормативным документам*, действующим на территории государства — участника Соглашения, принявшего настоящий стандарт.

_______________

* В Российской Федерации действует МУ 2.1.2.1829-04 «Санитарно-гигиеническая оценка полимерных и полимерсодержащих строительных материалов и конструкций, предназначенных для применения в строительстве жилых, общественных и промышленных зданий».

Приложение А (справочное). Рекомендуемые области применения полистиролбетона в ограждающих конструкциях зданий

Приложение А
(справочное)



Таблица А.1 — Рекомендуемые области применения полистиролбетона

Вид полистиролбетона

Вид изделия

Область применения

Марка по средней плотности

Класс (марка) по прочности на сжатие

Теплоизоляционный

Плиты, монолитные конструкции

Теплоизоляция покрытий, чердачных перекрытий, над проездами, холодными подвалами и подпольями, несущих наружных стен; цоколей, стилобатов и фундаментов*

D150-D225

М2-М5(В0,35)

Теплоизоляционно-
конструкционный

Блоки, перемычки, доборные элементы, монолитные конструкции

Наружные ненесущие стены зданий высотой до 25 этажей включительно**

D250-D350

В0,5-В1

Перекрестно-
пустотные элементы

Наружные сборно-
монолитные стены с внутренним несущим железобетонным каркасом малоэтажных (1-3 этажа) зданий***

D300-D350

В0,75-В1

Конструкционно-
теплоизоляционный

Блоки, доборные элементы, монолитные конструкции

Наружные несущие стены малоэтажных (1-2 этажа) зданий***

D400-D600

В1,5-В2,5

Перемычки

Наружные ненесущие и несущие стены

* При устройстве гидроизоляционной защиты от грунтовых вод.

** При технико-экономическом обосновании допускается применять блоки марки по плотности D225 и класса прочности В0,35 в наружных ненесущих стенах зданий.

*** При технико-экономическом обосновании возможно применение в зданиях большей этажности.

Приложение Б (справочное). Физико-механические и теплотехнические показатели полистиролбетона

Приложение Б
(справочное)



Таблица Б.1 — Требуемая средняя прочность полистиролбетона при различных коэффициентах вариации

Марка или класс по прочности на сжатие

Полистиролбетон ГОСТ: обзор материала

Блок из полистиролбетона

Полистиролбетон – материал относительно молодой, популярность среди потребителей он завоевал не так давно. Связано это прежде всего с особым сочетанием свойств, таких как повышенная прочность и высокий показатель способности к сохранению тепла.

Как и все строительные материалы, полистиролбетон, а точнее — его характеристики, контролируются технической документацией, главной из которой является государственный стандарт качества.

В данной статье мы и будем рассматривать основной набор положений, регулирующих требования к материалу, также разберемся в процедуре приемки и методах проводимых испытаний. Итак, полистиролбетон ГОСТ: что представляет собой материал и изделия из него и какова их сфера применения?

Содержание статьи

Что такое полистиролбетон

Для начала стоит разобраться, что же такое за материал – полистиролбетон? Рассмотрим подробнее основные характеристики материала и его состав.

Состав и технические требования

Полистиролбетон – композит, содержащий в себе смесь цементного раствора и полистирола. Он относится к особо легким бетонам.

Крошка полистирольная

Цемент наделяет материал прочностью, а полистирол придает легкость и обеспечивает низкий коэффициент теплопроводности. Чем больше цемента — тем прочнее изделие.

Пропорции для изготовления полистиролбетона

Помимо цемента и полистирола, в состав входят особые модифицированные добавки, способные повышать показатели качеств будущих изделий.

Состав полистиролбетона

ГОСТ на полистиролбетон определяет следующий набор физико-механических характеристик, подлежащих контролю:

  • Морозостойкость;
  • Теплопроводность;
  • Средняя плотность;
  • Паропроницаемость;
  • Прочность на сжатие и изгиб;
  • Средняя плотность;
  • Усадка при высыхании.

А теперь давайте разбираться более подробно: какими показателями должен обладать полистиролбетон.

ГОСТ Р 51263 99 полистиролбетон: краткий анализ числовых показателей свойств материала:

Наименование показателя Значение в соответствии со стандартом, комментарии
Средняя плотность (кг/м3) Полистиролбетон может обладать показателем средней плотности, находящемся в промежутке от 150 до 600. Марки соответствуют изделиям, пребывающим в сухом состоянии.

Числовые значения средней плотности определяют в будущем сферу применения материала, которая может быть самой разнообразной. Но об этом мы поговорим чуть позже.

Теплопроводность (Вт*мС) Минимальное значение коэффициента теплопроводности равно 0,05, а максимальное – 0,145. Эксплуатационная влажность изделий несомненно повлияет на данный показатель, однако способность к сохранению температуры останется по-прежнему высокой.

На заметку! Благодаря таким теплоизоляционным характеристикам, полистиролбетон изначально больше использовался в качестве теплоизолирующего материала, и, только спустя десяток лет после появления его на отечественном рынке строительных материалов, полистиролбетон стал применяться и при возведении несущих стен конструкций.

Прочность Прочность напрямую зависит от плотности материала, значение начинает отсчет от М0,35. Максимальный показатель, в соответствии с ГОСТ, может достигать М5.

Соответствие значения технических характеристик представлены на фото ниже.

Морозостойкость Изделия из полистиролбетона, которые используются при строительстве конструкций, подвергаемых замораживанию и оттаиванию, должны соответствовать определенным маркам морозостойкости, которая не должна быть менее 25.

  Обратите внимание! На практике же, полистиролбетон может выдерживать значительно большее количество таких циклов, значение может достигать показателя 300.

Влагопоглощение Гигроскопичность полистиролбетона не велика. Значение не должно превышать показателя в 8%.
Усадка Полистиролбетон подвержен усадке. В количественном отношении значение может достигать 1 мм/м2.

Многое зависит от производителя, качества сырья и марки прочности изделий.

Паропроницаемость Полистиролбетон – паропроницаем. Материал способен устанавливать в помещении благоприятный климат, путем поглощения излишней влаги при ее присутствии и насыщения ею же при чрезмерной сухости воздуха.

Характеристики полистиролбетона

  • Помимо технических характеристик, стоит упомянуть и про иные. Это касается, в первую очередь, горючести, экологичности и эксплуатационных свойств материала.
  • Несмотря на то, что одна из основных составляющих материала – пенополистирол является горючей, в сочетании с цементным раствором, данное отрицательное качество успешно нивелируется. ГОСТ на полистиролбетонные блоки с уверенностью заявляет: изделия не горят.
  • Полистиролбетон не содержит в составе вредных и опасных веществ, и потому является экологичным.
  • Долговечность строений, возведенных из данного материала – высока. По заявлению производителей, она может достигать 200-300 лет.

Полистиролбетон обладает отличными звукоизоляционными характеристиками. Его зачастую используют при звукоизоляции конструкций.

Виды и область применения

В соответствии со стандартом, полистиролбетон может разделяться на несколько видов в зависимости от определенных факторов. Рассмотрим подробнее.

В соответствии с плотностью материала, он может быть: теплоизоляционным, теплоизоляционно-конструкционным и конструкционно-теплоизоляционным:

  • Первый вид обладает минимальной маркой по средней плотности, но, при этом, характеризуется низким коэффициентом теплопроводности, что дает возможность применять материал при утеплении конструкций.
  • Второй вид, помимо материала для теплоизоляции, может быть использован при строительстве конструкций, которые не подвергаются существенной нагрузке.
  • Третий вид может достигать плотности до Д600. Применяется при строительстве стен, перегородок. Говоря проще – при малоэтажном строительстве.

В зависимости от назначения, полистиролбетон может применяться в виде сборного изделия, или при создании монолитной конструкции. Если говорить конкретно про изделия из полистиролбетона, то их выпуск достаточно разнообразен.

Это могут быть:

  • Стеновые панели 3D. Их применяют при монтаже полов, лестниц, перегородок, перекрытий. Они отличаются малым весом. Дополнительную прочность изделиям придает металлический каркас. В последующем, панели покрывают бетонной смесью.

Стеновые панели из полистирола

  • Обычные рядовые блоки, служащие для возведения стен и перегородок. Изделия могут быть крупно- и мелкоформатные, в зависимости от размера.

Блоки из полистиролбетона мелкие

  • Также в ассортименте продукции, изготавливаемой при сочетании полистирола и бетона, имеются так называемые теплоблоки. Они выпускаются в виде блока и панели. Состоят изделия из трех слоев, одним из которых является полистирол. Обладают повышенными теплосберегающими характеристиками.

Теплоблок

  • Изделия из полистиролбетона также представлены в виде элементов, используемых в качестве несъемной опалубки.

Несъемная опалубка из полистиролбетона

  • Вентиляционные блоки отличаются наличием уже готовых отверстий, которые используются при проводке коммуникаций.

Вентиляционный блок

  • Оконные и дверные проемы могут быть перекрыты при помощи перемычек из полистиролбетона.

Перемычка из полистиролбетона

  • Благодаря наличию изделий с облицовочной стороной, застройщики могут избавить себя от необходимости наружной отделки здания.

Полистиролбетонный блок с облицовкой

Как уже говорилось выше, монолитный полистиролбетон также активно применяется в строительной индустрии. С его помощью, например, можно возводить стены, используя опалубку или иные монолитные конструкции.

Применение монолитного полистиролбетона

Видео в этой статье: «Пенополистиролбетон ГОСТ: основные сферы применения материала» содержит всю необходимую для застройщика информацию, касающуюся использования различных изделий из полистиролбетона.

Положительные и отрицательные качества материала

Поскольку общие характеристики и некоторые виды изделий мы уже рассмотрели, давайте теперь проанализируем набор положительных и отрицательных сторон материала и разберемся, стоит ли отдавать предпочтение полистиролбетону при строительстве?

Преимущества полистиролбетона:

Вес полистиролбетона

Низкий вес изделий способствует сокращению нагрузки на основание строения.
 

Теплопроводность полистиролбетона в сравнении с другими материалами

Способность к сохранению температуры у полистиролбетона – крайне высока. Это поможет сэкономить на утеплении и отоплении уже готовой конструкции.

Морозостойкость контролируется в соответствии с ГОСТ

Высокий показатель марки по морозостойкости.

Полистиролбетон — экологичен

Экологичность материала

Огнестойкость полистиролбетона

Огнестойкость

Полистиролбетонные изделия

Широкая сфера применения. Как уже говорилось, полистиролбетон выпускается в виде большого количества изделий, что обеспечивает их различное применение.

Цена на изделия – не высока

Низкая цена.

Самостоятельное производство полистиролбетона

Простота производства и возможность изготовления изделий своими руками.

Прочность полистиролбетона

Неплохие показатели прочности и плотности

Процесс тепло- и звукоизоляции полистиролбетоном

Хорошая звукоизоляционная способность.

Паропроницание полистиролбетона, схема

Паропроницание и пониженная гигроскопичность.

Стены из полистиролбетона с облицовкой

Наличие в ассортименте изделий блоков с облицовкой.

Стандартный размер полистиролбетонного блока

Сравнительно большие размеры готовых изделий и простота в обращении. Полистиролбетон легко режется, пилится.

Для полистиролбетонного блока не характерно появление плесени и грибка

Биологическая устойчивость

К отрицательным сторонам стоит отнести:

  • Склонность к усадке;
  • Наличие на рынке мелких кустарных производств, на которых при изготовлении не всегда соблюдаются необходимые требования;
  • Требование, связанное с необходимостью проектирования вентиляционных систем;
  • Специалисты советуют не начинать производить отделочные работы ранее, чем спустя 28 дней с момента окончания укладки блоков;
  • Требование к оштукатуриванию поверхности;
  • Низкая устойчивость к длительному воздействию высокой температуры;
  • Плохая фиксация метизов к стене из полистиролбетона. Приобретать необходимо специализированный крепеж.
  • Дополнительные затраты на повышение уровня адгезии стены из полистиролбетона с отделочными материалами.
  • Плотность и прочность полистиролбетона несколько меньше, чем у его конкурентов – разновидностей легких бетонов.

Основные требования, предъявляемые к материалу-сырью

Документация на полистиролбетон — ГОСТ Р 51263 99 устанавливает следующие требования к сырью и материалам, применяемым при производстве полистиролбетонной смеси:

  • Состав для будущей смеси подбирается в соответствии с требованиями ГОСТ 27006.
  • Подвижность и жесткость смеси назначают в соответствии с типом изделия и технологии его формовки.
  • Повышение показателя плотности за счет потери воздуха не должно превышать значения в 7%.
  • Расслаиваемость раствора при перевозке не должна быть более 25%.
  • При поставке полистиролбетонной смеси в жидком виде, должна быть обеспечена сохранность ее свойств в соответствии с договоренностью с потребителем. Минимальный промежуток времени не должен быть менее одного часа.
  • Фракция зерна полистирола, используемого для изготовления смеси, не должна превышать 1 см для теплоизоляционного вида и 5,5 мм для теплоизоляционно-конструкционного и конструкционно-теплоизоляционного полистиролбетона.
  • Информация о содержании полистирольного бисера должна быть указана в паспорте на готовую смесь и (или) изделия.
  • Вяжущим служит цемент марки не ниже 400.
  • ГОСТ допускает использование минеральных добавок.
  • Добавки, повышающие качества готовой смеси и изделий из нее, должны полностью соответствовать ГОСТ 24211.
  • Все требования и факт их соблюдения должны отражаться с документации на смесь.

Приемка и контроль продукции

В соответствии с ГОСТ, любой строительный материал подлежит проверке и контролю, результат которого должен быть отражен в соответствующих документах. Рассмотрим более подробно.

Правила приемки материала и изделий из него

Инструкция по приемке выглядит следующим образом:

  • При приемке, за партию принимается определенное количество изделий, которые были изготовлены в течение суток (смена) при условии использования одинакового сырья и технологии.
  • В случае, если материал производится в малом количестве, за партию принимают изделия, изготовленные за несколько дней (не более чем за неделю). Опять же, при этом, они должны характеризоваться одинаковым составом и технологией изготовления.
  • Проверка показателя плотности и прочности производится для каждой партии товара или готовой полистиролбетонной смеси.
  • Контроль показателей теплопроводности, прочности на изгиб и сжатие, морозостойкости проводят единично перед началом выпуска и далее не реже чем каждые полгода.
  • 1 раз в 5 лет проверяют огнестойкость и содержание радионуклидов.
  • Приемка осуществляется по ГОСТ 7473.
  • Повторная проверка показателей производится в случае, если предыдущая проверка была неудачной, либо был изменен состав или технология при изготовлении.
  • Все показатели должны быть указаны в документах, сопровождающих товар.

Методы испытаний

Все числовые значения свойств полистиролбетонной смеси и изделий из них, контролируются при помощи испытаний продукции. Для этого производят отбор образцов, которые, при помощи специализированного оборудования и соответствующих расчетов, подлежат проверке.

Воспользуемся таблицей, в которой кратко рассмотрим основные методы испытаний и их сущность.

Методы испытаний полистиролбетона:

Наименование испытываемого показателя Сущность метода и комментарии
Прочность Испытывается показатель на образцах, имеющих форму цилиндра или куба определенного размера. В последующем, образцы помещают под пресс, при помощи которого на них оказывается поступательное давление вплоть до разрушения изделий.

Максимальный показатель измерителя – и есть та нагрузка, более которой образец выдержать не сможет.

Результаты фиксируются, окончательный результат получают с применением расчетного метода.

Способность к сохранению температуры. Коэффициент теплопроводности определяется с использованием метода, аналогичного для всех легких бетонов.

Для проверки создают стационарный поток тепла, который направляется на образец. При этом измеряют плотностью данного потока и изменения числовых показателей качеств образца.

Морозостойкость. Для контроля данного параметра применяются специализированные камеры замораживания и оттаивания. В них помещают несколько образцов, которые искусственно подвергаются повременному воздействию нужное количество раз.

В последствии проверяются изменения массы и прочности изделий.

Водопоглощение Контролируется путем сушки и извлечения в процессе этого влаги, количество которой и будет равно проценту водопоглощения изделия.

Предшествует этому процесс увлажнения образца.

Средняя плотность Определяется несколькими методами. Первый вариант – оказание воздействия при помощи определенных нагрузок и фиксация результатов.

Второй вариант – метод, основанный на использовании современных приборов, которые не требуют механического воздействия на образец.

Паропроницаемость Контролируется путем вычисления величины, которая равна количеству пара, проходящего через образец за определенный промежуток времени.
Деформация при усадке. Проверяется с использование специального прибора – пружинного устройства. В него образец помещается, начальные и конечные результаты фиксируются.

В этом видео Вы увидете испытание на прочность полистиролбетона.

Мы рассмотрели основные показатели, однако контроль осуществляется и над иными, такими как горючесть, наличие радионуклидов и многие другие.

Заключение

ГОСТ на полистиролбетон – документ, знание которого полезно не только производителям, но и потребителям. Ведь для того, чтобы сделать правильный выбор при покупке материалов для строительства, следует детально ознакомиться с его характеристиками и убедиться не только в достаточности контроля над основными показателями, но и в соответствии качества материала стандарту.

Полистиролбетон: сфера применения материала

ШАГ 1. План дома

Расчет общей длины стен

Добавить параллельные оси между А-Г 012

Добавить перпендик. оси между Б-Г 012

Добавить перпендик. оси между В-Г 012

Добавить перпендик. оси между Б-В 012

Добавить перпендик. оси между А-Б 012

Размеры дома

Внимание! Наружные стены по осям А и Г являются несущими (нагрузки от крыши и плит перекрытия).

Длина А-Г, м

Длина 1-2, м

Колличество этажей 1 + чердачное помещение2 + чердачное помещение3 + чердачное помещение

ШАГ 2. Сбор нагрузок

Крыша

Форма крыши ДвускатнаяПлоская

Материал кровли ОндулинМеталлочерепицаПрофнастил, листовая стальШифер (асбестоцементная кровля)Керамическая черепицаЦементно-песчанная черепицаРубероидное покрытиеГибкая (мягкая) черепицаБитумный листКомпозитная черепица

Снеговой район РФ 1 район — 80 кгс/м22 район — 120 кгс/м23 район — 180 кгс/м24 район — 240 кгс/м25 район — 320 кгс/м26 район — 400 кгс/м27 район — 480 кгс/м28 район — 560 кгс/м2

Наведите курсор на нужный участок карты для увеличения.

Чердачное помещение (мансарда)

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен (фронтонов) Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

Эксплуатационная нагрузка, кг/м2 90 кг/м2 — для холодного чердака195 кг/м2 — для жилой мансарды

3 этаж

Высота 3-го этажа, м м

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

2 этаж

Высота 2-го этажа, м м

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200

Полистиролбетон — технология изготовления полистиролбетона | Состав, рецептура


Готовые комплекты оборудования для производства полистиролбетона
До 80 м3 в смену | До 50 м3 в смену | До 30 м3 в смену

Технология изготовления полистиролбетона

Легкий бетон с заполнителем из пенополистирола — известный под названием полистиролбетон, представляет собой легкий бетон с минеральным вяжущим, поры которого образованы частицами вспененного пенополистирола, используемого в качестве заполнителя. Исключительно малая объемная плотность частиц вспененного пластика позволяет производить легкий бетон с объемной массой, диапазон которой может быть выбран в соответствии с требованиями конкретной области применения, и при этом бетон имеет соответственно широкий диапазон характеристик.

Легкий бетон с заполнителем из пенополистирола (полистиролбетон), теплоизоляционные штукатурки на основе пенополистиролбетона известны в течение длительного времени. В то время, как полистиролбетон известен не менее 25 лет на нашем рынке, а на западном — более 40 лет, до настоящего времени ожидания, относительно объема использования полистиролбетона оправдались только в некоторых областях применения. Однако в промышленности строительных материалов наблюдается рост интереса к полистиролбетону, указывающий на некоторые изменения в этом отношении, вызванные главным образом следующими причинами:

  • полистиролбетон стал серьезной альтернативой пенобетона и газобетона, из-за более широкой области применения, простоты изготовления и значительно лучших характеристик материала
  • требования по теплоизоляции зданий становятся значительно более жесткими, вследствие этого стало необходимым функциональное разделение строительных материалов на теплоизоляционные и несущую нагрузку, и эти материалы должны соответствующим образом сочетаться в элементах зданий. В этом отношении интересные решения предлагает использование легкого бетона с заполнителем из пенополистирола (полистиролбетона).

В настоящей статье рассматривается текущее состояние технологий производства полистиролбетона, уделяя должное внимание использованию переработанного полистирола, а также недавно разработанных систем на основе полистиролбетона.

Описание полистиролбетона

Легкий бетон с пенополистирольным заполнителем входит в группу чрезвычайно легких бетонов, которые производятся с использование пористых заполнителей, обычно имеющих малую прочность зерен. Решающим фактором для прочностных свойств является структура затвердевшей цементной пасты, окружающей частицы заполнителей из вспененного пластика, и влияющий на массу бетона. Кроме того, важна форма и размер зерен, а также структура поверхности используемых пенополистирольных заполнителей. В отличие от минеральных заполнителей, дозировка пенополистирольных заполнителей задается не по массе, а по объему. Таким образом, имеется возможность точно задать объем пор и, благодаря этому, объемную массу полистиролбетона, и производить полистиролбетон, имеющим структуру с закрытыми порами. Посредством выбора объемной массы бетона можно воздействовать на характеристики полистиролбетона, чтобы они лучше соответствовали конкретным требованиям. В свете сегодняшних требований представляет интерес полистиролбетон, объемная масса которого находиться в нижнем диапазоне (< 600 кг/м3). В этом случае сочетание <теплоизолирующего материала> и <бетона> в одном материале предлагает строителям оптимальную комбинацию несущих свойств, звукоизоляции, термоизоляции и огнезащиты. Уже несколько лет после изобретения пенополистиролбетона, названного Styropor (1951), компания BASF провела первые ориентировочные испытания по использованию пенополистирола в качестве заполнителя для производства полистиролбетона (стиропорбетона). Так как высокая стоимость данного сырья первоначально не позволила рентабельно использовать его в качестве легкого заполнителя, в конце 1967 года начались новые исследования, и их интенсивность стала постепенно увеличиваться. К этому времени легкие заполнители из пенополистирола стали интересной альтернативой легким минеральным заполнителям, и даже не смотря на их цену, стал наблюдаться растущий интерес к новым строительным изделиям из полистиролбетона. Чтобы создать необходимые предпосылки для их выхода на рынок, компания BASF предприняла следующие меры:

  • разработка рецептур различных полистиролбетонных смесей, позволяющих воспроизводить их на практике
  • подтверждение всех важных характеристик строительного материала испытаниями, проведенными официальными организациями
  • разработка и распространение способов приготовления и укладки
  • выполнение и оценка практических испытаний с целью подтверждения успешности применения
  • помощь и технические консультации для производителей материалов в отношении разработки производственных систем.

Все эти меры пройдены в нашей стране и есть все предпосылки для активного применения полистиролбетона. В отличие от легких бетонов с минеральными заполнителями, пенобетонов, газобетонов, в случае полистиролбетона имеется возможность производства легкого бетона с объемной массой менее 200 кг/м3, и соответственно хорошими теплоизоляционными характеристиками. Вследствие этого дальнейшее развитие сконцентрировано на производстве полистиролбетона, попадающего в этот низший диапазон объемных масс, и в частности на улучшение свойств легкого бетона с пенополистирольным заполнителем, технологии производства и на разработке строительных систем с применением полистиролбетона. В качестве заполнителя полистиролбетона используется пенополистирол с объемной плотностью 10-25 кг/м3, которая не оказывает влияния на конечную прочность легкого бетона. Размер зерен вспененных частиц пенополистирола находиться в диапазоне 0,5-3,5 мм, что позволяет получать мелкопористый скелет бетона и используется сырьевой материал с размером частиц от 0,2 до 1,0 мм. Легкий пенополистирольный заполнитель обладает следующими характерными свойствами:

  • чрезвычайно малая объемная масса
  • хорошая теплоизоляция вспененных частиц, благодаря которой практически отсутствует поглощение воды
  • сферическая форма, являющаяся предпочтительной с точки зрения статических нагрузок.

Однако, в диапазоне очень низких объемных плотностей гидрофобные свойства легких пенополистирольных заполнителей с закрытыми порами могут оказывать неблагоприятное влияние, так как малая прочность сцепления между цементным тестом и поверхностью частиц может привести к расслаиванию полистиролбетона во время приготовления и укладки. В первые годы практического применения, этому эффекту противодействовали введением добавок, улучшающих прочность сцепления. По этому пути идут ряд производителей, в основном пытаясь увеличить продажи добавок, так как западные производители и некоторые отечественные, применяют специальные марки пенополистирола с крупнопористой поверхностью частиц или специальные устройства, позволяющие без возражений укладывать бетон, не имеющий таких добавок.

Отходы пенополистирола в качестве легкого заполнителя

В Германии в настоящее время для изготовления упаковочных материалов ежегодно используется около 40 000 тонн сырья для производства пенополистирола, из которого получается пенополистирол в объеме до 2 млн.м3. Эти упаковочные материалы содержат 98% воздуха, не содержат ни в каких количествах фторхлоруглеводов, и могут подвергаться переработке для того, чтобы вновь послужить какой либо разумной цели. В наше стране тоже достаточное количество отходов, а с развитием промышленности и ростом производства изделий остро встает вопрос переработки упаковки. В этой связи были разработаны системы для вторичной переработки пенополистирола, позволяющие обеспечить полную утилизацию использованных упаковочных материалов, получаемых от промышленных, торговых предприятий и от частных потребителей. В настоящей статье мы рассматриваем только применение отходов полистирола в легких бетонах. Мелкозернистый <измельченный материал>, изготавливаемый из отходов производства пенополистирольной упаковки, пригоден для использования при производстве строительных материалов: в качестве порообразующего вещества при производстве блоков, панелей, и в качестве легкого заполнителя для производства легкого бетона (полистиролбетона).
Для использования измельченного пенополистирола в качестве легкого заполнителя требуется выполнение определенных требований с целью предотвращения снижения качества бетона. В том, что касается размеров и формы зерен, различия между <измельченным материалом> и свежеиспеченными частицами пенополистирола должны быть настолько малы, насколько это возможно:

  • большая часть зерен должна иметь круглую форму
  • большая часть зерен должна иметь размеры, находящиеся в диапазоне от 0,5 мм до 4,0 мм
  • в измельченном материале должны отсутствовать очень мелкие частицы.

Эти требования к качеству могут быть удовлетворены при соблюдении следующих условий:

  • использованием соответствующих дробилок с отделением частиц пенополистирола в тачках, в которых они сплавились между собой, так что первоначальная сферическая форма зерен в очень большой степени сохраняется
  • размер частиц гранул пенополистирола, используемого для производства упаковочных материалов, обычно соответствует размеру, требующемуся для легкого пенополистирольного заполнителя, изготовленного из <свежего материала>, это достижимо при помощи использования соответствующих сит в дробилке. В настоящее время такой подготовленный <измельченный материал> предлагается некоторыми западными производителями упаковочных материалов по цене от 12 до 25 евро, что намного ниже уровня цен за свежевспененный легкий пенополистирольный заполнитель.

На российском рынке тоже присутствует <измельченный материал>, к сожалению редко удовлетворяющий вышеперечисленным требованиям. Полученные в результате 28-дневных испытаний значения прочности при сжатии и при изгибе, в каждом случае представляют собой средние значения для трех образцов. Испытания на прочность при сжатии проводились на кубах с длиной ребра 20 см, а испытания на прочность при изгибе — на брусках 70*15*15 см. Прочность при сжатии образцов полистиролбетона, изготовленных с использованием пенополистирола из <измельченного материала> — прежде всего в нижней части диапазона объемных масс полистиролбетона примерно на 40 % ниже, чем у полистиролбетона, изготовленного с использованием частиц свежего вспененного пенополистирола. Прочность на растяжение при изгибе обоих вариантов полистиролбетона в пределах указанного диапазона объемных масс находится примерно на одном уровне. Использование пенополистирола из <измельченного материала>, по сравнению со вспененным пенополистиролом не влияет на теплопроводность, так как она в первую очередь зависит от объемной массы полистиролбетона. Использование пенополистирола из <измельченного материала> не оказывает отрицательного влияния на требования к качеству, такие, как поглощение воды, морозостойкость, огнестойкость и т. п.

Технология производства полистиролбетона

Этот раздел относится к специальным выводам по технологии производства полистиролбетона от 200 до 600 кг/м3 (сухая объемная масса), обладающего хорошими теплоизоляционными свойствами и имеющего малую массу.

В отличие от легкого бетона с пенополистирольным заполнителем, имеющего плотность более 600 кг/м3, в данном случае требуется рассмотреть некоторые специальные особенности, которые оказывают существенное влияние на однородность смеси, удобоукладываемость и подачу полистиролбетона, а также на тенденцию к трещинообразованию и от усадки и расслоения.

Решающее влияние на свойства свежего полистиролбетона оказывает то, что очень большую часть его объема составляют частицы пенополистирола. В диапазоне объемной массы меньше 600 кг/м3 количество цементного раствора недостаточно, для того чтобы полностью заполнить объем <пазух> легкого заполнителя. Без внесения соответствующих добавок полистиролбетон в этом диапазоне объемной плотности можно укладывать и уплотнять только с большим трудом из-за его в основном несвязного характера.

Добавление большого количества воды будет вести к уменьшению прочности при сжатии и усилению тенденции к трещинообразованию от усадки и расслоению.

Чтобы узнать, как можно улучшить удобоукладываемость и уплотняемость полистиролбетона, производились испытания с внесением различных добавок. В результате оказалось, что наибольшие преимущества обеспечивают добавки, содержащие воздухововлекающие компоненты, а также компоненты для стабилизации и разжижжения полистиролбетонной смеси. При помощи создания очень маленьких сферических воздушных пузырей (с диаметром до 0,3 мм) объем цементного раствора увеличивается и уменьшается различие в плотности между цементным раствором и легким пенополистиролбетонным заполнением. Смесь приобретает пластичную вязкую консистенцию. Благодаря этому предотвращается всплытие пенополистирольного заполнителя даже в случае интенсивного виброуплотнения и удобоукладываемость свежего полистиролбетона значительно улучшается. Особое положение занимают белковые пенообразователи, используемые при механическом производстве воздушных пен. Они характеризуются очень стабильной структурой пены. Подвижность и великолепная адгезия этих воздушных пен оказывает исключительно благоприятное воздействие на удобоукладываемость полистиролбетона даже в случае относительно малых водоцементных отношений.

Эластичные пенополистирольные заполнители и относительно высокая пропорция воздушных пузырей не могут противодействовать усадке затвердевшего цементного теста. Однако влияние излишне большой усадки во время схватывания и тенденцию к образованию трещин можно уменьшить, поддерживая полистиролбетон влажным в течение достаточно длительного времени. На практике очень эффективным оказалось добавление в смесь совместимых с цементом армирующих волокон. Армирующие волокна в затвердевшем скелете из цементного теста в полистролбетоне принимают на себя напряжения, возникающие при растягивающей усадке и изменения температуры во время схватывания и твердения полистиролбетона, уменьшая тем самым тенденцию к образованию трещин, и значительно увеличивая прочность на растяжение при изгибе. Пена добавляется в смеситель во время приготовления смеси, для чего используется пеногенератор. Для приготовления полистиролбетона пригодны обычные смесители с принудительным перемешиванием. Гравитационные бетоносмесители пригодны только условно. Для получения качественной смеси компоненты закладываются в определенной последовательности. Время перемешивания должно составлять примерно 2 минуты. Объемная дозировка пенополистирольного гравия может изменяться в определенных пределах в зависимости от того, используется свежий вспененный материал или <измельченный материал>.

 

Кирпичей из ячеистого бетона с заполнителем из переработанного пенополистирола

Кирпич из ячеистого бетона был получен путем использования легкого раствора с заполнителем из переработанного пенополистирола вместо песчаных материалов. После определения свойств блока (впитывание, прочность на сжатие и растягивающие напряжения) было обнаружено, что этот кирпич соответствует требованиям стандартов кладки, используемых в Мексике. Полученный материал легче товарного, что позволяет быстро его обрабатывать, контролировать качество и транспортировать.Он менее проницаем, что помогает предотвратить образование влаги, сохраняя свою прочность за счет большей адгезии, чем у сухого полистирола. Он был более гибким, что делало его менее уязвимым к растрескиванию стен из-за смещения грунта. Кроме того, он экономичен, поскольку в нем используется материал, пригодный для вторичной переработки, и он обладает свойствами, предотвращающими порчу, увеличивая срок его службы. Мы рекомендуем использовать полностью сухой EP в сухой среде, чтобы получить лучшие свойства кирпича.

1.Введение

Легкий строительный раствор может быть получен разными способами и в основном зависит от воздушного фактора, то есть уменьшение плотности материала заключается во включении воздуха в его структуру, что может быть сделано путем замены крупного заполнителя (песка) на воздух. Таким образом, включение воздуха в структуру материала способствует образованию пузырьков (пустого пространства) внутри бетона или раствора. Поэтому при высыхании из воздушных отверстий образуется легкий материал. Этот тип бетона известен как Ячеистый бетон .Было предложено определять легкий бетон как бетон, сделанный с легким заполнителем или без заполнителя, который позволяет получить вес меньше, чем у обычного бетона 2400 кг / м 3 [1].

Что касается использования полистирола в бетонах, в литературе упоминается использование шариков из пенополистирола (EP) в качестве легкого заполнителя как в бетонах, так и в растворах, содержащих микрокремнезем в качестве дополнительного вяжущего материала. Было обнаружено, что полученные в результате бетоны имели плотность от 1500 до 2000 кг / м 3 с соответствующей прочностью от 10 до 21 МПа [2].Другое исследование охватывает использование шариков из пенополистирола (EPS) и невспененного полистирола (UEPS) в качестве легкого заполнителя в бетонах, которые содержат летучую золу в качестве дополнительного вяжущего материала. Легкий бетон с широким диапазоном плотности бетона (1000–1900 кг / м 3 ) изучались в основном на прочность на сжатие, прочность на разрыв, перенос влаги и поглощение. Результаты показывают, что при сопоставимых размерах заполнителя и плотности бетона бетон с заполнителем UEPS показал на 70% более высокую прочность на сжатие, чем заполнитель EPS [3].

Мелкодисперсный микрокремнезем значительно улучшил связь между EP-валиками и цементной пастой и увеличил прочность на сжатие EP-бетона. Исследование показало, что пенополистирол с плотностью 800–1800 кг / м 3 и прочностью на сжатие 10–25 МПа может быть получен путем частичной замены крупного и мелкого заполнителя шариками пенополистирола. Кроме того, добавление стальной фибры значительно улучшило усадку при высыхании [4].

Другое исследование показывает сравнение механических свойств EP-бетонов, содержащих летучую золу, с литературными результатами для бетонов, содержащих только обычный портландцемент в качестве связующего [5].Исследование предлагает разработку класса бетона с заполнителем из полистирола структурного качества с широким диапазоном плотности бетона от 1400 до 2100 кг / м 3 путем частичной замены крупного заполнителя на заполнитель полистирола в контрольном бетоне [6].

Латекс бутадиен-стирольного каучука в качестве полимерной добавки применялся в легком пенополистироле (EP) бетоне. Было исследовано влияние условий твердения и соотношения полимер-цемент на прочность на сжатие и изгиб полимер-модифицированных EP-бетонов [7].Затвердевший бетон, содержащий гранулы из химически обработанного пенополистирола, показал, что на прочность, жесткость и химическую стойкость бетона из полистирольного заполнителя постоянной плотности влияет соотношение воды и цемента [8].

В первой части этого исследования, основанного на определении и характеристиках легкого бетона, был проведен поиск рециклируемого материала с низкой плотностью, который можно было бы переработать с использованием дешевого экологически безопасного метода рециркуляции. Этим материалом был пенополистирол (EP).Из этого материала был изготовлен строительный раствор, в котором крупные агрегаты были полностью заменены частицами с низкой плотностью. Таким образом, кирпичи состоят из переработанного пенополистирола в качестве заполнителя и коммерческого портландцемента в качестве связующего. В отличие от большинства работ, опубликованных в литературе, в этом растворе не используются пуццоланы, добавки или дополнительные заполнители. В этом предыдущем исследовании этот материал имел хорошую адгезию с гидратированным цементом, а лучшие механические свойства ячеистого бетона были получены при соотношении вода / цемент 0.4 и 600 мкг пенополистирола [9].

На втором этапе, в основе этого исследования, и с определенной технологией, конкретным технологическим применением раствора из вторичного материала было производство ячеистого кирпича. Они должны быть конкурентоспособными по цене, качеству, механическим и физическим свойствам по сравнению с существующими на рынке. Кроме того, в ячеистых кирпичах должны использоваться экологически чистые материалы, пригодные для вторичной переработки.

2. Методы и методы

Действия, перечисленные ниже, позволили изготовить и провести механическую и физическую оценку кирпичей из ячеистого бетона; (i) получение и измельчение EP; (ii) применение водоцементного отношения 0.4; (iii) изготовление ячеистого бетона; (iv) изготовление кирпичей с использованием стальных форм толщиной? См; (v) снятие формы и определение сухого веса кирпичей; (vi) испытания на абсорбцию, сжатие и растяжение; Стандарт ASTM C67-03a включает три испытания [10]; (vii) отчет о результатах; (viii) сравнение результатов с заявленными значениями некоторых коммерческих кирпичей в Мексике. Прочность на сжатие легкого бетона из пенополистирола (EPS) значительно увеличивается с уменьшением размера валика ЭПС [11, 12].Кроме того, другое исследование включает три размера частиц полистирола (1, 2,5 и 6,3 мкм) в бетоне и делает вывод, что размер 1 мкм имеет большее сопротивление сжатию [12]. Затем, поскольку целью проекта было повторное использование перерабатываемого материала, такого как пенополистирол, размер частиц зависел от устойчивого и дешевого процесса измельчения. Фактически, достигнутые размеры (2–4 мкм) были очень близки к тем, о которых сообщалось как о большей прочности на сжатие [12].

В первую очередь был проведен поиск отходов ЭП.Эти остатки EP были от предметов, полученных в основном от упаковки компьютеров. После того, как материал был собран, его измельчали ​​с водой в кухонном блендере, потому что без воды измельчение было невозможным. Полученный размер частиц составил 2–4 мкм. Затем избыток воды удаляли, и ЭП сушили в естественных условиях без использования печей.

В соответствии с предыдущими исследованиями, ячеистый бетон был получен путем смешивания 600 мкг полистирола и водоцементного отношения 0,4. В качестве цемента использовался CPC (композитный портландцемент).

Следует отметить, что одним из важных факторов, повлиявших на это исследование, была высокая влажность окружающей среды в месте, где проводилось это исследование (Росарио, Аргентина). Этот факт привел к получению жидкого композита, который позволил легко заполнять стальные формы.

Были испытаны два типа образцов, помеченных буквами A и B, с размерами? Мм. Тип А имел водоцементное соотношение 0,4, вес 0,600 кг EP в полувлажном состоянии и возраст 28 дней.Тип B имел такое же водоцементное соотношение, но вес полусухого EP составлял 0,520 кг. Возраст тестирования B составлял всего 14 дней из-за окончания проекта.

Из-за влажности окружающей среды, когда мы сушим влажный полистирол (полученный материал для процесса фрезерования) в течение 7 дней, мы получили вес 600 мкг для кирпичей A и B. Сразу же мы обрабатываем кирпичи A (с 600 мкг) на первом этапе проекта. Затем, когда через 28 дней был использован оставшийся полистирол, мы заметили, что вес уменьшился.Поэтому оставшийся материал был разделен и использован в пяти кирпичах B. Итак, кирпичи B содержали 520 мкг полистирола. Поэтому кирпичи A были изготовлены из «полувлажного» полистирола, а кирпичи B — из «полусухого» полистирола. Мы не получили полностью сухой вес EP из-за условий локальной влажности окружающей среды.

Уровни влажности окружающей среды для «полувлажного» и «полусухого» полистирола были одинаковыми; разница заключалась во времени экспозиции в этих условиях. Влажность окружающей среды в месте проведения эксперимента составляла 62–95% [14] (Росарио, Аргентина; август 2012 г.).Полистирол, названный «полувлажным», выдерживался 7 дней в этой среде и 28 дней в «полусухой».

Через 27 дней для кирпичей A и 13 дней для кирпича B кирпичи прошли испытание на абсорбцию (для этого экспериментального испытания требуется 24 ч [10] насыщения кирпичей для его оценки). Таким образом, результаты испытаний на абсорбцию были получены через 28 дней для кирпичей A и через 14 дней для кирпичей B с испытаниями на сжатие и растяжение.

Теоретически, при хранении во влажной среде около 90% прочности достигается за первые 28 дней.Основным критерием оценки прочности бетона на сжатие является прочность бетона на 28 сутки. Бетонный образец испытывается через 28 дней, и результат этого испытания считается критерием качества и жесткости этого бетона [15].

3. Результаты и обсуждение

Статистическая оценка процента абсорбции A и B показана в таблице 1. Для измерения абсорбционной способности стандарт ASTM C67-03a указывает, что материал должен находиться в воде в течение 24 часов. [10].Процент абсорбции определялся по (1) [10]. Вес кирпича в сухом и насыщенном состоянии (и соответственно) до и после его насыщения составлял, соответственно:

ТЕПЛОИЗОЛЯЦИОННЫЕ СВОЙСТВА ПЕРЕДНЕГО ПОЛИСТИРОЛА КАК СТРОИТЕЛЬНЫХ И ИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ РЕФЕРАТ

1 ТЕПЛОИЗОЛЯЦИОННЫЕ СВОЙСТВА ПЕРЕДНЕГО ПОЛИСТИРОЛА КАК СТРОИТЕЛЬНЫХ И ИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ К.T. Yucel 1, C. Basyigit 2, C. Ozel 3 РЕФЕРАТ Лабораторные испытания изоляционных материалов на теплопроводность дают полезную информацию о природе таких материалов; итоговые данные могут характеризовать эксплуатационные характеристики. В строительных установках изоляция продолжает работать при различных температурах, влажности и общих условиях сборки. Полная сборка теплоизоляции здания важна для контроля и прогнозирования долгосрочных характеристик конструкции в соответствии с результатами лабораторных испытаний.В процессе оценки проектных значений теплопроводности изоляционных материалов очень важно знать плотность, теплопроводность, класс материала, механические свойства изоляционных характеристик. В данном исследовании используются экспериментальные испытания пенополистирола в качестве изоляционных и строительных материалов, которые являются однородными или близкими к гомогенным, пористыми, зернистыми или многослойными. Пластинчатый метод использовался для экспериментальных исследований в соответствии со стандартами. На этом аппарате определяют теплопроводность экструдированного полистирола.В этом аппарате, который можно использовать для материалов с теплопроводностью от 0,036 до 0,046 Вт / мК, плотность пенополистирола составляет от 10 до 30 кг / м3. Результаты и экспериментальные методы обсуждаются в соответствии с хорошо известными стандартами. На пенополистирол влияют изменения в составе материалов в ячейках. КЛЮЧОВІ СЛОВА: плитный метод, пенополистирольные плиты, коэффициент теплопроводности. 1 Университет Сулеймана Демиреля, факультет архитектуры и инженерии, факультет гражданского строительства, Испарта, Турция 2 Университет Сулеймана Демиреля, факультет технического образования, Отдел строительного образования, Испарта, Турция 3 Университет Сулеймана Демиреля, факультет технического образования, Отдел строительного образования, Испарта / Турция

2 1.ВВЕДЕНИЕ Мировые запасы ископаемого топлива сокращаются день ото дня. Большая часть энергии уходит на отопление. Несмотря на то, что ресурсы ископаемого топлива сокращаются, в мире все еще есть достаточно ресурсов для использования в целях теплоизоляции или теплоизоляционных материалов. На этапе строительства, оценив эти ресурсы, можно уменьшить тепловые потери; можно получить здоровье и комфорт конструкции. Кроме того, тратя меньше энергии, выиграет индивидуальная и сельская экономика. Неутепленные наружные стены — самые важные зоны тепловых потерь.Для экономичного утепления выгоднее использовать основную массу наружных стен. За счет теплоизоляции наружной стены можно предотвратить 70% общих потерь тепла [1, 2]. Изоляция должна быть экономичной и предотвращать увеличение статической нагрузки здания. Анализ материалов из полистирола показывает, что при таком же сопротивлении теплопроводности он является самым экономичным и самым легким по весу среди полиэтиленовых материалов. [3]. Строительные изделия из полистирола являются подходящими материалами для строительных типов и стеновых систем.[4]. По этой причине выбран полистирол (см. Рис. 2), коэффициент использования которого в пластмассах, являющихся нефтехимическими продуктами, составляет 15% (см. Рис. 1). Это связано с тем, что полистирол имеет высокую изоляцию и малый вес, что приводит к небольшому увеличению статических нагрузок на здание. Этот материал имеет широкое применение в строительстве. Транспорт 45% Легкое тепло Электричество и энергетическая изоляция 42% Другое (неэнергетическое использование) 5% Пластмассы 4% Сырье для химии / нефтехимии 4% Рис. 1. Пластмассы основаны на нефти [5].ПВХ 55% Полиолефины 15% Полиуретаны 8% Полистирол 15% Прочие 7% Рис. 2. Пластмассы в строительстве [5].

3 2. Твердый пенополистирол. Твердые пенополистирольные плиты — это изоляционные материалы, полученные путем формования распылением полимеризации стирольной смолы под давлением (экструдированный полистирол XPS) или путем прессования зерен полистирола в формы, расширяющиеся под действием пара или в горячей воде, снова с помощью пара (расширенный Полистирол XPS) (см. Рис.3) [6, 7]. Рис. 3. Процесс производства пенополистирола (EPS) [5]. Неподвижный воздух имеет очень низкий коэффициент теплопроводности. Пеноматериалы из полистирола содержат почти 98% воздуха. Твердая фаза (пенный каркас), проводящая тепло, занимает 2% от общего объема. Кроме того, полистирол, передающий тепло, является очень изоляционным материалом. Из-за того, что пенополистирольный материал формируется из очень маленьких (1 м 3 пенополистирольного пенополистирола состоит из 3-6 миллиардов ячеек) закрытых ячеек: диаметром мм (см.рис.4), скорость теплопроводности за счет движения воздуха уменьшается с уменьшением объема ячеек, поэтому с точки зрения техники изоляции это хороший изоляционный материал. Лучше всего предотвратить тепловые лучи, если использовать большее количество ламинатов. Прежде всего; Обращает на себя внимание свойство, меньшее удельный вес пенополистирола. Вес пеноматериала, полученного различными способами с предварительным набуханием, варьируется от кг / м 3. Также величина теплопроводности изменяется в зависимости от плотности изготовления.Обычно стандартный пеноматериал, который используется на строительных площадках, имеет плотность кг / м 3 [3, 8]. Рис. 4. Микроструктура пониженной теплопроводности [5].

4 Наиболее распространенные области применения пенополистирола для теплоизоляции — строительство; стены, потолок, крыша и сборные элементы. Другие области применения — шумоизоляция, декоративные потолочные плиты и отверстия в бетонных формах.Предварительно набухший полистирол используется также при производстве легкого бетона и легкого кирпича. В технологии охлаждения пенополистирол используется для изоляции охлаждаемых складов, железнодорожных вагонов, судов, грузовиков, а также для изоляции труб. Стойкость этого материала к воздействию тепла зависит от периода и градусов Цельсия. Несмотря на то, что он непродолжительный против тепла до 100 C, он долговечен и может использоваться при температуре до 100 C в зависимости от плотности в течение длительного периода [9].Принимая во внимание удельную массу, которая очень мала по сравнению с другими материалами, видно, что произведение прочности на сжатие пенополистирольного материала имеет важное более высокое значение [3]. Прочность пенополистирола под давлением и сопротивление деформации формы при тепловом воздействии увеличиваются параллельно с увеличением веса изделия (см. Рис. 5). Однако мощность всасывания воды меняется в зависимости от веса единицы и качества продукции (см. Рис. 6). Общие свойства EPS приведены в таблице 1.Прочность на сжатие (Н / мм 2) Деформация при% 10 <% 2 Плотность деформации (кг / м 3) Рис. 5. Прочность на сжатие EPS в зависимости от плотности и деформации [10]. (Всасывание воды,% по объему) День 15 кг / м 3 20 кг / м 3 30 кг / м 3 Рис. 6. EPS водопоглощения [10].

5 Таблица 1. Технические характеристики пенополистирола [8]. Свойства и соответствующие стандартные значения пенополистирола Минимальная плотность (кг / м 3) (DIN 53420) Классификация строительных материалов (DIN 4102) B1 Трудновоспламеняющиеся лаборатории по теплопроводности.Значение (Вт / мК) (DIN 52612) Значение измерения (Вт / мК) (DIN 52612) Прочность на сжатие при 10% деформации (DIN 53421) Прочность на сжатие при деформации менее 2% (DIN 53421) Прочность на сдвиг (Н / мм 2 ) (DIN 53427) Сопротивление изгибу (Н / мм 2) (DIN 53423) Предел прочности (Н / мм 2) (DIN 53430) Модуль упругости E (Н / мм 2) Прочность формы в зависимости от температуры в течение короткого периода (C) ( DIN 53424) В течение длительного периода 5000 Н / мм 2 (C) (DIN 53424) В течение длительного периода Н / мм 2 (C) (DIN 18164) Коэффициент теплового расширения (1/4) Удельная теплоемкость (Дж / кг · К) (DIN 4108) Водопоглощающая способность за 7 дней при полном погружении в воду DIN (% объема) 1 год Диффузия водяного пара (г / м 2.d) (DIN 53429) Коэффициент сопротивления диффузии пара (µ) (DIN 4108) 20/250 30/250 40/250 EPS, который используется для строительства, изготавливается в форме плит. Также продается с целью использования в декоративных целях. Удельный вес при производстве варьируется от кг / м 3, а производственная плотность составляет 10-12, 12-14, 14-16, 16-18, 18-20, 20-22, 22-24, 24-26, 26-28. , кг / м 3 в единицах веса. Производственные размеры EPS составляют 400x100x50 см, а с использованием технологии горячей проволоки (мин. 1 см) он может быть изготовлен любой желаемой толщины.В настоящее время в мире производится 2,2 миллиона тонн пенополистирола в год, а количество и количество теплоизоляционных материалов, потребляемых в Турции и Европе, показано на рис. 7.

6% Потребление Минеральная вата EPS XPS Полиуретан Другие страны Европы Турция Рис. 7. Положение EPS в области применения теплоизоляционных материалов [8]. 3. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ Виды строительных и теплоизоляционных материалов совершенствуются с постоянным развитием технологий.При тепловых измерениях использование коэффициента теплопроводности, приведенного в литературе для аналогичных материалов, может дать неверные результаты. По этой причине необходимо определять все физические свойства новых материалов, такие как удельный вес, вязкость, удельная теплоемкость, коэффициенты теплопроводности [11]. Наиболее важными и наиболее часто используемыми методами испытаний твердых веществ являются: Доска с методом защитного нагревателя, сферической оболочкой, цилиндрическим и временным режимом и методом пластины. В данном исследовании для определения тепловых свойств пенополистирольных плит используется пластинчатый метод, который представляет собой определение коэффициента теплопроводности с учетом теплопроводности.Наиболее важные преимущества этого метода: Простые в исполнении, используемые образцы имеют форму куба и обеспечивают полное распараллеливание с горизонтальными измерениями, где наиболее важным недостатком является то, что теплопроводность образцов не может быть определена во влажном состоянии, и требуется кондиционирование. Теплопроводность и тепловые переходы могут быть определены в состоянии прямой пластины, однородном или почти однородном пористом, волокнистом, зернистом, одном или нескольких слоистых образцах. В пластинчатом методе коэффициент теплопроводности увеличивается с увеличением угла наклона к горизонтали.Использование пластинчатого метода для определения коэффициента теплопроводности будет уместным, потому что EPS формируется из очень маленьких ячеек, соединяющихся из зерен, и его используют при строительстве в горизонтальном и / или вертикальном положении. Этот метод бесполезен для материалов; теплопроводность более 2 ккал / м · ч С (2,3 Вт / м · К). Из изделий из пенополистирола, для которых определены коэффициенты теплопроводности, выбраны пять типов удельного веса (10, 15, 20, 25 и 30 кг / м 3).

7 3.1. Экспериментальное оборудование и приложения. Для определения коэффициента теплопроводности используется устройство, которое определяет теплопроводность методом пластин Feutron (см. Рис. 8), и это устройство может измерять один образец в течение каждого периода испытаний. Размеры нагревательной пластины составляют 250×250 мм, а ее толщина может достигать 70 мм. Холодильная плита воды и электричество горячей плиты обеспечиваются от подключений, которые связаны с сетями воды и электричества. Оборудование состоит из четырех основных частей.Эти; фиксированная нижняя пластина, подвижная верхняя пластина, защитный лист и измерительные приборы. Измерительные приборы состоят из трех основных частей: термометры, электрический счетчик и микрометры для измерения толщины (0,001 мм). Электрическая линия и холодная вода Рис. 8. Схема оборудования, измеряющего теплопроводность пластинчатым методом [12]. 1- Образец 2- Нагревательная пластина 3- Охлаждающая пластина 4- Защитная горячая пластина 5- Термопара 6- Термометры охлаждающей пластины 7- Термометры защитной горячей пластины 8- Микрометры для измерения толщины 9- Термостат охлаждающей пластины 9- Терморегулятор для термостата защитной пластины 10- Терморегулятор для переменного преобразователя 12- Двухточечный регулятор 13- Вольтметр с электрическим счетчиком 15- Термометр холодной воды 16- Клапан холодной воды 17- Расходомер 18- Короткий циркуляционный клапан.

8 Нагреватель нагревается от электричества, степень нагрева регулируется. Пластина охладителя охлаждается сетевой водой, а степень охлаждения регулируется с помощью лопасти по количеству протекающей воды. Теплота сетевой воды измеряется градусником. Также с помощью термометров на более теплой и более холодной пластинах, температура этих пластин контролируется. Перед началом эксперимента образцы сушат (24 часа при 105 o C) до неизменного веса при нормальном атмосферном давлении (1×10 5 Па).Практически образцы пенополистирола (в основном пластмассы) теряют свои физические свойства при 105 ° C, поэтому проводят 24-часовую сушку при 24 ° C. Рассчитываются количества влажности по объему (n v) и по весу (n г) образцов. После подготовки образцов для измерения в первую очередь необходимо определить количество рабочей мощности. Уровень мощности привязан к толщине образца и приближенному коэффициенту теплопроводности. Используя диаграмму, представленную на рис. 9, на график наносят приблизительное значение коэффициента теплопроводности, взятое из стандарта DIN 4108, и величину измеренной толщины.По этим значениям уровень мощности считывается с данной диаграммы. Тогда коэффициент Ki получается из таблицы 2 в соответствии с найденным уровнем мощности λ = λ = 1,3 λ = λ = 0,80 λ = λ = λ = λ = λ = λ = Толщина образца (мм) Рис. 9. Диаграмма для определения мощности уровень при фиксированной разнице температур 10 o C [12]. Уровень мощности Таблица 2. Уровень мощности и коэффициенты Ki [12]. Источник питания Ki * Источник питания Ki * * Ki Коэффициент уровня мощности содержит измеренную величину площади, коэффициент счетчика C и коэффициенты, которые переводят wh в ккал.

9 После выполнения необходимых регулировок образец помещают на нижнюю фиксированную пластину, полностью параллельную горизонтали, и измеряют толщину в четырех углах образца с помощью микрометров для измерения толщины. В процессе эксперимента электрический ток, проходящий от электрического счетчика, и величины на термометрах защитных нагревательных пластин измеряются каждые полчаса всего 9 раз.После завершения эксперимента толщины в четырех углах образца снова измеряются с помощью микрометров для измерения толщины и вычисляются средние из этих значений. Путем определения количества электричества (wh / h), проходящего в единицу времени, ток (q) рассчитывается с помощью уравнения 1 и с использованием коэффициента уровня мощности (Ki). Разница тепла (t) между двумя поверхностями рассчитывается путем усреднения значений термометра горячих и холодных пластин. По уравнению 2 коэффициент предварительной теплопроводности (λ 10.ö) сухого образца рассчитывается с использованием найденных значений и поправочного коэффициента (ω), относящегося к оборудованию. Поскольку материал будет использоваться в нормальных погодных условиях, при нормальном атмосферном давлении, значение теплопроводности (λ 10.k) в сухих условиях рассчитывается по уравнению 3 для средней теплоты 10 ° C путем добавления количества, равного влажности по весу. количество, которое оно в нем содержится. При добавлении 10% расчетного значения коэффициента теплопроводности к самому себе значение, которое будет использоваться для расчета тепла (Z), чтобы использовать этот материал в зданиях по уравнению 4 [14].q = wh / h.ki (1) q.d o λ 10.ö = ккал / мч C t q. ω (2) λ 10.k = λ 10.ö / [1+ (нг / 100)] (3) λ h = λ 10.k + Z (4) 4. РЕЗУЛЬТАТЫ ИСПЫТАНИЙ И ОБСУЖДЕНИЕ По окончании исследований и расчеты, выполненные для каждой единицы веса, достигаются до значений, указанных в таблице 3. Значения λ 10.ö, приведенные в таблице 3, являются средними арифметическими для образцов. Изменение расчетного значения теплопроводности (λ h), найденное экспериментально, представлено на рис. 10. Установлено, что удельный вес и коэффициент теплопроводности изменяются обратимо.Форма кривой изменения полиномиальная, а коэффициент регрессии равен 1. (y = 2×10-05 x x, R 2 = 1). Как видно на рис. 6, только одно значение (для 15 кг / м 3, Вт / м · K) дано для пенополистирольных плит из жесткого пенополистирола в TS 825 и DIN 4108; для других плотностей не определено, как рассчитывать, или значение не приводится. В PrEN 12524 для продуктов, которые не проводились, дается W / mK, а удельный вес и коэффициент теплопроводности изменяются полиномиально параллельно количеству испытаний для надежности% 50 (R 2 =) и% 90 (R 2 = ) приведены два различных расчетных значения теплопроводности.Согласно PrEN 12524, эти два значения при 23 C одинаковы для относительной влажности% 50 и% 80.

10 Группа плотности (кг / м 3) Номер образца Сухая масса образцов, кг Таблица 3. Расчетные значения коэффициента проводимости для образцов из пенополистирола (a) кг / м 3 Плотность поверхности a. d (кг / м 2) E общее потребление электроэнергии (кВт / ч) Z общее время (час) t разница тепла Ток E.Ki Z Среднее значение первой и последней толщин — d (м) λ 10.ö λ 10.k Ккал / мч C λ 10.k + Z Расчетное значение коэффициента проводимости (λh) Ккал / мч C Вт / мK

11 Расчетное значение коэффициента проводимости (Вт / мК) Вес агрегата (кг / м 3) AP = 50 P = 90 λ h B λ h ABP = 90 P = 50 Рис. 10. Расчетные значения коэффициента теплопроводности пенополистирола, найденные тесты и по стандартам. A: это расчетное значение коэффициента теплопроводности для продуктов (EPS) любых проведенных испытаний, приведенных в PrEN [15].B: Расчетное значение коэффициента теплопроводности для плит из пенополистирола с плотностью более 15 кг / м 3 в соответствии с TS 825 и DIN 4108 [13, 16]. P = 50 — P = 90: Расчетные значения коэффициента теплопроводности, которые будут использоваться для продуктов (EPS) с уровнями значимости 50% и 90%, указанными в PrEN [15]. λ h: Расчетное значение коэффициента теплопроводности, найденное при испытаниях. По результатам эксперимента, хотя расчетные значения коэффициента теплопроводности пенополистирола с удельной массой кг / м 3 оказались ниже предельных значений, указанных в TS 825, DIN 4108 и PrEN 12524, за исключением значения, указанного в PrEN для образцов любого Проведенные испытания показали, что ППС с удельным весом 15 кг / м 3 больше других значений.

12 4. РЕЗУЛЬТАТЫ При определении значений теплопроводности строительных материалов, которые будут использоваться для теплоизоляции здания, знание физических свойств материалов (структура, прочность на кручение и т. Д.) И использование соответствующих методик позволит получить более точные результаты. Определение коэффициентов теплопроводности после этапа производства строительных материалов заставит производителя производить высококачественные материалы, а также будет удовлетворять соответствующие экономические условия за счет уменьшения толщины изоляционных материалов, используемых в зданиях. При испытаниях изделий из пенополистирола установлено, что коэффициент теплопроводности изменяется обратно с плотностью.Таким образом, можно сделать вывод, что уменьшение коэффициента теплопроводности обеспечивается увеличением количества зерен EPS в единице объема, что приводит к уменьшению объема пустот между зернами, а также приводит к увеличению количества пор в зернах EPS. Однако это снижение коэффициента теплопроводности действительно до оптимального значения, поскольку уменьшение общего количества пустот в EPS приведет к увеличению плотности, таким образом, значение коэффициента теплопроводности может увеличиться.В литературе и стандартах приводится только одно значение коэффициента теплопроводности пенополистирола, и предлагается любой метод изменения этого значения в зависимости от веса единицы. Будет более уместно изменить значение коэффициента теплопроводности, как указано в PrEn, в зависимости от количества образцов, чтобы разработать новые и лучшие материалы, используя результаты, полученные в экспериментах, с использованием значения, рассчитанного путем умножения значения коэффициента теплопроводности на безопасность. коэффициент.СПИСОК ЛИТЕРАТУРЫ 1. Брайант С., Люм Э. Система Брайанта Уоллинга. Бетон 97 для будущего, 18-я конференция, проводимая раз в два года, Аделаидский конференц-центр, Олдер, Г., St Century Challenge. Компьютерная графика (ACM), 33 (3), Эдремит, А., Проведение экономического анализа изоляционных материалов путем определения физических свойств; Магистерская работа, Стамбульский технический университет Йылдыз, стр. 114, Турция. (На турецком языке) 4. Манселл, У. К., Стенные конструкции с фиксированным креплением революционизируют жилищное строительство. Бетонное строительство, The Aberdeen Group, 12 стр., Соединенные Штаты. 5. Фиш, Х., Июль. Пластмассы — инновационный материал в строительстве, EUROCHEM — Конференция 2002 / TOULOSUE (Линч, 30 апреля, G., Combat Cold. Computer Graphics (ACM), 33 (3), Shreve, N., Бринк, AJ, (Перевод на турецкий язык Чаталташ, И. А.), Chemical Process Industries, стр. 350, Стамбул, Турция. 8. Общество производителей полистирола, (30 апреля 2003 г., Стамбул, Турция. (На турецком языке) 9 Йылмаз, К., Колип, А., Касап, Х., Панели из несущего полистирола с превосходной изоляцией, помещенные в стальную сетку, Симпозиум по изоляции 97, стр., Элазыг, Турция.(На турецком языке)

13 10. Анонимный, Жесткая пена (EPS) в теплоизоляции. Общество производителей пенополистирола, стр. 14, Анкара, Турция. (На турецком языке) 11. Какач, С., Введение в объем I теплопроводности (теплопроводность). Техническое издательство, стр. 310, Анкара, Турция. (На турецком) 12. Аноним. Справочник по испытательной аппаратуре типа Feutron (определение коэффициента теплопроводности пластинчатым методом).13. DIN 4108, 1981, Теплоизоляция в зданиях, (DIN-Norm), стр.48, Берлин, Германия. 14. TS 415, Расчетное значение теплопроводности и термического сопротивления для архитектурных и строительных целей (с использованием метода пластин). Турецкий институт стандартов (TS), стр. 12, Анкара, Турция. (На турецком языке) 15. PrEn 12524, 1996, Строительные материалы и продукты, Энергетические свойства, Табличные расчетные значения, Европейский комитет по стандартизации, 12 стр., Центральный секретариат: Rue De Stassart 36, Брюссель. 16.TS 825, Теплоизоляция в строительстве. Турецкий институт стандартов (TS), стр. 62, Анкара, Турция. (На турецком языке)

Испытания пластмасс на растяжение

Испытания пластмасс на растяжение

Предел прочности на разрыв

Способность противостоять разрушению при растягивающем напряжении — одно из наиболее важных и широко измеряемых свойств материалов, используемых в конструкциях.Сила на единицу площади (МПа или фунт / кв. Дюйм), необходимая для разрушения материала таким образом, составляет предел прочности на разрыв или предел прочности при разрыве . Скорость, с которой образец разрывается в ходе испытания, может варьироваться от 0,2 до 20 дюймов в минуту и ​​будет влиять на результаты. Аналогичным испытанием для измерения свойств на растяжение в системе ISO является ISO 527. Значения, указанные в испытаниях ASTM D638 и ISO 527, в целом существенно не различаются, и любое испытание даст хорошие результаты на ранних этапах процесса выбора материала.Для полимерных пленок (ASTM D882 или ISO 1184) и эластомеров (ASTM D412 или ISO 37) обычно применяются отдельные методы испытаний на растяжение.

На приведенном ниже рисунке из компании Quadrant Engineering Plastic Products показана геометрия испытаний.

ASTM D638:
Для этого испытания пластмассовые образцы либо обрабатываются механической обработкой из заготовок, либо отливаются под давлением. Машина для испытания на растяжение вытягивает образец с обоих концов и измеряет усилие, необходимое для разрыва образца, а также степень растяжения образца перед разрушением.

Удлинение при растяжении

Предельное удлинение инженерного материала — это процентное увеличение длины, которое происходит до того, как он разорвется при растяжении. Предельные значения удлинения в несколько сотен процентов являются обычными для эластомеров и полиолефинов пленки / упаковки. Жесткие пластмассы, особенно армированные волокном, часто имеют значения менее 5%. Сочетание высокого предела прочности на разрыв и большого удлинения позволяет получать материалы с высокой вязкостью.

Модуль упругости при растяжении

Модуль упругости — это отношение напряжения к упругой деформации при растяжении.Высокий модуль упругости означает, что материал жесткий — для создания заданной величины напряжения требуется большее напряжение. В полимерах модуль упругости при растяжении и модуль сжатия могут быть близкими или широко варьироваться. Это изменение может составлять 50% или более, в зависимости от типа смолы, армирующих агентов и методов обработки. Модули растяжения и сжатия металлов часто очень близки.

В таблице ниже приведены значения среднего предела прочности на разрыв, удлинения при разрыве и модулей растяжения для некоторых наполненных и ненаполненных полимеров.

Типичный предел прочности на разрыв, удлинение и модуль упругости полимеров

Полимер Тип Предел прочности при растяжении
(МПа)
Относительное удлинение
(%)
Модуль упругости при растяжении
(ГПа)
АБС 40 30 2,3
ABS + 30% стекловолокно 60 2 9
Сополимер ацеталя 60 45 2.7
Сополимер ацеталя + 30% стекловолокна 110 3 9,5
Акрил 70 5 3,2
Нейлон 6 70 90 1,8
Полиамид-имид 110 6 4.5
Поликарбонат 70 100 2,6
Полиэтилен, HDPE 15 500 0,8
Полиэтилентерефталат (ПЭТ) 55 125 2,7
Полиимид 85 7 2.5
Полиимид + стекловолокно 150 2 12
Полипропилен 40 100 1,9
Полистирол 40 7 3

Формы для бетонных цилиндров размером 2×4, 3×6, 4×8, 6×12 дюймов

Одноразовые и многоразовые формы для цилиндров для бетона

Gilson используются для формования цилиндров для испытаний бетона.Наш выбор форм обеспечивает однородные высококачественные испытательные цилиндры для бетона для различных испытаний на твердение и прочность. Формы соответствуют стандартам испытаний ASTM C470, C31 и C192, а также AASHTO M 205, R 39 и T 23.

Подробнее …

Формы для цилиндрических образцов

Gilson изготавливаются из различных материалов, включая пластик, сталь и чугун. Формы предлагаются четырех размеров: 6 x 12 дюймов, 4 x 8 дюймов, 3 x 6 дюймов и 2 x 4 дюйма (в зависимости от типа материала).

Популярная форма для бетонных цилиндров 6х12 выпускается из одноразового пластика, стали и чугуна.Наши бетонные цилиндрические формы 4×8 доступны из одноразового и многоразового пластика, стали, чугуна и полистирола. Формы меньшего размера 3×6 и 2×4 продаются в виде одноразового пластика.

Ознакомьтесь с нашими принадлежностями для пресс-форм, в которые входят подбивочные стержни, инструменты для снятия изоляции и держатели.

  • Пластиковые формы для бетонных цилиндров, одноразовые, изготавливаются из неабсорбирующего, одноразового и биоразлагаемого пластика. Формы становятся биоразлагаемыми на свалках или компостных предприятиях благодаря патентованному веществу, добавляемому в процессе производства.
    Этот тип форм имеет неограниченный срок хранения и устойчив к атмосферным воздействиям. Многоразовые пластиковые крышки продаются отдельно. Цельные формы доступны в размерах 6×12 дюймов (152×305 мм), 4×8 дюймов (102×203 мм), 3×6 дюймов (76×152 мм) или 2×4 дюйма (51×102 мм).
  • Стальные бетонные формы для испытательных цилиндров изготовлены из устойчивой к ржавчине оцинкованной стали и выдерживают строгие лабораторные или полевые испытания. Пресс-форма имеет продольное разделение и съемную конструкцию опорной плиты. Раздельная конструкция обеспечивает легкое снятие образца и герметичное уплотнение.Он легко открывается, чтобы освободить образцы затвердевшего бетона с помощью барашковых гаек.
    Съемная опорная плита из тяжелой стали имеет обработанную выемку для фиксации формы. Доступен в двух размерах: 6×12 дюймов (152×305 мм) с ручками для переноски или без них или 4×8 дюймов (102×203 мм).
  • Чугунные бетонные цилиндрические формы — это тяжелые узлы, рассчитанные на длительный срок службы с ребрами жесткости для предотвращения деформации. Эти прочные формы многоразового использования имеют длительный срок службы для сложных применений в суровых условиях.
    Формы обработаны с точными допусками и имеют серийные номера.Доступны размеры 4×8 дюймов (101,6×203,2 мм) и 6×12 дюймов (152,4×304,8 мм).
  • Пластиковые формы для бетонных цилиндров, многоразовые — это формы размером 4×8 дюймов (102×203 мм), изготовленные из толстостенного пластика для длительного использования. Специально разработанный пластиковый футляр и дисковая вставка обеспечивают гладкость образцов и легкое извлечение образцов при извлечении из формы. Формы продаются упаковками по четыре штуки и поставляются с крышкой, вкладышем и вкладышем для диска. Дополнительные вкладыши и диски можно приобрести отдельно.
  • Формы цилиндров из полистиролбетона TempGuard ™ размером 4×8 дюймов (102×203 мм) изготовлены из пенополистирола высокой плотности.Этот тип материала обеспечивает изоляцию и защиту от резких перепадов температур во время первоначального отверждения в полевых условиях. Такая конструкция позволяет получать согласованные результаты испытаний, отражающие условия на рабочем месте. Формы
    TempGuard ™ продаются в упаковках по девять штук с предварительно установленными вкладышами и сорока пятью дополнительными вкладышами. Замена футеровки после каждого использования позволяет повторно использовать формы до шести раз.

Удельный вес бетона


Меморандум о дизайне

Кому: весь персонал проектного отдела

ОТ: Биджан Халеги
ДАТА: 1 июня 2010 г.
ТЕМА: Удельный вес бетона.


Этот меморандум определяет удельный вес бетона для расчетов статической нагрузки и модуля упругости.

    Для бетона нормального веса:

Член Типы

Бетон Вес устройства (шт. Фут)

Модуль упругости

(простой бетон)

Собственная нагрузка

(с армированием)

Сборный железобетон соединенные балки с предварительным или последующим натяжением

155

165

Бетоны прочие

150

155

Удельный вес легкого заполнителя бетона будет варьироваться в зависимости от проекта в зависимости от источника легкого заполнителя.Смеси контролируемой плотности следует использовать для бетонов на легких заполнителях.


Справочная информация:

На удельный вес бетона в первую очередь влияет удельный вес заполнителя, который варьируется в зависимости от географического положения и увеличивается с увеличением прочности бетона на сжатие в зависимости от добавленных пуццоланов. Удельный вес железобетона обычно принимается на 5 фунтов на фут больше, чем удельный вес обычного бетона. Удельный вес сборных железобетонных балок обычно принимается на 10 фунтов на фут больше, чем удельный вес простого бетона из-за веса арматуры и прядей.Удельный вес бетона из легких заполнителей может варьироваться в зависимости от источника материалов из легких заполнителей. Смеси с контролируемой плотностью обычно используются производителями легкого заполнителя.


Если у вас есть какие-либо вопросы по этому поводу, пожалуйста, свяжитесь с Биджаном Халеги по телефону 705-7181.


Копия: Мохаммад Шейхизаде, Строительство моста — 47354

Ф. Познер, Мост и сооружения 47340


Примечание. Щелкните здесь, чтобы получить PDF-файл с этой памяткой по дизайну.

Полистирол

Упаковка из пенополистирола Контейнер для йогурта из полистирола

Полистирол (/ ˌpɒliˈstaɪriːn /; IUPAC поли (1-фенилэтен-1,2-диил) ), также известный как Thermocole, сокращенно в соответствии со стандартом ISO PS , представляет собой ароматический полимер, полученный из мономерного стирола, жидкого углеводород, который производится из нефти в химической промышленности. Полистирол — один из наиболее широко используемых пластиков, его объем составляет несколько миллиардов килограммов в год.

Полистирол представляет собой термопластическое вещество, которое находится в твердом (стекловидном) состоянии при комнатной температуре, но течет при нагревании выше температуры стеклования около 100 ° C (для формования или экструзии) и снова становится твердым при охлаждении. Чистый твердый полистирол — это бесцветный твердый пластик с ограниченной гибкостью. Его можно отливать в формы с мелкими деталями. Полистирол может быть прозрачным или может быть окрашен в разные цвета.

Твердый полистирол используется, например, в одноразовых столовых приборах, пластиковых моделях, коробках для CD и DVD, а также в корпусах дымовых извещателей.Продукты из вспененного полистирола, например, упаковочные материалы, изоляция и чашки для напитков из пенопласта, встречаются практически повсеместно.

Полистирол может быть переработан, на нем обозначена цифра «6» в качестве символа переработки. Растущие цены на нефть увеличили ценность полистирола для вторичной переработки. Ни один известный микроорганизм еще не продемонстрировал способность к биоразложению полистирола, и он часто встречается в большом количестве как форма загрязнения окружающей среды, особенно вдоль берегов и водных путей, особенно в его клеточной форме с низкой плотностью.

История

Полистирол был открыт в 1839 году Эдуардом Симоном, [1] аптекарем в Берлине. Из сторакса, смолы турецкого сладкого дерева Liquidambar orientalis , он перегонял маслянистое вещество, мономер, который назвал стиролом. Несколько дней спустя Саймон обнаружил, что стирол загустел, предположительно в результате окисления, в желе, которое он назвал оксидом стирола («Стиролоксидом»). К 1845 году английский химик Джон Блит и немецкий химик Август Вильгельм фон Хофманн показали, что такое же превращение стирола происходит в отсутствие кислорода.Они назвали свое вещество метастиролом. Позже анализ показал, что он химически идентичен стиролоксиду. В 1866 году Марселин Бертело правильно определил образование метастирола из стирола как процесс полимеризации. Прошло около 80 лет, прежде чем стало известно, что нагревание стирола запускает цепную реакцию, которая приводит к образованию макромолекул, в соответствии с тезисом немецкого химика-органика Германа Штаудингера (1881–1965). В конечном итоге это привело к тому, что вещество получило свое нынешнее название — полистирол.

Компания I. G. Farben начала производство полистирола в Людвигсхафене, Германия, примерно в 1931 году, надеясь, что он будет подходящей заменой литому под давлением цинку во многих областях. Успех был достигнут, когда они разработали корпус реактора, в котором полистирол экструдировали через нагретую трубу и резак, производя полистирол в форме гранул.

До 1949 года инженер-химик Фриц Стастны (1908–1985) разработал предварительно расширенные шарики из полистирола с добавлением алифатических углеводородов, таких как пентан.Эти шарики являются сырьем для формования деталей или экструдирования листов. BASF и Stastny подали заявку на патент, который был выдан в 1949 году. Процесс формования был продемонстрирован на выставке Kunststoff Messe 1952 года в Дюссельдорфе. Продукция получила название Стиропор.

Кристаллическая структура изотактического полистирола была описана Джулио Натта. [2]

В 1959 году компания Koppers из Питтсбурга, штат Пенсильвания, разработала пенополистирол (EPS). [ требуется ссылка ]

Структура

С химической точки зрения полистирол представляет собой длинноцепочечный углеводород, в котором чередующиеся углеродные центры присоединены к фенильным группам (название, данное бензолу с ароматическим кольцом.Химическая формула полистирола: (C 8 H 8 ) n ; он содержит химические элементы углерод и водород.

Свойства материалов определяются притяжениями Ван-дер-Ваальса на короткие расстояния между цепями полимеров. Поскольку молекулы представляют собой длинные углеводородные цепи, состоящие из тысяч атомов, общая сила притяжения между молекулами велика. При нагревании (или быстрой деформации из-за комбинации вязкоупругих и теплоизоляционных свойств) цепи могут принимать более высокую степень конформации и скользить друг мимо друга.Эта межмолекулярная слабость (по сравнению с высокой внутримолекулярной силой из-за углеводородной основы) придает гибкость и эластичность. Способность системы легко деформироваться выше температуры стеклования позволяет полистиролу (и термопластичным полимерам в целом) легко размягчаться и формоваться при нагревании.

Полимеризация

Полистирол получается при соединении мономеров стирола. При полимеризации одна двойная связь углерод-углерод (в винильной группе) заменяется гораздо более прочной одинарной связью углерод-углерод, следовательно, очень трудно деполимеризовать полистирол.Около нескольких тысяч мономеров обычно составляют цепочку из полистирола, что дает молекулярную массу 100 000–400 000.

Трехмерная модель показала бы, что каждый из атомов углерода хиральной основной цепи лежит в центре тетраэдра, а его 4 связи направлены к вершинам. Предположим, что связи -C-C- повернуты так, что основная цепь полностью лежит в плоскости диаграммы. Из этой плоской схемы не видно, какие из фенильных (бензольных) групп повернуты к нам под углом от плоскости диаграммы, а какие — под углом.Изомер, в котором все они находятся на одной стороне, называется изотактическим полистиролом , который коммерчески не производится.

Атактический полистирол

Единственной коммерчески важной формой полистирола является атактический , что означает, что фенильные группы случайным образом распределены по обеим сторонам полимерной цепи. Такое случайное расположение предотвращает выравнивание цепей с достаточной регулярностью для достижения любой кристалличности. Пластик имеет температуру стеклования T г ~ 90 ° C.Полимеризация инициируется свободными радикалами. [3]

Изотактический и синдиотактический полистирол
Полимеризация

Циглера-Натта может дать упорядоченный синдиотактический полистирол с фенильными группами, расположенными на чередующихся сторонах углеводородной основной цепи. Эта форма является высококристаллической с температурой 270 ° C (518 ° F) T m . Такие материалы коммерчески не производятся из-за медленной полимеризации.

Экструдированный полистирол примерно такой же прочный, как и нелегированный алюминий, но гораздо более гибкий и намного легче (1.05 г / см 3 по сравнению с 2,70 г / см 3 для алюминия).

Деградация

Поскольку это ароматический углеводород, он горит оранжево-желтым пламенем с выделением сажи, что характерно для материалов, содержащих ароматические кольца. Полное окисление полистирола дает углекислый газ и водяной пар. Из-за своей химической инертности полистирол используется для изготовления контейнеров для химикатов, растворителей и пищевых продуктов. Полистирол содержит следы мономера стирола.Когда пища нагревается в емкости из полистирола, мономер извлекается и попадает в пищеварительную систему потребителя. Стирол токсичен и известен как канцероген. Это вызывает дополнительные опасения при использовании для упаковки продуктов питания или напитков. Полистирол растворим в большинстве известных органических растворителей и не подходит для таких целей. Пенополистирол используется для упаковки химикатов, но он не контактирует с настоящими растворителями.

Изготовлено форм

Полистирол обычно формуют под давлением или экструдируют, в то время как пенополистирол экструдируют или формуют с помощью специального процесса.Также производятся сополимеры полистирола; они содержат один или несколько других мономеров в дополнение к стиролу. В последние годы также производятся композиты из пенополистирола с целлюлозой [7] [8] и крахмалом [9] .

Экструдированный пенополистирол с закрытыми ячейками продается под торговой маркой Styrofoam компанией Dow Chemical. Этот термин часто используется неофициально для других изделий из пенополистирола.

Полистирол используется в некоторых взрывчатых веществах на полимерной связке:

Примеры АТС из полистирола
Имя Взрывчатые вещества Связующие ингредиенты
АТС-9205 гексоген 92% Полистирол 6%; ДОП 2%
АТС-9007 гексоген 90% Полистирол 9.1%; ДОП 0,5%; смола 0,4%

Листовой или формованный полистирол

Чехол для компакт-диска из полистирола общего назначения (GPPS) и ударопрочного полистирола (HIPS) Одноразовая бритва из полистирола

Полистирол (ПС) экономичен и используется для производства пластиковых комплектов для сборки моделей, пластиковых столовых приборов, футляров для компакт-дисков, корпусов дымовых извещателей, рамок для номерных знаков и многих других предметов, где требуется достаточно жесткий и экономичный пластик. Методы производства включают термоформование и литье под давлением.

Чашки Петри из полистирола и другие лабораторные контейнеры, такие как пробирки и микропланшеты, играют важную роль в биомедицинских исследованиях и науке. Для этих целей изделия почти всегда изготавливают литьем под давлением и часто стерилизуют после формования путем облучения или обработки оксидом этилена. Модификация поверхности после формования, обычно с помощью плазмы, обогащенной кислородом, часто проводится для введения полярных групп. Многие современные биомедицинские исследования основаны на использовании таких продуктов; поэтому они играют решающую роль в фармацевтических исследованиях. [10]

Пены

Пенополистирол является хорошими теплоизоляционными материалами и поэтому часто используется в качестве строительных изоляционных материалов, например, в конструкционных изоляционных панельных строительных системах. Также они используются для ненесущих архитектурных конструкций (например, декоративных столбов).

Добавить комментарий